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Abstract 13 

The cerebral processing of voice information is known to engage Temporal Voice 14 

Areas (TVAs) that respond preferentially to conspecific vocalizations. But how voice 15 

information related to the stable physical characteristics of the speaker such as 16 

gender, age or identity is represented by neuronal populations in these areas remains 17 

poorly understood. Here we used a deep neural network (DNN) to generate a high-18 

level, small-dimension representational space of voice stimuli—the ‘voice latent 19 

space’ (VLS)—and examined its linear relation with cerebral activity via encoding, 20 

representational similarity and decoding analyses. We find that the VLS maps onto 21 

fMRI measures of cerebral activity in response to tens of thousands of voice stimuli 22 

from hundreds of different speaker identities, and better accounts for the 23 

representational geometry for speaker identity in the TVAs than in A1. Moreover, the 24 

VLS allowed TVA-based reconstructions of voice stimuli that preserved important 25 

aspects of speaker gender and identity as assessed by both machine classifiers and 26 

human listeners. These results demonstrate that a low-dimensional, DNN-derived 27 

space accounts well for cerebral voice representations and provide insights into 28 

representational differences between A1 and the TVAs, paving the way to noninvasive 29 

brain-computer interface applications. 30 
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Introduction 31 

The human voice carries speech, but is also an “auditory face” that carries much valuable 32 

information on the stable physical characteristics of the speaker (hereafter, ‘identity-related’; 33 

Belin et al., 2004, 2011). The ability of listeners to extract identity-related information in voice 34 

such as gender, age, or unique identity even in brief stimuli plays a crucial role in our social 35 

interactions, yet its neural bases remain poorly understood compared to those of speech 36 

processing. Studies over the past two decades have clearly established via complementary 37 

neuroimaging techniques that the cerebral processing of voice information involves a set of 38 

temporal voice areas (TVAs) in secondary auditory cortical regions of the human (fMRI: 39 

Belin et al., 2000, von Kriegstein et al., 2004, Pernet et al., 2015; EEG, MEG: Charest et al., 40 

2009, Capilla et al., 2013, Barbero et al., 2021; Electrophysiology: Rupp et al., 2022, Zhang 41 

et al., 2021) as well as macaque brain (Petkov et al., 2008; Bodin et al., 2021). The TVAs 42 

respond more strongly to sounds of voice – with or without speech (Pernet et al., 2015; Rupp 43 

et al., 2022; Trapeau et al., 2023)—and categorize voice apart from other sounds (Bodin et 44 

al., 2021) but the nature of the information encoded at these stages of cortical processing, 45 

especially with respect to speaker identity-related information, remains largely unknown 46 

(Blank et al., 2014; Belin et al., 2018). 47 

In recent years, deep neural networks (DNNs) have emerged as a powerful tool for 48 

representing complex visual data, such as images (LeCun, Bengio, & Hinton, 2015) or 49 

videos (Liu et al., 2020). In the auditory domain, DNNs have been shown to provide valuable 50 

representations—so called feature or latent spaces—for modeling the cerebral processing of 51 

sound (brain encoding) (speech: Kell et al., 2018, Millet et al., 2022; semantic content 52 

Caucheteux et al., 2022, Caucheteux et King, 2022, Caucheteux et al., 2023, Giordano et 53 

al., 2023; music: Güçlü et al., 2016), or reconstructing the stimuli listened by a participant 54 

(brain decoding) (Akbari et al., 2019). They have not yet been used to explain cerebral 55 

representations of identity-related information, due in part to the focus on speech information 56 

(von Kriegstein 2003; Morillon et al., 2022). 57 
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Here, we addressed this challenge by training a ‘Variational autoencoder’ (VAE; Kingma et 58 

