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Abstract:

Adaptation to competition during the evolutionary history of plants leads to a reduction of the 

overall group performance of plant elite material in the field. Traits related to competitive 

ability can be affected by the presence or absence of kin in the neighborhood. Consequently,

local relatedness might reveal plant-to-plant interaction that can enhance the predictive 

abilities of genomic models when accounted for. However, recurrent family selection 

increases relatedness among all elite material and can blur the effect of relatedness on 

neighbors’ phenotypes. To overcome this difficulty, we analyzed data from the French 

breeding program of Populus nigra L., where 1,452 genotypes were replicated six to eight 

times, each time encountering a different neighborhood. We assessed local relatedness and 

investigated genomic estimated breeding values on tree height and rust vulnerability with a 

single-step GBLUP incorporating local relatedness as a covariate. Results suggests that 

including local relatedness as an additional factor to GBLUP models is significantly more 

important for rust resistance than for tree height, mainly due to their contrasting genetic 

architecture – oligogenic for the former and polygenic for the latter. 
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Introduction

Breeding generally consists in redirecting evolutionary trade-offs towards new equilibria that 

often decrease fitness in favor of other economically interesting traits, or towards paths that 

were insufficiently explored by evolution in natural populations, such as group selection 

(Weiner, 2019). Although the importance of group selection in nature is controversial 

(Maynard Smith, 1964; Lewontin, 1970; Wilson & Wilson, 2007; Okasha, 2020), in a 

breeding program, group selection can be used to improve overall performance (e.g., robust 

productivity, tolerance to biotic or abiotic stress, or long-term response to selection), by 

keeping only those candidates that contribute favourably to plant-to-plant interactions. The 

performance of an individual can then be decomposed into direct and indirect breeding 

values (also called direct and indirect genetic effects), where the former is the intrinsic value 

of an individual without any competitors, and the latter the ability of the individual to increase 

or decrease performance due to competition (Griffing, 1967; Bijma & Wade, 2008). Breeding

can benefit from accounting for both, especially in contexts in which the indirect genetic 

effect is strong, such as when intraspecific competition is strong among candidates (Weiner 

et al., 2017). Indeed, selfish strategies (in the sense of selfish genes), although increasing 

individual fitness, are often costly for the populations in breeding schemes - and breeding 

circumventing such strategies ended up with very successful results (e.g., Donald, 1981; 

Donald and Hamblin, 1983; Weiner et al., 2010). Competitive behavior can, therefore, be a 

burden that breeders might want to select against. Despite the early success of some 

ideotypes optimizing group performance, current breeding programs do not necessarily 

focus on integrating this dimension (e.g., Denison et al., 2003; Murphy et al., 2017; 

Montazeaud et al., 2020). Consequently, the pool of elite genotypes used nowadays might 

be mostly composed of selfish genotypes, since early mass selection, bypassing group 

dynamic, favored selfish genotypes for their vigorous phenotypes (Murphy et al., 2017). It is 
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therefore increasingly important in order to reach sustained genetic gain in breeding 

programs to counteract the effect of natural selection acting at the deployment phase, and to

correct past artificial selection trajectories focussed on competitive (i.e., selfish) individuals .

In the specific case of plant breeding, resource competition between candidates occurs with 

the nearest plants (Casper et al., 1997; Milbau et al., 2007; File et al., 2011). The intensity of

competition among neighbors may depend on their relatedness, or local relatedness, either 

because of kin selection, which predicts that relatives may cooperate (Hamilton, 1964), or 

niche partitioning, which predicts, on the contrary, that similar individuals may compete for 

similar resources (Silvertown, 2004). Therefore, plant-to-plant interaction can partly be due 

to local relatedness in one way or the other (Cahill et al., 2011), so that classic models can 

be improved by incorporating the information of neighboring genotypes. Although kin 

recognition was reported to be not particularly relevant in crop species because of their 

already high relatedness (e.g., Murphy et al., 2017), we might be able to detect it 

nonetheless in breeding schemes that have been less intensive, such as forest tree 

breeding. Group selection is in fact expected to give better genetic progress for perennial 

species, since (i) inbreeding coefficient is much lower than in crop species (even though 

inbreeding depression can be higher; Lesaffre & Billiard, 2021), and (ii) positive or negative 

interactions between neighbors last a lifetime. 

Part of the phenotypic variance is due to the micro-environmental heterogeneity, and 

accounting for it has been shown to improve predictions (Cappa et al., 2022). Among the 

micro scale heterogeneity, local relatedness by variable neighborhood can create 

heterogeneity, hence a phenotypic variance that, when not accounted for, can bias genetic 

estimates. To account for heterogeneity caused by local relatedness, we chose to conduct 

our analyses on Populus nigra L.. Black poplar is a Eurasian riparian forest tree that 

contributes, as a parent along with Populus deltoides Bartr. ex Marsh., to one of the most 

widely used hybrid tree in forest breeding (Populus x canadensis), and is widely deployed as
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clones, constituting a model in which kin recognition, if any, should be the strongest. The 

dataset, stemming from the French breeding program with 1,452 genotypes replicated six to 

eight times, created different neighborhoods for each replicated genotype (Pégard et al., 

2020), all resulting from controlled crosses of 34 parents from natural populations, some of 

which were already used in the breeding programme for their performance. To detect any 

signal of group selection, we focused on two quantitative traits relevant for breeding, tree 

height and rust vulnerability. Growth of Black poplar is particularly susceptible to foliar rust, 

caused by a fungus (Melampsora larici‐populina Kleb.) that leads to a reduction in 

photosynthesis efficiency, and might lead to the death of susceptible clones (Legionnet et 

al., 1999). Rust development is strongly influenced by susceptibility of nearby trees, hence 

putatively linked to local relatedness, whereas tree height is a poor indicator of competition 

and is mostly related to the fertility of the trial. Height is known to have a polygenic 

architecture (Du et al., 2016), and rust resistance to have a mono- or oligogenic architecture 

(e.g., Jorge et al., 2005), implying that relatedness – as the amount of shared alleles – will 

have different consequences on those two traits: genetic redundancy of height probably 

making it less sensitive to local relatedness than rust resistance. 

