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ABSTRACT: Monitoring and quantifying host cell proteins (HCPs) in biotherapeutics production processes is crucial to ensure 
product quality, stability, and safety. Liquid chromatography–mass spectrometry (LC–MS) analysis has emerged as an important tool 
for identifying and quantifying individual HCPs. However, LC-MS–based approaches face challenges due to the wide dynamic range 
between HCPs and the therapeutic protein, as well as laborious sample preparation and long instrument time. To address these limi-
tations, we evaluated the application of parallel accumulation–serial fragmentation combined with data-independent acquisition (di-
aPASEF), to HCP analysis for biopharmaceutical process development applications. We evaluated different library generation strat-
egies and LC methods, demonstrating the suitability of these workflows for various HCP analysis needs such as in-depth characteri-
zation and high-throughput analysis of process intermediates. Remarkably, the diaPASEF approach enabled the quantification of 
hundreds of HCPs that were undetectable by a standard data-dependent acquisition mode.     

Host cell proteins (HCPs) are protein impurities derived from 
host cells during the biotherapeutics production process. Sev-
eral HCPs are considered high risk of affecting product quality, 
stability, and/or safety and require control strategies for re-
moval and monitoring.1–4 The enzyme-linked immunosorbent 
assay (ELISA) employing anti-HCP polyclonal antibodies is 
the most used method to monitor total HCP amount during pro-
cess development.5 However, since ELISA relies on immuno-
reactivity, it cannot detect non-immunogenic proteins or iden-
tify individual proteins. In this regard, liquid chromatography–
mass spectrometry (LC–MS) analysis has become an important 
tool to identify and quantify individual HCPs.6 
One substantial challenge encountered by LC-MS–based ap-
proaches is the wide (> 106) dynamic range between the sparse 
HCPs and the abundant therapeutic protein in the drug sub-
stance. To enable LC-MS–based HCP analysis, we and others 
have reported various sample preparation and LC-MS strate-
gies. For example, Protein-A affinity purification7 and molecu-
lar weight cutoff filtration8 deplete monoclonal antibodies 
(mAb) while chemical proteomics9 and ProteoMiner10 enrich 
certain HCPs. Alternatively, native digestion selectively digests 
proteolytically more labile HCPs over mAbs.11 In addition, of-
fline fractionation12,13, long gradient LC14, and ion mobility 
spectrometry15,16 improve separation between HCP– and thera-
peutic protein–derived peptides. However, these strategies typ-
ically involve somewhat laborious sample preparation and/or 
require long instrument time (> 2 h / sample), which considera-
bly limits sample throughput.13 Furthermore, data-dependent 
acquisition (DDA), which remains to be the method of choice 
for HCP analysis, might not sufficiently cover the required dy-
namic range to allow for adequate detection or quantification of 
HCPs.17,18 

Data-independent acquisition (DIA) is an attractive alternative 
to DDA.19 Typical DDA methods select the most abundant pre-
cursor ions of an MS1 scan for fragmentation and acquisition of 
MS2 spectra, leading to a loss of information, especially for 
sparse precursors, and partial data reproducibility due to the sto-
chastic nature of precursor selection. In contrast, DIA methods 
slide pre-defined precursor isolation windows across the entire 
MS1 scan range for fragmentation and acquisition of MS2 spec-
tra, enabling high reproducibility, sensitivity, and quantification 
across a broad dynamic range. Previous studies have applied 
various DIA methods to HCP analysis and demonstrated their 
advantages.16,17,20–23Among different DIA approaches, the dia-
PASEF method, which synchronizes ion mobility separation 
and mass selection to achieve great selectivity and sensitivity, 
is a transformative technology.24,25 However, the application of 
diaPASEF to HCP analysis has not yet been reported in peer-
reviewed literature.   
In this manuscript, we report the first application of diaPASEF 
to HCP analysis in the biopharmaceutical industry and describe 
our optimized workflows (Figure 1). We systematically evalu-
ated several spectral library generation strategies and LC meth-
ods using our internal pipeline molecules and identified work-
flows suitable for various HCP analysis needs in biotherapeu-
tics process research and development. 