Welling, 2014) DNN to reconstruct voice spectrograms from 182,000 250-ms voice samples 59 

from 405 different speaker identities in 8 different languages form the CommonVoice 60 

database (Ardila et al., 2020). Brief (250ms) samples were used in order to emphasize 61 

speaker identity-related information in voice, already available after a few hundreds of 62 

milliseconds (Schweingerger et al., 1997; Lavan, 2023), over linguistic information unfolding 63 

over longer time periods. While a quarter of a second is admittedly short compared to 64 

standards of e.g. computational speaker identification that typically uses 2-3s samples, this 65 

short duration is sufficient to allow near perfect gender classification and performance levels 66 

well above chance for speaker discrimination (Fig. 5). This brief duration allowed presenting 67 

many more stimuli to our participants in the scanner, while preserving acceptable levels of 68 

behavioral and classifier performance. 69 

State-of-the-art studies have largely relied on task-optimized neural networks (i.e., DNN 70 

trained using supervised learning to classify a category from the input) to study sensory 71 

cortex processes (Yamins et DiCarlo, 2016; Schrimpf et al., 2018). They can reach high 72 

accuracies in brain encoding (Khaligh-Razavi and Kriegeskorte, 2014; Schrimpf et al., 2018; 73 

Han et al., 2019), however there is increasing evidence that unsupervised learning such as 74 

used for the VAE also provides plausible computational models for investigating brain 75 

processing (Higgins et al., 2021; Zhuang et al, 2021; Millet et al., 2022; Orhan et al., 2022). 76 

Thus, the VAE-derived VLS, exploited within encoding, representational similarity and 77 

decoding frameworks, offers a potentially promising tool for investigating the representations 78 

of voice stimuli in the secondary auditory cortex (Naselaris et al., 2011). Autoencoders learn 79 

to compress stimuli with high dimensionality into a lower-dimensional space that nonetheless 80 

allows reconstruction of the original stimuli via an inverse transformation learned by the 81 

second part of the network called the decoder. Fig. 1a shows the architecture of the VAE, 82 

with its encoder that reduces an input spectrogram to a highly compressed, 128-dimension 83 

voice latent space (VLS) representation, and its decoder that reconstructs the spectrogram 84 
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from this VLS representation. Points in the VLS correspond to voice samples with different 85 

identities and phonetic content. A line segment in the VLS contains points corresponding to 86 

perceptual interpolations between its two extremities (Fig. 1b; Supplementary Audio 1). VLS 87 

coordinates of samples presented to the participants averaged by speaker identity suggests 88 

that a major organizational dimension of the latent space is along voice gender (Fig. 1b) 89 

(colored by age or language in Supplementary Figure 1). 90 

In order to test whether VLS accounts well for cerebral activity in response to voice stimuli, 91 

we scanned three healthy volunteers using fMRI to measure an indirect index of their 92 

cerebral activity across 10+ hours of scanning each, in response to ~12,000 of the voice 93 

samples, denoted BrainVoice in the following, used to train the DNN. The small number of 94 

participants does not allow for generalization at the level of the general population as in 95 

standard fMRI studies, but allows testing for replicability as in comparable studies involving 96 

10+ hours of scanning per participant (VanRullen & Reddy, 2019). Different stimulus sets 97 

were used across participants to provide a stringent test of replicability based on subject-98 

level analyses. Stimuli consisted of randomly spliced 250-ms excerpts of speech samples 99 

from the CommonVoice database (Ardila et al., 2020) by 119 speakers in 8 different 100 

languages. For assessing generalization performances of decoding models and brain-based 101 

reconstruction, six different test stimuli were repeated more often (60 times) for each 102 

participant to provide robust estimates of their induced cerebral activity (see Methods). We 103 

first modeled these responses to voice using a general linear model (GLM) (Friston et al., 104 

1994) with several nuisance regressors as an initial denoising step (Supplementary Figure 105 

4), then used a second GLM modeling cerebral responses to the different speaker identities 106 

(Supplementary Figure 3a), resulting in one voxel activity map per speaker (Supplementary 107 

Figure 3b). We independently localized in each participant several regions of interest (ROIs) 108 

on which subsequent analyses were focused: the anterior, middle and posterior TVAs in 109 

each hemisphere (individually localized via an independent ‘voice localizer scan’ and MNI 110 

coordinates provided in Pernet et al., 2015; Supplementary Figure 3c) as well as primary 111 
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auditory cortex (A1) (using a probabilistic map in MNI space (Penhune et al., 1996; 112 

Supplementary Figure 3d). 113 

We first asked how the VLS could account for the brain responses to speaker identities 114 