In order to assess the contribution of local relatedness in the context of genomic selection 

(Meuwissen et al., 2001), we performed genomic evaluations with a multitrait single-step 

Genomic Best Linear Unbiased Predictor (ssGBLUP; Legarra et al., 2009; Christensen et al.,

2010). Estimating breeding values with ssGBLUP is a solid baseline in forest trees as 

recently shown (e.g., Cappa et al., 2019; Ratcliffe et al., 2017), especially its multitrait 

version that is known to give higher accuracy (Calus et al., 2011). By including local 

relatedness and spatial micro-environmental autocorrelation as random effects in ssGBLUP 

models, we assessed whether plant-to-plant interactions – phenotypic covariance between 

neighbors – could be due to local relatedness. We assessed local relatedness with different 

subsets of SNPs, each maximizing or minimizing one of the following features: Minor Allele 

Frequency, Ancestry Informativeness Coefficient, significance in a Genome Wide 
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Association Study, or heritability. We show that local relatedness significantly impacts the 

phenotype of an individual and, when surrounded by related individuals, rust damage is 

significantly more important, whereas no interaction was visible on tree height. Differences in

genetic architecture seem to play a role in plant-to-plant interactions. 
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Material and Methods 

Plant material. The study is based on previously published data (Pégard et al., 2019, 2020).

Seventeen male and 17 female Populus nigra were sampled in France, from 21 natural 

populations with no a priori selection and 13 from the French poplar breeding program for 

their performance on a range of traits, including growth and rust resistance. These 

individuals were used as parents in a factorial crossing plan and double-pair mating scheme.

Clones of both parents and progeny, and a hundred additional individuals from breeding 

programs, were grown in four sequential experimental trials (parallel strips of two lines of 

trees, with an inter-strip spacing of 1m and an inter-strip spacing of 2 metres) at the same 

location (Guéméné-Penfao, France, 47°37’59”N, 1°49’59”W), each with a randomized 

incomplete 26 block design of single tree-plots (0.9 m x 1.0 m). In total, the experiment 

comprised 10,301 trees (including 7,169 trees with genotype information), 42 full-sib 

families, 5 half-sib families, 1,452 genotypes (each replicated on average 7.09 times), and 

an Unknown Parent Group (UPG) of 105 genotypes (Table S1). Family size ranged from 1 to

119, with an average of 30.2 genotypes per family. Twenty genotypes and 17 families were 

shared across the four trials. 

Phenotype measurements. We focused on two phenotypic traits on one-year-old trees: 

height and rust vulnerability (both measured on field). Height was assessed with a 

graduation rod (in cm), and rust vulnerability (natural infection) was assessed on a scale of 1

to 9 : 1 when no rust was observed on the tree and 9 when more than 75% of lamina was 

covered by rust on more than 25% of the leaves (Legionnet et al., 1999). The homogeneity 

of rust pressure across the trial was assured by the level of infection measured on control 

individuals, being equally infected across blocks (clone ID: BDG). Some missing values were

present across the trials (dead trees or unexploitable data), but at least 95.29%, 96.05%, 
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and 95.13% of the trees were phenotyped for height, rust vulnerability, or both traits, 

respectively. Given the low missing rate, we assumed that missing values only marginally 

unbalanced the block design, and so we used default parameters of the software packages 

for handling missing values when analyzing the data.

In each trial, every phenotype was first corrected for micro-environmental heterogeneity with 

a multitrait mixed model as follows: 

Yijkl = μ + BLOCKi + SPLINE + eijkl

where ‘Yijkl’ is the l-th phenotype of the k-th replicate of the j-th genotype in the i-th trial, μ is 

the grand mean, ‘BLOCKi’ the random effect of the i-th block, ‘SPLINEi’ B-spline spatial 

autocorrelation correction over the surface of rows and columns (Cappa & Cantet, 2007), 

and ‘eijkl’ the residuals. Both the block effect and the residuals follow a Gaussian distribution 

with diagonal covariance matrices, and the model was fitted separately by trial. We used the 

function remlf90 (R package breedR; Munoz and Sanchez, 2014) with the parameters 

‘model’ set to ‘splines’ and ‘method’ set to ‘em’. All further analyses were performed on the 

residuals of this model, i.e., on spatially adjusted phenotypes. 

Genomic data. Out of the 1,452 genotypes, 1,034 were genotyped (25 parents and 1,009 

offspring), using a Populus nigra 12K custom Infinium Bead-Chip (Illumina, San Diego, CA) 

(Faivre-Rampant et al., 2016). Details of the DNA extraction protocol, bioinformatic pipelines,

and SNP mapping on the 19 chromosomes are given in Faivre-Rampant et al. (2016) and 

Pégard et al. (2019, 2020). It is worth noting that the SNP chip array included SNP in QTLs 

and expression candidate genes associated with, among other traits, rust resistance, but not

with vertical growth. We retained SNPs with a Minor Allele Frequency (MAF) > 5%; in total, 

7,129 SNPs were retained for further analyses (out of 7,513 initial SNPs).  
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Genomic relationship matrix. In order to build the relationship matrix necessary for 

inferring breeding values, we combined pedigree and genomic information (Legarra et al., 

2009; Christensen et al., 2010). The pedigree relationship matrix AΓ (following the notation of

Legarra et al., 2009) was built using the tabular rule method (Emik and Terrill, 1949), 

modified to account for a single metafounder (assuming a single base population for the 

Unkown Parent Group or UPG; Legarra et al., 2015), with a self-relationship of γ = 8σp
2, with 

σp
2 the variance of allele frequencies across markers (Garcia-Baccino et al., 2017). The 

combined relationship matrix H was summarized in Aguilar et al. (2019), and is: 

H-1 = (AΓ)-1 + (0,0;0; G-1 − (A22
Γ)-1) (1),

where A22
Γ is the submatrix of AΓ corresponding to the genotyped individuals, G = (1−α) (ωa +

ωb x GV) + α A22
Γ, with GV the genomic relationship matrix estimated from the SNPs and 

scaled following the first scaling method of Van Raden (2008), α a scaling parameter (here 

equal to 0.05), and ωa and ωb chosen to equate the average inbreeding and the average 

relationships in GV and A22
Γ as in Christensen et al. (2012). As the sample size was relatively

small, the matrix H-1 was obtained by simply inverting H with the function solve (R package 

base). 