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Figure 1. Overview of diaPASEF–based HCP analysis work-
flows. Spectral libraries were generated from HCCF employing 
different fractionation strategies and acquisition modes or in sil-
ico. These spectral libraries were used to process diaPASEF 
data of biotherapeutics process samples that were acquired with 
several LC methods. HCCF: harvested cell culture fluid; 
HpHRPF: high pH reversed-phase fractionation; IM–GPF: ion 
mobility–coupled gas-phase fractionation; PAP: protein A pool; 
SPD: samples per day.       
Materials and Methods 
Protein samples. Pierce Hela Protein Digest Standard was pur-
chased from Thermo Scientific. mAb1 HCCF, mAb2 HCCF, 
and mAb1 PAP were internally sourced. 
Proteomics sample preparation from mAb1 or mAb2 
HCCF. mAb1 or mAb2 HCCF (20 μL) was incubated with 4 
M urea, 25 mM TCEP-HCl, and 50 mM acrylamide in 50 mM 
tris-HCl pH 8.0 (total volume: 50 μL) at 60 °C for 30 min. An 
aliquot (20 μL) was incubated with Sera-Mag SpeedBead (10 
μL, 200 μg) and acetonitrile (70 μL) at 20 °C for 10 min with 
agitation at 500 rpm. The beads were washed three times with 
80 % EtOH (200 μL) and then incubated with 50 mM tris-HCl 
pH 8.0 (20 μL) containing 0.4 μg trypsin and 0.1 μg LysC at 37 
°C for 18 h. Peptide concentration was determined with the 
Nanodrop A280 assay and/or the BCA assay (Thermo Scien-
tific) and adjusted to 0.02 g/L with 0.1 % formic acid before 
loading 20 μL (400 ng) on Evotip Pure Evotips (Evosep) ac-
cording to the manufacturer’s instructions. The remainder was 
fractionated with Pierce High pH Reversed-Phase Peptide Frac-
tionation Kit (Thermo Fisher Scientific), concentrated to dry-
ness, reconstituted with 0.1 % formic acid to the final concen-
tration of 0.02 g/L, and loaded (400 ng) on Evotip Pure Evotips 
according to the manufacturer’s instructions. 
Proteomics sample preparation from mAb1 PAP. mAb1 
PAP were subjected to native digestion as previously de-
scribed11. Peptide concentration was adjusted to 0.02 g/L (based 
on the initial input amount) with 0.1 % formic acid before load-
ing 20 μL (400 ng) on Evotip Pure Evotips according to the 
manufacturer’s instructions. 
LC–MS analysis. Peptides were separated on the Evosep One 
LC system with Pepsep C18 columns using the manufacturer’s 
pre-defined methods denoted by daily sample throughput e.g., 

30 samples per day (SPD) and analysed on the Bruker timsTOF 
Pro 2 system. The standard DDA PASEF method was used 
without modification. The diaPASEF method was optimized by 
adjusting the isolation windows either manually or with the 
py_diAID software26. The IM–GPF schemes were designed 
with a custom R script. 
Data analysis. DDA PASEF data were processed with 
MaxQuant v2.4.1027. Use of .NET Core was disabled. Match 
between runs (MBR) was disabled for spectral library genera-
tion and enabled for all other analyses. All other settings were 
left as default. MaxQuant evidence and msms files were re-for-
matted with a custom R script and used to generate a spectral 
library with DIA-NN v1.8.128. All diaPASEF data were pro-
cessed with DIA-NN v1.8.1. Mass accuracies were set to 10 
ppm for spectral library generation and to 15 ppm for all other 
processing. MBR was disabled for spectral library generation 
and enabled for all other analyses. For the generation of the in 
silico spectral library from sequence databases, the precursor 
charge range and the mass range were restricted to 2−3 and 
300–1200 Th, respectively. The precursor and protein FDR 
thresholds were set to 1 % for all analyses. FDR estimation was 
independently validated by the two-species library analysis as 
previously described29 (Supporting Information Figure 1). 
The data post-processing analysis was performed in R version 
4.0.3. Protein quantification was performed using the MaxLFQ 
algorithm as implemented in the iq package30. Chromatograms 
were visualized in Skyline-daily v19.0.9. 