(encoding) measured in A1 and the TVAs, in comparison with a linear autoencoder’s latent 115 

space (LIN). This approach was chosen because it has been demonstrated that a linear 116 

autoencoder with a d-dimensional hidden layer projects data in the same subspace as the 117 

one spanned by the d first eigenvectors of a principal component analysis (PCA) (Gallinari & 118 

LeCun et al., 1987; Plaut et al., 2018). For this, we used a general linear model (GLM) of 119 

fMRI responses to the speaker identities, resulting in one voxel activity map per speaker 120 

(Supplementary Figure 3). Then, we computed the average VLS coordinates of the fMRI 121 

voice stimuli for each speaker identity, which may be seen as a speaker representation in 122 

the VLS (see Identity-based and stimulus-based representations section). Next we trained a 123 

linear voxel-based encoding model to predict the speaker voxel activity maps from the 124 

speaker VLS coordinates. As VAE achieves compression through a series of nonlinear 125 

transformations (Wetzel, 2017), we choose to contrast its results with a linear autoencoder’s 126 

latent space. This method has previously been applied to fMRI-based image reconstructions 127 

(Cowen et al., 2014; VanRullen & Reddy, 2019; Mozafari et al., 2020). 128 

The extent to which the VLS allows linearly predicting the fMRI recordings does not provide 129 

insight into the representational geometries, i.e., the differences between the patterns of 130 

cerebral activity for speaker identity. We addressed this subsequent question by using 131 

representational similarity analysis (RSA; Kriegeskorte et al., 2008) in order to test which 132 

model better accounts for the representational geometry for voice identities in the auditory 133 

cortex. Using RSA as a model comparison framework has been shown relevant to examine 134 

the brain-model relationship from complementary angles (Diedrichsen et Kriegeskorte, 135 

2017). We built speaker x speaker representational dissimilarity matrices (RDMs) capturing 136 

pairwise differences in cerebral activity or model predictions between all pairs of speakers; 137 
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then we examined how well the LIN and VLS-derived RDMs correlated with the cerebral 138 

RDMs from A1 and the TVAs. 139 

A strong test of the adequacy of models of brain activity, and a long-standing goal in 140 

computational neurosciences, is the reconstruction of a stimulus presented to a participant 141 

from the evoked brain responses. While reconstruction of visual stimuli (images, videos) 142 

from cerebral activity has been performed by a number of groups (VanRullen et Reddy, 143 

2019; Mozafari et al., 2020; Le et al., 2021; Gaziv et al., 2022; Chen et al., 2023), validating 144 

the DNN-derived representational spaces, comparable work in the auditory domain is 145 

scarce, almost exclusively concentrated on linguistic information (Santoro et al., 2017). 146 

Akbari et al. used a DNN to reconstruct speech stimuli based on ECoG recording of auditory 147 

cortex activity, an invasive method compared to techniques like fMRI. They obtained good 148 

phonetic recognition rate, but chance-level gender categorization performance from 149 

reconstructed spectrograms, and no evaluation of speaker identity discrimination. 150 

Here we built on the linear relationship uncovered in our encoding analysis between the VLS 151 

and the fMRI recordings to invert it and try and predict VLS coordinates from the recorded 152 

fMRI data; then, using the decoder, we reconstructed the spectrograms of stimuli presented 153 

to the participants (Wu et al., 2006; Naselaris et al., 2011). The voice identity information 154 

available in the reconstructed stimuli was finally assessed using both machine learning 155 

classifiers and behavioral tasks by human listeners (Fig. 4). 156 

Results 157 

Voice Information in the Voice Latent Space (VLS). In order to probe the informational 158 

content of the VLS, linear classifiers were trained to categorize the voice stimuli from 405 159 

speakers by gender (2 classes), age (2 classes) or identity (119 classes, cf Methods) based 160 

on VLS coordinates, or their LIN features as control (Fig. 1c,d,e; we aggregated the stimuli 161 

from the 3 participants; for each model computed the latent space of each stimulus and 162 

averaged the latent spaces by speaker identity, leading to 405 128-dimensional vectors. We 163 
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then trained linear classifiers using a 5-fold cross validation scheme, see Characterization of 164 

the autoencoder latent space). The mean of the distribution of accuracies obtained for 100 165 

random classifier initializations (as to account for variance; Bouthillier et al., 2018) was 166 

significantly above chance level (all ps < 1e-10) for all classifications (LIN: gender (mean 167 

accuracy ± s.d.) = 97.64±1.77%, t(99)=266.94; age: 64.39±4.54%, t(99)=31.53; identity: 168 