Population structure. In order to control for population structure and avoid spurious 

associations, we computed a distance matrix 1 − H*, where H* is the correlation matrix 

obtained from H using the function cov2cor (R package stats), and the minus sign is to 

convert similarities to distances. We then used Multidimensional Scaling (MDS) on the 

distance matrix with the function cmdscale_lanczos (R package refund; Goldsmith et al., 

2022; Miller, 2022) with the parameter ‘k’ set to 5 (hence explaining > 90% of the variance), 

and ‘eig’ set to ‘TRUE’. Negative eigenvalues were set to null, and the variance explained by

an axis was computed as the ratio between its squared eigenvalue and the sum of the 

squared eigenvalues. Additionally, to assess how well the family structure was captured, we 
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measured the variable VF defined as the average within family variance on the first five axes 

(the lower the VF, the better the family structure is captured). To make MDSs comparable, 

we normalized VF by the sum of squares of the first five eigenvalues. 

Breeding value inferences. The spatially adjusted phenotypes were then used to infer the 

breeding values with a multitrait single-step Genomic Best Linear Unbiased Predictor 

(ssGBLUP), as follows:

Yijkl = μ + mds1j + mds2j + TRIALi + ANIMALj + eijkl , (2)

where ‘Yijkl’ is the l-th phenotype of the k-th replicate of the j-th genotype in the i-th trial, μ is 

the grand mean, ‘mds1j’ and ‘mds2j’ the fixed effects on the j-th genotype of the first and 

second axes of the MDS, respectively, ‘TRIALi’ the random effect of the i-th trial, ‘ANIMALj’ 

the polygenic effect of the j-th genotype, and ‘eijkl’ the residuals. Both the trial effect and the 

residuals follow a Gaussian distribution with diagonal covariance matrices, and the polygenic

effect follows a Gaussian distribution with a covariance matrix equal to k.H x Σ, where k is a 

scaling parameter equal to 1 - γ/2 (Legarra et al., 2015), H the combined relationship matrix, 

x the Kronecker product, and Σ the 2x2 covariance matrix between height and rust 

vulnerability. Estimates of coefficients and variance components of model (2) were obtained 

with the function remlf90 (R package breedR) through one run with the ‘method’ parameter 

set to ‘em’ until convergence, then another run with the parameter ‘method’ set to ‘ai’ and the

parameter ‘progsf90.option’ set to ‘maxrounds 1’. The output estimate of ‘ANIMALj’ is the 

Estimated Breeding Value (EBV) of the j-th genotype. The additive variance was obtained 

from the diagonal elements of Σ, and used to estimate heritability (the denominator of which 

also comprises the residual variance). The predictive ability (PA) of the model was defined 

as Pearson's correlation coefficient between the breeding values re-estimated from the 

effect sizes (see below) and the adjusted phenotypes corrected by the trial effect (i.e., Yijkl − 

TRIALi). 
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Genome-Wide Association Study (GWAS). Following the equations of Aguilar et al. 

(2019), the effect size of the SNPs was back-solved from the EBVs, along with their 

standard error and their p-values. This process was performed trait by trait (i.e., without 

accounting for the multitrait dimension) without loss of information, and taking all effects as 

fixed, as the Pearson’s correlation between the ssGBLUP’s EBV and the breeding values re-

estimated by the effect sizes was greater than 0.999.  

With the estimated effect sizes and the standard errors, we also computed an alternative to 

the p-value accounting for multiple testing: the local false sign rate (lfsr) estimated with an 

empirical Bayes approach for adaptive shrinkage using the function ash (R package ashr; 

Stephens, 2017). In order to detect GWAS peaks (regions in the chromosomes with a high 

density of significant SNPs), we used a custom peak detection script on the profile of lfsr 

(Tiret & Milesi, 2021) with default parameters. The script filtered out significant hits that are 

not statistically detected as a peak which is defined here as an abnormally high 

concentration of significant SNPs in a small chromosomic area. 

Neighborhood. In order to account for the effect of the neighborhood, we estimated the 

breeding values with an additional fixed effect, the local relatedness, defined as the average 

relationship (from the matrix H) between a focal individual and its neighbors (eight or less if 

on boundaries; as the king’s moves on a chessboard). Local relatedness was orthogonal to 

any micro-environmental effect, because of the random block design. The re-estimated 

breeding values were denoted nEBV. 

SNP subsets. We investigated the effect of sampling SNPs on the ssGBLUP (i.e., weighted 

ssGBLUP). We selected subsets based on population and quantitative genetics features 

computed after a first run of ssGBLUP: MAF, Ancestry Informativeness Coefficient (AIM; 

Rozenberg et al., 2003), and for each trait, significance in the GWAS, and additive variance. 
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For each feature, we kept one-tenth of the whole set (713 SNPs, a sample size close to 

previous studies on weighted GBLUP, e.g., Li et al., 2018) with either the smallest or the 

largest values, ending up with 12 subsets. AIM was estimated per family with the R script 

provided by Cappa et al. (2022). Additive variance explained by a SNP was estimated as 

2p(1-p)a2, where p is the MAF, and a the effect size (assuming no dominance nor interaction

deviation of the genetic variance; p.129, Falconer, 1989). We re-estimated the combined 

relationship matrix for each SNP subset by re-estimating in the equation (1) the genomic 

relationship matrix GV with the SNP subset. With the re-estimated matrices H, we re-

performed the MDSs, and re-estimated the PAs of the EBVs and nEBVs (where local 

relatedness were measured with the re-estimated H).

Statistical tests. For each SNP subset, we computed the confidence interval of the 

Predictive Ability (PA) with a 1000 iteration bootstrap (re-sampling individuals), without re-

estimating the covariance matrix Σ. Here, the bootstrap was only used to assess the 

variance, so that we centered the bootstrapped PA around the true PA. To assess the effect 

of sampling, these subsets were compared to 1000 random samples of 713 SNPs (the size 

of the SNP subsets). Comparisons were performed with a Student’s one-sample t-test 

(denoted t1 with a degree of freedom or df of 999 corresponding to the number of bootstrap 

iterations), or a Welch two-sample t-test (denoted t2 with a varying df), both using the 

function t.test (R package stats). The sign of the t statistic is arbitrarily reported as positive 

when greater than a baseline (e.g., the true PA), and negative when not. Models were 

compared with a likelihood ratio test with a df of 1 using the function lrtest (R package lmtest;

Zeileis & Hothorn, 2002). All scripts were written in R v4.1.3 (R Core Team, 2022). 
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Results

Tree height and rust vulnerability both exhibited high heritabilities (0.469 and 0.666, 

respectively), high predictive abilities (0.677 and 0.755 respectively), and a strong 

independence, with an estimated genetic correlation of 0.022. The GWAS did not overfit 

phenotypic variation: swapping phenotypes (permutation test) among family members of the 

same block (i.e., only randomly mismatching Mendelian sampling) significantly reduced the 

average significance of the SNPs (t1 < -2.59 x 102, p < 0.001). Only one genetic variant was 

significantly associated with rust vulnerability, located on chromosome 1, and none for tree 

height (Fig. 1A, 1B). The Q-Q plot on rust vulnerability revealed that some SNPs were 

significantly associated with a level of significance well above the 95% confidence interval 

(Fig. 1D); most of them being in the identified peak. None of the SNPs were significantly 

associated with tree height after Bayesian shrinkage, and Q-Q plot revealed a classic 

population structure overcorrection (Fig. 1C). 