Results and Discussion 
Optimization of ion mobility–coupled gas phase fractiona-
tion scheme. Choice of spectral library has significant impact 
on DIA MS data quality as well as total experiment time.31–33 
For example, Wen et al. reported that a spectral library gener-
ated via HpHRPF and DDA yielded 10–20 % more identifica-
tions than an in silico spectral library in their diaPASEF analy-
sis of human and mouse cell lysates.32 On the other hand, 
HpHRPF results in sample matrices that are different from the 
target samples, which may affect retention time accuracy. In 
this regard, gas-phase fractionation (GPF) is an attractive alter-
native to rapidly generate spectral libraries.33 For example, 
Penny et al. demonstrated that the ion mobility–coupled  GPF 
(IM–GPF) workflow performed comparably with the HpHRPF 
workflow in terms of protein identifications in the HeLa cell 
protein digest.34 Similarly, Rice and Belani demonstrated the 
IM–GPF workflow outperformed the HpHRPF workflow in 
terms of protein identifications in depleted plasma samples.35 
While both studies employed the isolation window width of 5 
Th for their GPF library generation, narrower windows are de-
sirable to improve the selectivity of precursor selection. Thus, 
we optimized the isolation window width and the number of 
PASEF scans for the IM–GPF scheme with the commercial 
HeLa protein digest standard (Figure 2). 
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Figure 2. Optimisation of IM–GPF scheme with HeLa protein digest standard. The precursor isolation window width and the number 
of PASEF scans were varied. Number and overlap of peptides (A) and proteins (B) in various IM–GPF libraries. Horizontal bars 
indicate the number of peptides or proteins in each library. Vertical bars indicate the number of peptides or proteins shared by several 
libraries (intersection) as indicated by dotes below. Ten largest intersections are shown. Number of quantified protein groups (C) and 
coefficients of variation from the 30 SPD data (D) in three replicate injections, employing the IM–GPF and in silico libraries during 
data processing. The IM–GPF scheme names and corresponding library names represent (window width – overlap) Th × (number of 
PASEF scans) × (number of required injections). Evosep method: 15 SPD for spectral library data acquisition; 15 or 30 SPD for three 
replicate injections. Peptide and protein FDRs < 0.01. 
The IM–GPF schemes with narrower isolation windows yielded 
larger spectral libraries with more peptide and protein identifi-
cations but required more injections to cover the whole mass 
range (Figure 2A–B). The methods with 50 PASEF scans 
yielded 2.5–3 data points per peak at full width at half maxi-
mum (FWHM) on average whereas the methods with 25 
PASEF scans yielded ~ 4 data points per peak at FWHM on 
average, suggesting that these schemes may also be suitable for 
shorter gradient LC methods (vide infra).36 As expected, the li-
braries shared most of the library peptides and proteins. On the 
other hand, the use of different libraries for the analysis of HeLa 
diaPASEF data resulted in modest difference in the numbers of 
protein identifications (Figure 2C). The larger libraries (6 or 9 
injections) consistently outperformed the smaller libraries (1 or 
3 injections) and an in-silico library generated by DIA-NN in 
terms of protein identifications. Protein quantification was 
highly precise with median coefficients of variation of 3–4 % 
and unaffected by the choice of spectral library (Figure 2D). 
Interestingly, the “(3 – 1.5) Th × 50 scans × 6 injections” library 
outperformed the “(3 – 1) Th × 25 scans × 9 injections” library, 
highlighting the importance of specificity in spectral library37. 
Overall, applying the effective 1-Th isolation windows as in the 
“(2 – 1) Th × 50 scans × 9 injections” scheme resulted in the 
best performance (Supporting Information Figure 2). 