40.52±9.14%, t(99)=39.37; VLS: gender: 98.59±1.19%, t(99)=406.47; age: 67.31±4.86%, 169 

t(99)=35.41; identity: 38.40±8.75%, t(99)=38.73). We then evaluated the difference in 170 

performance at preserving identity-related information between the VLS and LIN via one-way 171 

ANOVAs. Results showed a significant effect of Feature (LIN/VLS) in categories (all Fs(1, 172 

198) > 225.15, all ps<.0001) but not in identity. Post-hoc paired t-tests showed that the VLS 173 

was better than the LIN at encoding information related to voice identity, as evidenced by a 174 

significant difference in means for gender (t(99)=-6.11, p<.0001), age (t(99)=-6.10, p<.0001) 175 

but not for identity classifications (t(99)=1.71). 176 
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 177 

Fig. 1 | DNN-derived Voice Latent Space (VLS). a, Variational autoencoder (VAE) 178 

Architecture. Two networks learned complementary tasks. An encoder was trained using 179 

182K voice samples to compress their spectrogram into a 128-dimension representation, the 180 

voice latent space (VLS) while a decoder learned the reverse mapping. The network was 181 

trained end-to-end by minimizing the difference between the original and reconstructed 182 

spectrograms. b, Distribution of the 405 speaker identities along the first 2 principal 183 
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components of the VLS coordinates from all sounds, averaged by speaker identity. Each 184 

disk represents a speaker identity colored by gender. PC2 largely maps onto voice gender 185 

(ANOVAs on the first two components: PC1: F(1, 405)=0.10, p=.74; PC2: F(1, 405)=11.00, 186 

p<.001). Large disks represent the average of all male (black) or female (gray) speaker 187 

coordinates, with their associated reconstructed spectrograms (note the flat fundamental 188 

frequency (f0) and formant frequencies contours caused by averaging). The bottom of 189 

spectrograms illustrate an interpolation between stimuli of two different speaker identities: 190 

spectrograms at the extremes correspond to two original stimuli (A, B) and their VLS-191 

reconstructed spectrograms (A’, B’). Intermediary spectrograms were reconstructed from 192 

linearly interpolated coordinates between those two points in the VLS (red line) (cf. 193 

Supplementary Audio 1). c,d e, Performance of linear classifiers at categorizing speaker 194 

gender (chance level: 50%), age (young/adult, chance level: 50%) or identity (119 identities, 195 

chance level: 0.84%) based on VLS or LIN coordinates. Error bars indicate standard error of 196 

the mean (s.e.m) across 100 random classifier initializations. All ps<1e-10. The horizontal 197 

black dashed lines indicate chance levels. ****: p<0.0001. 198 

Thus, despite its low number of dimensions (each input spectrogram has 401x21=8421 199 

parameters and is summarized in the VLS by a mere 128 dimensions), the VLS appears to 200 

meaningfully represent the different sources of voice information perceptually available in the 201 

vocal stimuli. This representational space therefore constitutes a relevant candidate for 202 

linearly modeling voice stimulus representations by the brain. 203 

Brain Encoding We used a linear voxel-based encoding model to test whether VLS linearly 204 

maps onto cerebral responses to speaker identities measured with fMRI in the different 205 

ROIs. A regularized linear regression model (cf. Methods) was trained on a subset of the 206 

data (5-fold cross validation scheme) to predict the voxel maps for each speaker identity. For 207 

each fold, the trained model was tested on the held-out speaker identities (Fig. 2a). For each 208 