Common and most heritable alleles structured families 

The population under study is structured in a hierarchical way: first into populations, then into

families. Population structure, captured by the first eigenvalues (Patterson et al., 2006), 

substantially shaped genetic diversity, as the first two eigenvalues alone explained more 

than 50% of the variance (40.0% and 24.5% respectively; Fig. S1). Because the population 

underwent family selection during breeding in the past, family structure is strong and can 

even be apprehended visually (Fig. 2). Several statistics significantly supports the strong 

family structure: (i) randomly shuffling the family ID increased by 9.96 times the within 

“family” variance (t1 = 3.70 x 103, p < 0.001); (ii) when restricting to common alleles, the first 

two eigenvalues of the PCA still explained a large part of the variance (56.2%), showing that 

family structure is bound to selection, as expected under family selection.  
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Structure is generally assumed to be reflected by polymorphism at neutral genes scattered 

across the genome, to the point where samples of SNPs can reveal population structure 

quite accurately if they are sufficiently large. In order to understand what drove the family 

structure, similarly to using annotation to focus on some SNPs, we subset 10% of the SNPs 

first randomly and then according to their MAF, AIM, significance in a GWAS, or additive 

variance, thus redefining relatedness with a different set of linkage disequilibrium. In our 

dataset, random samples of SNPs, performed quite poorly compared to the whole set of 

SNPs (t1 = 2.12 x 102, p < 0.001), although the SNPs were scattered along the genome. 

However, SNPs had a different structuring power at the family level according to the way 

they were sampled (Fig. 3): SNPs with the largest AIM, performing better than random 

samples (t1 = 3.86 x 102, p < 0.001), and even than the whole set; and SNPs with the largest 

MAF and the largest additive variance, performing better than random samples (t1 > 1.09 x 

102, p < 0.001). This result suggests that family structure information is carried by patches 

over the genome instead of being scattered across the genome. 

Local relatedness improves ssGBLUP fit for rust vulnerability

Although the growth of focal individuals was not affected by their neighbors, damage due to 

rust was more severe the more related the focal individuals were with their neighbors. 

Indeed, the genomic models incorporating local relatedness as a covariate had significantly 

higher likelihood than without for rust vulnerability (χ2 = 9.83, p = 0.002), but not for tree 

height (χ2 = 0.09, p = 0.236). As for family structure which is driven by some SNPs, different 

categories of SNPs had a different impact on focal phenotypes. When accounting for 

relatedness via the different subsets of SNPs, the Akaike Information Criterion (AIC) 

generally decreased (Fig. S2). However, for rust vulnerability, only the subset of SNPs with 

the largest MAF significantly increased the likelihood of the model (χ2 = 4.02, p = 0.04), that 

is the one that best captured the family structure. Likelihood was not significantly improved 

by SNPs with the largest AIM (χ2 = 0.15, p = 0.703) or the largest additive variance (χ2 = 

2.65, p = 0.104, respectively), and was significantly worse with other subsets (χ2 > 6.66, p < 
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0.010). For tree height, no subset of SNPs improved the likelihood (χ2 < 3.48, p > 0.062). In 

other words, when focal individuals had related individuals in their vicinity, the focal 

phenotypes were more affected: in this case, the vicinity of related individuals caused 

significantly more rust damage. 

The results suggest that shared vulnerability is the cause of rust damage amplification in the 

related neighborhood. In support of this claim, the covariance between random pairs of 

neighboring individuals’ rust vulnerability was enriched by local relatedness: from an average

of 0.28 for the whole set to 0.43 when only the most related neighbors (highest quartile) 

were retained, suggesting that local relatedness was a proxy for phenotypic similarity for the 

trait rather than the cause of plant-to-plant interactions (through kin selection or niche 

partitioning). 

In spite of genomic models being sensitive to local relatedness, improvement of predictive 

abilities (PA) was limited (Fig. S3) - probably due to a lack of power. Indeed, incorporating 

local relatedness did not significantly change the PA neither with the whole set of SNPs (|t2| 

< 0.594, p > 0.553), nor with any of the alternative subsets (|t2| < 1.03, p > 0.301), with a 

slightly better PA when incorporating local relatedness for SNPs with the smallest MAF on 

rust vulnerability (t2 = 1.73, df = 2.00 x 103, p = 0.0841), and SNPs with the smallest tree 

height significance on rust vulnerability (t2 = 1.97, df = 2.00 x 103, p = 0.0491). See the 

Supplementary materials for further details. 
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Discussion 

Genomic selection in forest tree breeding has successfully predicted growth and wood 

quality for many species (Lenz et al., 2020), such as Eucalyptus (e.g. Resende et al., 2012), 

pines (e.g., Isik et al., 2016), or spruces (e.g., Beaulieu et al., 2014). The predictive ability 

(PA) of the underlying genomic models relies on the ability of genotypic data to capture the 

covariance between candidate loci, thereby reflecting how much genetic similarity explains 

phenotypic similarities (Powell et al., 2010). An additional source of phenotypic covariances 

are micro-environmental effects, and accounting for spatial autocorrelation can enhance 

genomic predictions (Cappa et al, 2022). In our case, on top of spatial autocorrelation, we 

accounted for local relatedness, another source of heterogeneity. Results show that part of 

the plant-to-plant interaction can be ascribed to the relatedness with neighbors. In the case 

of the Black poplars under study, for rust vulnerability the interaction was more likely due to 

relatedness being a proxy rather than revealing kin selection/niche partitioning. Additionally, 

relatedness increases rust damages, whether focal individuals and neighbors are resistant 

or not, suggesting that inoculum pressure partly increases with relatedness. The lack of 

diversity at the local scale can hence be detrimental, whatever the level of resistance of 

individuals. 