Optimisation of spectral library workflow for biotherapeu-
tics process intermediates. With the optimized IM–GPF 

scheme in hand, we evaluated several spectral library genera-
tion workflows with a harvested cell culture fluid (HCCF) from 
one of our proprietary monoclonal antibody processes (mAb1, 
Figure 3, Supporting Information Figure 3). We processed 
mAb1 HCCF with one-step denaturation, reduction and alkyla-
tion followed by the SP3 cleanup and on-bead digestion to pre-
pare a protein digest.38 We then subjected the digest to the of-
fline HpHRPF employing a commercial kit, which generates 10 
fractions, or to the optimized IM–GPF scheme to generate spec-
tral libraries. The HpHRP fractions were analysed with a stand-
ard DDA PASEF method (HpHRPF–DDA) or a diaPASEF 
method with non-overlapping 9-Th isolation windows and 50 
PASEF scans (HpHRPF–DIA). The cycle time and hence the 
number of data points per peak of this diaPASEF method 
matches those of the optimized IM–GPF method under the 
same LC gradient. The HpHRPF–DIA workflow resulted in the 
largest spectral library including > 16,000 peptides (Figure 3A) 
and > 1,800 proteins (Figure 3B) that are unique to this library 
and not part of the IM–GPF or HpHRPF–DDA libraries. On the 
other hand, the HpHRPF–DDA workflow resulted in the small-
est spectral library. Accordingly, the use of the HpHRPF–DIA 
library for HCCF diaPASEF data processing resulted in the 
largest number of protein identifications (Figure 3C). In con-
trast to the HeLa diaPASEF data, the IM–GPF libraries under-
performed an in-silico library generated by DIA-NN in terms of 
protein identifications in the HCCF diaPASEF data acquired 
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with the 15 SPD method. However, the IM-GPF library advan-
tageously outperformed the in-silico library in the HCCF dia-
PASEF data when increasing sample throughput. For example, 
processing 100SPD diaPASEF data with either the IM-GPF (15 
SPD) library or the HpHRPF (15 SPD, DIA) library yielded 
similar number of protein identifications and abundance distri-
butions (Figure 3D). On the other hand, protein abundance 

distribution clearly shifted towards more abundant proteins 
when the same data were processed with the HpHRPF (15 SPD, 
DDA) library, perhaps reflecting potential abundance bias in 
the DDA-based library. Quantitative precision was largely un-
affected by the choice of spectral library (median CV ~ 6 %). 

 
Figure 3. Evaluation of spectral library generation workflows with mAb1 HCCF. Empirical spectral libraries were generated by the 
optimal IM–GPF scheme or HpHRPF combined with DDA PASEF or diaPASEF. Number and overlap of peptides (A) and proteins 
(B) in various libraries. Horizontal bars indicate the number of peptides or proteins in each library. Vertical bars indicate the number 
of peptides or proteins shared by several libraries (intersection) as indicated by dotes below. Ten largest intersections are shown. 
Number of quantified protein groups in three replicate injections (C) and distribution of average protein abundance score (iBAQ) 
(D), employing the empirical and in-silico libraries during data processing. D: 100 SPD. Peptide and protein FDRs < 0.01. 
Similarly, we evaluated the performance of these spectral li-
braries for the analysis of mAb1 protein A pool (PAP) dia-
PASEF data (Figure 4, Supporting Information Figure 4). 
We processed mAb1 PAP according to a native digestion pro-
tocol as previously described11. The HpHRPF–DIA and the IM–
GPF (15 SPD) libraries led to similar protein identifications 
(Figures 4A) and quantitative precisions (median CV ~ 12 %). 
On the other hand, the use of HpHRPF–DDA (median CV ~ 14 
%) or the in-silico libraries (median CV ~ 10 %) resulted in sig-
nificantly smaller numbers of protein identifications. Of note, 
protein abundance distribution clearly shifted towards more 
abundant proteins in the case of the in-silico library (Figure 
4B), highlighting the importance of experimental spectral li-
brary in the diaPASEF analysis of biotherapeutics process sam-
ples to avoid the possibility of missing lower abundance HCPs.  
Next, we compared the diaPASEF method and the standard 
DDA PASEF method in the analysis of the mAb1 PAP sample. 

The diaPASEF method quantified a majority (50 of 72) of pro-
teins quantified by the DDA PASEF method and 613 additional 
HCPs (Figure 4C). The 22 proteins that were quantified by the 
DDA PASEF method but not by the diaPASEF were supported 
only by 24 peptides in total, of which 23 peptides were not part 
of any of the four experimental spectral libraries. Visual inspec-
tion of corresponding spectra revealed many questionable as-
signments. Moreover, none of these 22 proteins are considered 
high-risk HCPs.1 On the other hand, diaPASEF revealed the 
presence of > 600 additional HCPs that the DDA PASEF 
method missed (Figure 4D). These HCPs included several 
high-risk HCPs and polysorbate-degradative enzymes such as 
PLA2G7 and PPT1. In addition, quantification was more pre-
cise with the diaPASEF method (median CV ~ 12 %) than with 
the DDA PASEF method (median CV ~ 16 %). Altogether, 
these results indicate that the diaPASEF method combined with 
rapid IM–GPF spectral library generation enables wide prote-
ome coverage in biotherapeutics process samples. 