ROI, the performance of the model was assessed using the Pearson correlation score 209 

between the true and the predicted responses of each voxel (Schrimpf et al., 2021). Similar 210 
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predictions were tested with features derived from LIN (cf. Methods). Fig. 2b shows, for each 211 

of the ROIs, the distribution of correlation coefficients obtained for the 2 sets of features 212 

across voxels, hemispheres and participants. 213 

One-sample t-tests showed that the means of Fisher z-transformed coefficients for both LIN 214 

features and VLS were significantly higher than zero (LIN: A1 t(197)=7.25, p<.0001, pTVA 215 

t(175)=4.49, p<.0001, mTVA t(164)=9.12, p<.0001 and aTVA t(147)=6.81, p<.0001; VLS: A1 216 

t(197)=4.76, p<.0001, mTVA t(164)=10.12, p<.0001 and aTVA t(147)=5.52, p<.0001 but not 217 

pTVA t(175)=-1.60) (Supplementary Tables 2-3). 218 

A mixed ANOVA performed on the Fisher z-transformed coefficients with Feature (VLS, LIN) 219 

and ROI (A1, pTVA, mTVA, aTVA) as factors showed a significant effect of Feature (F(3, 220 

683)=56.65, p<.0001), a significant effect of ROI (F(3, 683)=18.50, p<.0001), and a 221 

moderate interaction Feature x ROI (F(3, 683)=5.25, p<.01). Post-hoc comparisons revealed 222 

that the mean of correlation coefficients was higher for LIN than for VLS in A1 (t(197)=4.02, 223 

p<.0001), pTVA (t(175)=6.64, p<.0001), aTVA (t(147)=3.78, p<.001) but not in mTVA 224 

(t(164)=0.58) (Supplementary Table 4); and that the voxel patterns are better predicted in 225 

mTVA than in A1 for both models (LIN: t(361)=2.36, p<.05); VLS: t(361)=4.91, p<.0001) 226 

(Supplementary Table 5). However, we found by inspecting the distribution of model-voxel 227 

correlations that both models account for different parts of the voice identities responses, 228 

and differently across ROIs (Fig. 2c). 229 
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 230 

Fig. 2 | Predicting brain activity from the VLS. a, Linear prediction of brain activity from 231 

VLS for ~135 speaker identities in the different ROIs. We first fit a GLM to predict the BOLD 232 

responses to each voice speaker identity. Then, using the trained encoder, we computed the 233 

average VLS coordinates of the voice stimuli presented to the participants based on speaker 234 

identity. Finally, we trained a linear voxel-based encoding model to predict the speaker voxel 235 

activity maps from the speaker VLS coordinates. The cube illustrates the linear relationship 236 
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between the fMRI responses to speaker identity and the VLS coordinates. The left face of 237 

the cube represents the activity of the voxels for each speaker identity, with each line 238 

corresponding to one speaker. The right face displays the VLS coordinates for each speaker 239 

identity. The top face of the cube shows the weight vectors of the encoding model. b, 240 

Encoding results. For each region of interest, the performance of the model was assessed 241 

using the Pearson correlation score between the true and the predicted responses of each 242 

voxel on the held-out speaker identities. Pearson’s correlation coefficients were computed 243 

for each voxel on the speakers’ axis, then averaged across hemispheres and participants. 244 

Similar predictions were tested with the LIN features. Error bars indicate standard error of 245 

the mean (s.e.m) across voxels. *p < 0.05; **p < 0.01; **p < 0.001; ****p < 0.0001.  c, Venn 246 

diagrams of the number of voxels in each ROI with the LIN, the VLS or both models. For 247 

each ROI and each voxel, we checked whether the test correlation was higher than the 248 

median of all participant correlations (intersection circle), and if not which model (LIN or VLS) 249 

yielded the highest correlation (left or right circles). 250 

Representational Similarity Analysis For RSA, we built speaker x speaker 251 

representational dissimilarity matrices (RDMs) capturing for each ROI the dissimilarity in 252 

voxel space between each pair of speaker voxel maps (‘brain RDMs’; cf. Methods) using 253 

Pearson’s correlation (Walther et al., 2016). We compared these four bilateral brain RDMs 254 

(A1, aTVA, mTVA, pTVA) to two ‘model RDMs’ capturing speaker pairwise feature 255 

differences predicted by LIN and the VLS (Fig. 3a) built using cosine distance (Xing et al., 256 