Differences in genetic architecture driving local relatedness

It is generally assumed that tree height is a complex trait with a highly polygenic architecture,

which might not be the case for rust vulnerability (Du et al. 2016; Jorge et al., 2005). The 

composition of our SNP array may also have had an influence on the way both architectures 

were ‘captured’, as the chip was enriched during its development in QTLs and candidate 

expression genes related to rust resistance (Faivre-Rampant et al., 2016), but not for height, 

the most polygenic of the two traits. The low genetic correlation between both traits is 

consistent with some previous reports (e.g., Beaulieu et al., 2020; Liu et al., 2022), though 
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not all (e.g., Lenz et al., 2021; Cappa et al., 2022); we will assume in our case that 

orthogonality is strong enough to show that the traits are non-redundant, with independent 

architectures. 

The differences in genetic architecture between the two traits studied, as well as the design 

of the SNP array, may have determined the results in terms of association, with only one 

major gene detected (as a peak) for rust, in contrast to the absence of associations for the 

more polygenic trait. Another element that may have influenced the association for rust is its 

phenotypic scoring, which is based on a qualitative scale of nine notations. Even if it should 

be taken cautiously, it is not uncommon to encounter a simpler genetic architecture for 

response to biotic constraints compared to complex quantitative traits (e.g., gene-for-gene 

resistance; Flor, 1971; Jorge et al., 2005). Consequently, many haplotype combinations can 

lead to tall individuals, but few to rust resistance, because a polygenic architecture is 

redundant; in other words, when individuals are related, their probability of both being 

resistant is higher than that of both being tall. Local relatedness thus reveals a shared 

vulnerability within the neighborhood. 

Selection of relatedness or co-selection of relatives?

Interactions between neighbors may depend on local relatedness, and whether this 

interaction is positive or negative depends on the relative strength of kin selection (Hamilton,

1964) and niche partitioning (Silvertown, 2004). As mentioned above, the importance of 

group selection in nature is still debated, but local relatedness has been shown to be 

perceived through kin recognition in plant species (e.g., Dudley et al., 2007; Murphy et al., 

2009). Such recognition could then lead to favorable (kin selection) or unfavorable (niche 

partitioning) interactions. One such detrimental interaction is competition. Competition can 

be accounted for in a quantitative genetic model by assigning to an individual one direct 

genetic effect (DGE) as the effect of its genes on its own phenotype, and one indirect 
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genetic effect (IGE) as the effect of its genes on phenotypes of surrounding individuals 

(Griffing, 1967; potential applications in Muir, 2005). Competition occurs when DGE and IGE

are negatively correlated. A positive correlation from such a model would suggest a 

cooperative synergistic interaction. Although adding complexity to the model, including 

competition has been shown to reduce bias in covariance estimation (Costa e Silva et al., 

2013). In our case, in addition to attempts to include interactions, IGE resulted in a lower 

predictive ability than with the ssGBLUP baseline (results not shown). 

The simpler genetic architecture of rust vulnerability compared to that of tree height might 

play a role in shaping the phenotypes. Family structure was driving similarity of rust 

vulnerability, and combination of similar vulnerability resulted in increased rust damage. The 

amplifying effect is even stronger in perennials as shared vulnerability can be perceived by 

successive generations of pathogens. Consistent with the increased disease resilience 

conferred by varietal association in a field (e.g., Smithson and Lenne, 1996; Burdon and 

Thrall, 2009), the local aggregation of susceptible individuals amplified rust damage. 

Resistance similarity and relatedness were strongly linked, but it is likely that the more 

complex the genetic architecture, the easier it is to dissociate phenotypic similarity and 

relatedness. 

Once it has been shown that neighbourhood relatedness is indeed correlated with similarity 

at focal phenotypes, the difficulty in disentangling kin selection from niche partitioning is to 

determine whether the relatedness is a cause, as an expression of kin selection or niche 

competition, or a consequence, as an expression of a confounding between relatedness and

phenotypic interaction. In the latter case, the focal phenotype would be modified by that of its

neighbors through plant-to-plant interactions, and if phenotypic interaction increases when 

phenotypes are similar (i.e., directional selection, e.g., competition for resource uptake), it 

can be confused with the effect of relatedness, as genetically related individuals tend to have

similar phenotypes.
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Whether there was kin selection/competition in addition to the phenotypic interaction, or 

whether we simply lacked statistical power, is difficult to assess. Selection on local 

relatedness due to kin selection or niche partitioning - selection on relatedness - might be 

confused with the fact that selection leads to phenotypic convergence, that in turn leads to a 

genotypic convergence - a co-selection of related. The randomization in the block design 

and repetition can partly limit this confusion, but it is evident that interpreting the data is 

fraught with difficulties, as the tallest individuals showed also a higher relatedness with the 

rest of the population. The fact that family structure was mainly carried by SNPs likely 

associated with selection (following the hypothesis of Yang et al., 2010 and Biddanda et al., 

2020) suggest that relatives were co-selected, as is often the case in breeding programs 

implementing family selection. An inevitable consequence is that, as seen in crop selection, 

interesting genotypes for kin selection/cooperation have been lost during domestication 

(Fréville et al., 2022), making it difficult for genomic selection to account for local relatedness

(as predictive abilities show). 

20

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

20

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.06.21.545987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements

The authors acknowledge the Uppsala University and the European Union's Horizon 2020 

B4EST for basic functioning and postdoctoral grant for MT. The authors would like to thank 

Véronique Jorge and Remy Gobin of the BioForA unit (INRAE, ONF, Orléans, France) for 

their help in compiling the data. The computations and data handling were enabled by 

resources provided by the Swedish National Infrastructure for Computing (SNIC 2017-7-296)

at UppMax partially funded by the Swedish Research Council through grant agreement no. 

2018-05973.

Author Contributions

MT was responsible for writing the report, conducting the search, extracting and analysing 

data, interpreting results, updating reference lists. LS was responsible for designing the 

experiments and screening potentially eligible studies. ML and LS contributed to interpreting 

results and provided feedback on the report. 

Competing Interests

The authors declare that there is no conflict of interest.

Data Archiving

The data that support the findings of this study are openly available on DATA INRAE at 

https://data.inrae.fr/privateurl.xhtml?token=b79ab1ca-ebb9-47c6-9272-1568c0c33d70.

21

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

21

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.06.21.545987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Rerefences

Aguilar, I., Legarra, A., Cardoso, F., Masuda, Y., Lourenco, D., & Misztal, I. (2019). 

Frequentist p-values for large-scale-single step genome-wide association, with an 

application to birth weight in American Angus cattle. Genetics Selection Evolution, 51(1), 1-

8.