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Figure 4. Evaluation of spectral library generation workflows with mAb1 PAP. Number and overlap of protein groups that were 
quantified in all three replicate injections (A) and distribution of average protein abundance score (iBAQ) (B), employing the empir-
ical HCCF and in silico libraries during data processing. In A, horizontal bars indicate the number of proteins; vertical bars indicate 
the number of shared proteins (intersection); ten largest intersections are shown. (C) Comparison of HCP identifications between 
DDA PASEF and diaPASEF methods. The numbers in parentheses indicate the numbers of proteins with at least two unique peptides. 
(D) Waterfall plot of average protein abundance score for the 663 HCPs quantified with the diaPASEF method. High-risk HCPs are 
highlighted as red points and, if not quantified with the DDA PASEF method, are labelled with their protein symbols. The black bars 
indicate quantification of the HCP with the DDA PASEF method and the DDA method’s significant (p = 2 × 10-8, Kolmogorov-
Smirnov test) bias towards abundant HCPs. 30 SPD. Peptide and protein FDRs < 0.01. 
High-throughput diaPASEF analysis of biotherapeutics 
production process intermediates. To assess the potential of 
the optimal diaPASEF workflow to further advance biothera-
peutics process understanding, we tested its performance in a 
high-throughput analysis of mAb2 HCCFs (Figure 5). These 
HCCF samples originated from several mAb2 clones that were 
cultured under various conditions and harvested at several time 
points, covering 72 different conditions. We generated a spec-
tral library from 18 repeated IM-GPF measurements of a sam-
ple pool with the effective 1-Th isolation window i.e., “(2 – 1) 
Th × 25 scans × 18 injections” method to balance the optimal 
isolation window width and cycle time and analysed the 72 sin-
gle-shot samples in addition to 12 blanks, 12 system suitability 

samples, and 11 sample pools in a random order at the 100-SPD 
throughput. Despite the large number of runs required to ac-
complish this experiment, with the 60 and 100 SPD methods 
this took < 36 hours from start to finish. Sample pools were 
highly reproducible with the correlation coefficient (Pearson’s 
r) > 0.97 between any two runs and median CV ~ 6 %, demon-
strating the excellent performance of the method. Sample carry-
over effect was virtually absent. We quantified ~ 1800 HCPs 
with few missing values (Figure 5A) including ~ 30 high-risk 
HCPs1 such as PLA2G7 (Figure 5B). Detailed analysis of this 
data will be presented elsewhere (Sahoo et al., manuscript in 
preparation). 
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Figure 5. High-throughput diaPASEF analysis of mAb2 HCCFs. (A) Heatmap visualization of protein quantity. Each row corre-
sponds to a protein group and each column corresponds to a sample. Fill colour indicates row-wise Z score. Sample pools were highly 
reproducible with the correlation coefficient (Pearson’s r) > 0.97 between any two runs and median CV ~ 6 %. (B) A representative 
extracted ion chromatogram for the PLA2G7-derived peptide ENILGSYFDVK and its MS2 fragments.    
Conclusions 
In summary, we optimized a diaPASEF-based workflow for 
HCP analysis and demonstrated its potential to advance biother-
apeutics process understanding. We evaluated several spectral 
library generation strategies and LC methods for biotherapeu-
tics process samples and identified workflows suitable for vari-
ous HCP analysis needs including high-throughput analysis of 
harvests and in-depth characterization of purification process 
intermediates. With an optimized workflow in hand, we demon-
strated that the diaPASEF method can reveal the presence of 
hundreds of HCPs in a PAP sample that are undetectable by the 
standard DDA PASEF method including several high-risk 
HCPs and should facilitate investigative studies. We also 
demonstrated high-throughput analysis of HCCF samples, 
which should advance our understanding of HCPs prior to pu-
rification and inspire new control strategies.   
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