2015; Bhattacharya et al., 2017; Wang et al., 2018). Fig. 3b shows for each ROI the 257 

Spearman correlation coefficients between the brain RDMs and the two model RDMs, for 258 

each participant and hemisphere (Kriegeskorte et al., 2008; Fig. 3c for an example of brain-259 

model correlation). 260 

These brain-model correlation coefficients were compared to zero using a ‘maximum 261 

statistics’ approach based on random permutations of the model RDMs’ rows and columns, 262 

(Maris & Oostenveld, 2007; cf. Methods; Fig. 3b). For the LIN model, only one brain-model 263 
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RDM correlation was significantly different from zero (one-tailed test): in mTVA, right 264 

hemisphere in S3 (p=.0500). For the VLS model, in contrast, 5 significant brain-model RDM 265 

correlations were observed in all four ROIs: in A1, right hemisphere in S3 (p=.0142); pTVA: 266 

right hemisphere in S3 (p=.0160); mTVA: left hemisphere in S3 (p=.007); aTVA: left 267 

hemispheres in S1 (p=.0417) and S3 (p=.0001) (Supplementary Table 6). 268 

A two-way repeated-measures ANOVA with Feature (VLS, LIN) and ROI (A1, pTVA, mTVA, 269 

aTVA) as factors performed on the Fisher z-transformed correlation coefficients showed a 270 

tendency towards a significant effect of Feature (F(1, 2)=22.53, p=.04), and no ROI (F(3, 271 

6)=1.79, p=.30) or interaction effects (F(3, 6)=1.94, p=.22). We compared the correlation 272 

coefficients between the VLS and LIN models within participants and hemispheres using 273 

one-tailed tests, based on the a priori hypothesis that the VLS models would exhibit greater 274 

brain-model correlations than the LIN models (cf. Methods). The results revealed two 275 

significant differences in one of the three participants, both in favor of the VLS model (S3: 276 

right pTVA, p=.0366; left aTVA, p=.00175) (Supplementary Table 7). 277 
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 278 

Fig. 3 | The VLS better explains representational geometry for voice identities 279 

in the TVAs than the linear model. a, Representational dissimilarity matrices 280 

(RDMs) of pairwise speaker dissimilarities for ~135 identities (arranged by gender, cf. 281 

side bars), according to LIN and VLS. b, Spearman correlation coefficients between 282 

the brain RDMs for A1 and the 3 TVAs, and the 2 model RDMs. Error bars indicate 283 

standard error of the mean (s.e.m) across brain-model correlations. c, Example of 284 

brain-model RDM correlation in the TVAs. The VLS RDM and the brain RDM yielding 285 

one of the highest correlations (LaTVA) are shown in insert. 286 

 287 
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Decoding and Reconstruction We finally inverted the brain-VLS relationship to predict 288 

linearly VLS coordinates based on fMRI measurements (Fig. 4a; see ‘Brain decoding’ in 289 

Methods), and reconstruct via the trained decoder the spectrograms of 18 Test Stimuli (3 290 

participants x 6 stimuli per participant; see Fig. 4b, and Supplementary Audio 2; audio 291 

estimated from spectrogram through phase reconstruction). 292 

 293 

Fig. 4 | Reconstructing voice identity from brain recordings. a, A linear voxel-based 294 

decoding model was used to predict the VLS coordinates of 18 Test Stimuli based on fMRI 295 

responses to ~12 000 Train stimuli in the different ROIs. To reconstruct the audio stimuli 296 

from the brain recordings, the predicted VLS coordinates were then fed to the trained 297 

decoder to yield reconstructed spectrograms, synthesized into sound waveforms using the 298 

Griffin-Lim phase reconstruction algorithm (Griffin & Lim, 1983). b, Reconstructed 299 

spectrograms of the stimuli presented to the participants. Left panels show the spectrogram 300 
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of example original stimuli reconstructed from the VLS, and the right panels brain-301 

reconstructed spectrograms via LIN and the VLS (cf Supplementary Audio 2).   302 

We first assessed the nature of the reconstructed stimuli by using a DNN trained to 303 

categorize natural audio events (Howard et al., 2017): all reconstructed versions of the 18 304 