Astle, W., & Balding, D. J. (2009). Population structure and cryptic relatedness in genetic 

association studies. Statistical Science, 24(4), 451-471.

Beaulieu, J., Doerksen, T., Clément, S., MacKay, J., & Bousquet, J. (2014). Accuracy of 

genomic selection models in a large population of open-pollinated families in white spruce. 

Heredity, 113(4), 343-352.

Beaulieu, J., Nadeau, S., Ding, C., Celedon, J. M., Azaiez, A., Ritland, C., et al. (2020). 

Genomic selection for resistance to spruce budworm in white spruce and relationships with 

growth and wood quality traits. Evolutionary applications, 13(10), 2704-2722.

Biddanda, A., Rice, D. P., & Novembre, J. (2020). A variant-centric perspective on 

geographic patterns of human allele frequency variation. Elife, 9, e60107.

Bijma, P., & Wade, M. J. (2008). The joint effects of kin, multilevel selection and indirect 

genetic effects on response to genetic selection. Journal of evolutionary biology, 21(5), 

1175-1188.

22

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

22

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.06.21.545987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Burdon, J. J., & Thrall, P. H. (2009). Coevolution of plants and their pathogens in natural 

habitats. Science, 324(5928), 755-756.

Boyle, E. A., Li, Y. I., & Pritchard, J. K. (2017). An expanded view of complex traits: from 

polygenic to omnigenic. Cell, 169(7), 1177-1186.

Cahill Jr, J. F., & McNickle, G. G. (2011). The behavioral ecology of nutrient foraging by 

plants. Annual Review of ecology, evolution, and systematics, 42, 289-311.

Calus, M. P., & Veerkamp, R. F. (2011). Accuracy of multi-trait genomic selection using 

different methods. Genetics Selection Evolution, 43(1), 1-14.

Cappa, E. P., & Cantet, R. J. (2007). Bayesian estimation of a surface to account for a 

spatial trend using penalized splines in an individual-tree mixed model. Canadian Journal of 

Forest Research, 37(12), 2677-2688.

Cappa, E. P., de Lima, B. M., da Silva-Junior, O. B., Garcia, C. C., Mansfield, S. D., & 

Grattapaglia, D. (2019). Improving genomic prediction of growth and wood traits in 

Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP. Plant 

Science, 284, 9-15.

Cappa, E. P., Ratcliffe, B., Chen, C., Thomas, B. R., Liu, Y., Klutsch, J., et al. (2022). 

Improving lodgepole pine genomic evaluation using spatial correlation structure and SNP 

selection with single-step GBLUP. Heredity, 128(4), 209-224.

Casper, B. B., & Jackson, R. B. (1997). Plant competition underground. Annual review of 

ecology and systematics, 545-570.

23

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.06.21.545987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Christensen, O. F., & Lund, M. S. 2010. Genomic prediction when some animals are

not genotyped. Genetics Selection Evolution 42, 2.

Christensen, O. F., Madsen, P., Nielsen, B., Ostersen, T., & Su, G. (2012). Single-step 

methods for genomic evaluation in pigs. animal, 6(10), 1565-1571.

Costa e Silva, J., Kerr, R.J. (2013) Accounting for competition in genetic analysis, with 

particular emphasis on forest genetic trials. Tree Genetics & Genomes, 9, 1-17.

Denison, R. F., Kiers, E. T., & West, S. A. (2003). Darwinian agriculture: when can humans 

find solutions beyond the reach of natural selection? The quarterly review of biology, 78(2), 

145-168.

Diouf, I., Derivot, L., Koussevitzky, S., Carretero, Y., Bitton, F., Moreau, L., & Causse, M. 

(2020). Genetic basis of phenotypic plasticity and genotype× environment interactions in a 

multi-parental tomato population. Journal of Experimental Botany, 71(18), 5365-5376

Donald, C.M. (1981). Competitive plants, communal plants, and yields in wheat crops.

L. Evans, W.J. Peacock (Eds.), Wheat Science – Today and Tomorrow, Cambridge 

University Press.

Donald, C.M., Hamblin, J. (1983). The convergent evolution of annual seed crops in 

agriculture. In Advances in agronomy (ed. NC Brady), pp. 97–143. New York, NY:

Academic Press. 

Dong, L., Xiao, S., Chen, J., Wan, L., & Wang, Z. (2016). Genomic selection using extreme 

phenotypes and pre-selection of SNPs in large yellow croaker (Larimichthys crocea). Marine

Biotechnology, 18(5), 575-583.

24

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

24

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.06.21.545987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Du, Q., Gong, C., Wang, Q., Zhou, D., Yang, H., Pan, W., et al. (2016). Genetic architecture 

of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and 

association studies. New Phytologist, 209(3), 1067-1082.

Fisher, R.A. (1918). The correlation between relatives under the supposition of Mendelian 

inheritance. Trans. Roy. Soc. Edinburgh 52, 399-433.

Gualdrón Duarte, J. L., Gori, A. S., Hubin, X., Lourenco, D., Charlier, C., Misztal, I., & Druet, 

T. (2020). Performances of Adaptive MultiBLUP, Bayesian regressions, and weighted-

GBLUP approaches for genomic predictions in Belgian Blue beef cattle. BMC genomics, 

21(1), 1-18.

Dudley, S. A., & File, A. L. (2007). Kin recognition in an annual plant. Biology Letters, 3(4), 

435-438.

Emik, L. O., & Terrill, C. E. (1949). Systematic procedures for calculating inbreeding 

coefficients. Journal of Heredity, 40(2), 51-55.

Faivre‐Rampant, P., Zaina, G., Jorge, V., Giacomello, S., Segura, V., Scalabrin, S., et al. 

(2016). New resources for genetic studies in Populus nigra: Genome‐wide SNP discovery 

and development of a 12k Infinium array. Molecular ecology resources, 16(4), 1023-1036.

Falconer, D.S. (1989). Introduction to quantitative genetics (3rd edition, p. 129). Pearson

Education India.

Feau, N., Joly, D. L., & Hamelin, R. C. (2007). Poplar leaf rusts: model pathogens for a 

model tree. Botany, 85(12), 1127-1135.

25

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.06.21.545987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545987
http://creativecommons.org/licenses/by-nc-nd/4.0/


File, A. L., Murphy, G. P., & Dudley, S. A. (2012). Fitness consequences of plants growing 

with siblings: reconciling kin selection, niche partitioning and competitive ability. Proceedings

of the Royal Society B: Biological Sciences, 279(1727), 209-218.

Flor, H. H. (1971). Current status of the gene-for-gene concept. Annual review of 

phytopathology, 9(1), 275-296.

Fréville, H., Montazeaud, G., Forst, E., David, J., Papa, R., & Tenaillon, M. I. (2022). Shift in 

beneficial interactions during crop evolution. Evolutionary Applications, 15(6), 905-918.

Garcia-Baccino, C. A., Legarra, A., Christensen, O. F., Misztal, I., Pocrnic, I., Vitezica, Z. G., 

& Cantet, R. J. (2017). Metafounders are related to F st fixation indices and reduce bias in 

single-step genomic evaluations. Genetics Selection Evolution, 49(1), 1-14.

Goldsmith, J., Scheipl, F., Huang, L., Wrobel, J., Di, C., Gellar, J., et al. (2022). refund: 

Regression with Functional Data. R package version 0.1-26. 

https://CRAN.R-project.org/package=refund

Griffing, B. (1967). Selection in reference to biological groups I. Individual and group 

selection applied to populations of unordered groups. Australian Journal of Biological 

Sciences, 20(1), 127-140.

Hamilton, W. D. (1964). The genetical evolution of social behaviour. II. Journal of theoretical 

biology, 7(1), 17-52.

Isik, F., Bartholomé, J., Farjat, A., Chancerel, E., Raffin, A., Sanchez, L., et al. (2016). 

Genomic selection in maritime pine. Plant Science, 242, 108-119.

26

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

26

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.06.21.545987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Jorge, V., Dowkiw, A., Faivre‐Rampant, P., & Bastien, C. (2005). Genetic architecture of 

qualitative and quantitative Melampsora larici‐populina leaf rust resistance in hybrid poplar: 

genetic mapping and QTL detection. New Phytologist, 167(1), 113-127.

Kijas, J., Elliot, N., Kube, P., Evans, B., Botwright, N., King, H., et al. (2017). Diversity and 

linkage disequilibrium in farmed Tasmanian Atlantic salmon. Animal genetics, 48(2), 237-

241.

Legarra, A., Aguilar, I., & Misztal, I. (2009). A relationship matrix including full pedigree and 

genomic information. Journal of dairy science, 92(9), 4656-4663.

Legarra, A., Christensen, O. F., Vitezica, Z. G., Aguilar, I., & Misztal, I. (2015). Ancestral 

relationships using metafounders: finite ancestral populations and across population 

relationships. Genetics, 200(2), 455-468.

Legionnet, A., Muranty, H., & Lefèvre, F. (1999). Genetic variation of the riparian pioneer 

tree species Populus nigra. II. Variation in susceptibility to the foliar rust Melampsora larici‐

populina. Heredity, 82(3), 318-327.

Lenz, P. R., Nadeau, S., Mottet, M. J., Perron, M., Isabel, N., Beaulieu, J., & Bousquet, J. 

(2020). Multi‐trait genomic selection for weevil resistance, growth, and wood quality in 

Norway spruce. Evolutionary applications, 13(1), 76-94.

Lesaffre, T., & Billiard, S. (2021). On Deleterious Mutations in Perennials: Inbreeding 

Depression, Mutation Load, and Life-History Evolution. The American Naturalist, 197(5), 

E143-E155.

27

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

27

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.06.21.545987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lewontin, R. C. (1970). The units of selection. Annual review of ecology and systematics, 1-

18.

Li, B., Zhang, N., Wang, Y. G., George, A. W., Reverter, A., & Li, Y. (2018). Genomic 

prediction of breeding values using a subset of SNPs identified by three machine learning 

methods. Frontiers in genetics, 9, 237.

Liu, Y., Erbilgin, N., Ratcliffe, B., Klutsch, J. G., Wei, X., Ullah, A., et al. (2022). Pest 

defences under weak selection exert a limited influence on the evolution of height growth 

and drought avoidance in marginal pine populations. Proceedings of the Royal Society B, 

289(1982), 20221034.

Lu, S., Liu, Y., Yu, X., Li, Y., Yang, Y., Wei, M., et al. (2020). Prediction of genomic breeding 

values based on pre-selected SNPs using ssGBLUP, WssGBLUP and BayesB for 

Edwardsiellosis resistance in Japanese flounder. Genetics Selection Evolution, 52(1), 1-10.

Luo, Z., Yu, Y., Xiang, J., & Li, F. (2021). Genomic selection using a subset of SNPs 

identified by genome-wide association analysis for disease resistance traits in aquaculture 

species. Aquaculture, 539, 736620.

Maynard Smith, J. (1964). Group selection and kin selection. Nature, 201(4924), 1145-1147.

Meuwissen, T. H. E. (1997). Maximizing the response of selection with a predefined rate of 

inbreeding. Journal of animal science, 75(4), 934-940.

Meuwissen, T. H., Hayes, B. J., & Goddard, M. (2001). Prediction of total genetic value using

genome-wide dense marker maps. genetics, 157(4), 1819-1829.

28

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

28

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.06.21.545987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Milbau, A., Reheul, D., De Cauwer, B., & Nijs, I. (2007). Factors determining plant–

neighbour interactions on different spatial scales in young species-rich grassland 

communities. Ecological research, 22(2), 242-247.

Miller, D. L. (2022). porridge: Principal Co-Ordinate Ridge Regression. R package version 

1.2.

Montazeaud, G., Rousset, F., Fort, F., Violle, C., Fréville, H., & Gandon, S. (2020). Farming 

plant cooperation in crops. Proceedings of the Royal Society B, 287(1919), 20191290.

Muir, W. M. (2005). Incorporation of competitive effects in forest tree or animal breeding 

programs. Genetics, 170(3), 1247-1259.

Muñoz, F., and Sanchez, L. (2020). breedR: Statistical Methods for Forest Genetic 

Resources Analysts. R package version 0.12-5. https://github.com/famuvie/breedR

Murphy, G. P., & Dudley, S. A. (2009). Kin recognition: competition and cooperation in 

Impatiens (Balsaminaceae). American journal of botany, 96(11), 1990-1996.

Murphy, G. P., Swanton, C. J., Van Acker, R. C., & Dudley, S. A. (2017). Kin recognition, 

multilevel selection and altruism in crop sustainability. Journal of Ecology (Oxford), 105(4), 

930-934.

Okasha, S. (2020). Altruism, group selection and correlated interaction. The British journal 

for the philosophy of science.