Test Stimuli were categorized as 'speech' (1 class out of 521 - no ‘voice’ classes). To 305 

evaluate the preservation of voice identity information in the reconstructed voices, pre-306 

trained linear classifiers were used to classify the speaker gender (2 classes), age (2 307 

classes), and identity (17 classes) of the 18 reconstructed Test Stimuli. The mean of the 308 

accuracy distribution obtained across random classifier initializations (20 per ROI) used on 309 

the stimuli reconstructed from the induced brain activity was significantly above chance level 310 

for gender (LIN: pTVA (mean accuracy ± s.d.): 72.08±5.48, t(39)=25.15; VLS: A1: 311 

61.11±2.15, t(39)=32.25; pTVA: 63.89±2.78, t(39)=31.22), age (LIN: pTVA: 54.58±4.14, 312 

t(39)=6.90; aTVA: 63.96±12.55, t(39)=6.94; VLS: pTVA: 65.00±7.26, t(39)=12.89; aTVA: 313 

60.42±5.19, t(39)=12.54) and identity (LIN: A1: 9.20±9.23, t(39)=2.24; pTVA: 9.48±4.90, 314 

t(39)=4.59; aTVA: 9.41±6.28, t(39)=3.51; VLS: pTVA: 16.18±7.05, t(39)=9.11; aTVA: 315 

8.23±4.70, t(39)=3.12) (Fig. 5a-c; Supplementary Tables 8-10). 316 

Two-way ANOVAs with Feature (VLS, LIN) and ROI (A1, pTVA, mTVA, aTVA) as factors 317 

performed on classification accuracy scores (gender, age, identity) revealed for gender 318 

classifications significant effects of Feature F(1, 312)=12.82, p<.0005) and of ROI (gender: 319 

F(3, 312)=245.06, p<.0001; age: F(3, 312)=64.49, p<.0001; identity: F(3, 312)=14.49, 320 

p<.0001), as well as Feature x ROI interactions (gender: F(3, 312)=56.74, p<.0001; age: 321 

F(3, 312)=4.31, p<.001; identity: F(3, 312)=8.82, p<.0001). Post-hoc paired t-tests indicated 322 

that the VLS was better than LIN in preserving gender, age and identity information in at 323 

least one TVA compared with A1 (gender: aTVA: t(39)=5.13, p<.0001; age: pTVA: 324 

t(39)=9.78, p<.0001; identity: pTVA: t(39)=4.01, p<.0005) (all tests in Supplementary Table 325 

11). Post-hoc two sample t-tests comparing ROIs revealed significant differences in all 326 

classifications, in particular with pTVA outperforming other ROIs in gender (LIN: pTVA vs A1: 327 
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t(78)=22.40, p<.0001; pTVA vs mTVA: t(78)=10.92, p<.0001; pTVA vs aTVA: t(78)=31.47, 328 

p<.0001; VLS: pTVA vs A1: t(78)=4.94, p<.0001; pTVA vs mTVA: t(78)=13.96, p<.0001; 329 

pTVA vs aTVA: t(78)=22.06, p<.0001), age (LIN: pTVA vs A1: t(78)=7.26, p<.0001; pTVA vs 330 

mTVA: t(78)=10.11, p<.0001; VLS: pTVA vs A1: t(78)=5.71, p<.0001; pTVA vs mTVA: 331 

t(78)=10.11, p<.0001; pTVA vs aTVA: t(78)=3.21, p<.005) and identity (LIN: pTVA vs mTVA: 332 

t(78)=2.27, p<.05; VLS: pTVA vs A1: t(78)=6.45, p<.0001; pTVA vs mTVA: t(78)=6.62, 333 

p<.0001; pTVA vs aTVA: t(78)=5.85, p<.0001) (Supplementary Table 12). 334 

We further evaluated voice identity information in the reconstructed stimuli by testing human 335 

participants (n=13) in a series of 4 online experiments assessing the reconstructed stimuli 336 

on: (i) naturalness judgment; (ii) gender categorization; (iii) age categorization; and (iv) 337 

speaker categorization (cf Methods). The naturalness rating task showed that the VLS-338 

reconstructed stimuli sounded more natural compared to LIN-reconstructed ones, as 339 

revealed by a two-way repeated-measures ANOVA (factors: Feature and ROI) with a strong 340 

effect of Feature (F(1, 12)=53.72, p<.0001) and a small ROI x Feature interaction (F(3, 341 