Patterson, N., Price, A. L., & Reich, D. (2006). Population structure and eigenanalysis. PLoS

genetics, 2(12), e190.

29

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

29

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.06.21.545987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pégard, M., Rogier, O., Bérard, A., Faivre-Rampant, P., Paslier, M. C. L., Bastien, C., et al. 

(2019). Sequence imputation from low density single nucleotide polymorphism panel in a 

black poplar breeding population. BMC genomics, 20(1), 1-16.

Pégard, M., Segura, V., Muñoz, F., Bastien, C., Jorge, V., & Sanchez, L. (2020). Favorable 

conditions for genomic evaluation to outperform classical pedigree evaluation highlighted by 

a proof-of-concept study in poplar. Frontiers in plant science, 11, 581954. 

Powell, J. E., Visscher, P. M., & Goddard, M. E. (2010). Reconciling the analysis of IBD and 

IBS in complex trait studies. Nature Reviews Genetics, 11(11), 800-805.

R Core Team (2022). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project.org/

Ratcliffe, B., El-Dien, O. G., Cappa, E. P., Porth, I., Klápště, J., Chen, C., & El-Kassaby, Y. 

A. (2017). Single-step BLUP with varying genotyping effort in open-pollinated Picea glauca. 

G3: Genes, Genomes, Genetics, 7(3), 935-942.

Resende, M. D., Resende Jr, M. F., Sansaloni, C. P., Petroli, C. D., Missiaggia, A. A., 

Aguiar, A. M., et al. (2012). Genomic selection for growth and wood quality in Eucalyptus: 

capturing the missing heritability and accelerating breeding for complex traits in forest trees. 

New Phytologist, 194(1), 116-128.

Rosenberg, N. A., Li, L. M., Ward, R., & Pritchard, J. K. (2003). Informativeness of genetic 

markers for inference of ancestry. The American Journal of Human Genetics, 73(6), 1402-

1422.

30

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

30

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.06.21.545987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sanchez, M. P., Govignon-Gion, A., Croiseau, P., Fritz, S., Hozé, C., Miranda, G., et al. 

(2017). Within-breed and multi-breed GWAS on imputed whole-genome sequence variants 

reveal candidate mutations affecting milk protein composition in dairy cattle. Genetics 

Selection Evolution, 49(1), 1-16.

Silvertown, J. (2004). Plant coexistence and the niche. Trends in Ecology & evolution, 

19(11), 605-611.

Smithson, J. B., & Lenne, J. M. (1996). Varietal mixtures: a viable strategy for sustainable 

productivity in subsistence agriculture. Annals of applied biology, 128(1), 127-158.

Stephens, M. (2017). False discovery rates: a new deal. Biostatistics, 18(2), 275-294.

Thistlethwaite, F. R., Gamal El-Dien, O., Ratcliffe, B., Klápště, J., Porth, I., Chen, C., et al. 

(2020). Linkage disequilibrium vs. pedigree: Genomic selection prediction accuracy in 

conifer species. PLoS One, 15(6), e0232201.

Tiret, M., & Milesi, P. Statistical Peak Detection for GWAS. Zenodo. 

https://doi.org/10.5281/zenodo.5079556. Deposited 7 July 2021.

Tsai, H. Y., Matika, O., Edwards, S. M., Antolín–Sánchez, R., Hamilton, A., Guy, D. R., et al. 

(2017). Genotype imputation to improve the cost-efficiency of genomic selection in farmed 

Atlantic salmon. G3: Genes, genomes, genetics, 7(4), 1377-1383.

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of dairy

science, 91(11), 4414-4423.

31

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

31

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.06.21.545987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Weiner, J., Andersen, S. B., Wille, W. K. M., Griepentrog, H. W., & Olsen, J. M. (2010). 

Evolutionary Agroecology: the potential for cooperative, high density, weed‐suppressing 

cereals. Evolutionary Applications, 3(5‐6), 473-479.

Weiner, J., Du, Y. L., Zhang, C., Qin, X. L., & Li, F. M. (2017). Evolutionary agroecology: 

individual fitness and population yield in wheat (Triticum aestivum).

Weiner, J. (2019). Looking in the wrong direction for higher-yielding crop genotypes. Trends 

in Plant Science, 24(10), 927-933.

Wilson, D. S., & Wilson, E. O. (2007). Rethinking the theoretical foundation of sociobiology. 

The Quarterly review of biology, 82(4), 327-348.

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., et al. 

(2010). Common SNPs explain a large proportion of the heritability for human height. Nature

genetics, 42(7), 565-569.

Zeileis, A., & Hothorn, T. (2002). Diagnostic Checking in Regression Relationships. R News 

2(3), 7-10. 

Zhang, Z., Liu, J., Ding, X., Bijma, P., de Koning, D. J., & Zhang, Q. (2010). Best linear 

unbiased prediction of genomic breeding values using a trait-specific marker-derived 

relationship matrix. PloS one, 5(9), e12648.

32

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

32

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.06.21.545987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures

Figure 1. GWAS on tree height and rust vulnerability in Populus nigra. (A). Manhattan plot of

the GWAS on tree height. The dots are the log significance of the markers. The solid 

horizontal line stands for the 5% significance level, and the dashed horizontal line stands for 

the 5% FDR level. The vertical dashed lines are position where significant hits were detected

as being part of a peak. (B). Idem as panel A, for rust vulnerability. (C). Q-Q plot of the 

GWAS on tree height. The dots were the quantile of the markers; the solid line is the 1-slope

segment; the gray cross is the position of the median; and the gray area is the 95% 

confidence interval. (D). Idem as panel C, for rust vulnerability.    

Figure 2. The first two axes of the Multidimensional Scaling (MDS) of Populus nigra. (A). 

MDS with labels of the fathers (with black large shapes). Colored and smaller shapes are the

offspring, the shape corresponding to its father. (B). The same MDS as in panel A., but 

labeled for the mothers.    

Figure 3. Within family variance (VF) for each subset of SNPs. The black dashed horizontal 

line is the average VF of randomly sampled SNPs, the gray dashed horizontal lines delimit 

the 95% confidence interval, and the black horizontal dotted line is VF of the entire set of 

SNPs. Red dots are when selected for tree height, and blue for rust vulnerability. SNP 

subsets: largest or smallest MAF (+ or - MAF), largest or smallest AIM (+ or - AIM), most or 

least significant (+ or - log10(p)), and most or least heritable for tree height (+ or - h2).
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