36)=5.36, p<.005). Post-hoc paired t-tests confirmed the greater naturalness of VLS-342 

reconstructed stimuli in both A1 and the TVAs (all ps<.0001) (Fig. 5g). 343 

For the gender task, one-sample t-tests showed that categorization of the reconstructed 344 

stimuli was only significantly above chance level for the VLS (A1: (mean accuracy ± s.d.) 345 

55.77±10.84, t(25)=2.66, p<.01; pTVA: 61.75±7.11, t(25)=8.26, p<.0001; aTVA: 55.13±9.23, 346 

t(25)=2.78, p<.01). Regarding the age and speaker categorizations, results also indicated 347 

that both the LIN- and VLS-reconstructed stimuli yielded above-chance performance in the 348 

TVAs (age: LIN: aTVA, 55.77±14.95, t(25)=1.93, p<.05; VLS: aTVA, 63.14±11.82, 349 

t(25)=5.56, p<.0001; identity: LIN: pTVA: 54.38±9.34, t(17)=1.93, p<.05; VLS: pTVA: 350 

63.33±6.75, t(17)=8.14, p<.0001) (Supplementary Tables 13-15). Two-way repeated-351 

measures ANOVAs revealed a significant effect of ROI for all categories (gender: F(3, 352 

27)=5.90, p<.05; age: F(3, 36)=14.25, p<.0001; identity: F(3, 24)=38.85, p<.0001), and a 353 

Feature effect for gender (F(1, 9)=43.61, p<.0001) and identity (F(1, 8)=14.07, p<.001), but 354 

not for age (F(1, 12)=4.01, p=0.07), as well as a ROI x Feature interaction for identity 355 
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discrimination (F(3, 24)=3.52, p<.05) (Supplementary Tables 16-17 for the model and ROI 356 

comparisons). 357 

 358 

Fig. 5 | Behavioural and machine classification of the reconstructed stimuli. a,b,c, 359 

Decoding of voice identity information in brain-reconstructed spectrograms. Performance of 360 

linear classifiers at categorizing speaker gender (chance level: 50%), age (chance level: 361 

50%), and identity (17 identities, chance level: 5.88%). Error bars indicate s.e.m across 40 362 

random classifier initializations per ROI (instance of classifiers; 2 hemispheres x 20 seeds). 363 

The horizontal black dashed line indicates chance level. The blue and yellow dashed lines 364 

indicate ceiling levels for the LIN and the VLS respectively. *p < .05; **p < .001, ***p < .001; 365 

****p < .0001.  d,e,f, Listener performance at categorizing speaker gender (chance level: 366 

50%) and age (chance level: 50%), and at identity discrimination (chance level: 50%) in the 367 

brain-reconstructed stimuli. Error bars indicate s.e.m across participant scores. The 368 

horizontal black dashed line indicates chance level, while the red, blue and yellow dashed 369 

lines indicate the ceiling levels for the original stimuli, the LIN-reconstructed and the VLS-370 

reconstructed, respectively. *p < .05; **p < .01; ***p < .001, ***p < .0001. g, Perceptual 371 

ratings of voice naturalness in the brain-reconstructed stimuli’ as assessed by human 372 

listeners. *p < .05, ****p < .0001. 373 
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Discussion 374 

In this study we examined to what extent the cerebral activity elicited by brief voice stimuli 375 

can be explained by machine-learned representational spaces, with a specific focus on 376 

identity-related information. We trained a linear model and a DNN model to reconstruct 377 

100,000s of short voice samples from 100+ speakers, providing low-dimensional spaces 378 

(LIN and VLS) which we related to fMRI measures of cerebral response to thousands of 379 

these stimuli. We find: (i) that 128 dimensions are sufficient to explain a sizeable portion of 380 

the brain activity elicited by the voice samples and yield brain-based voice reconstructions 381 

that preserve identity-related information; (ii) that the DNN-derived VLS outperforms the LIN 382 

space particularly in yielding more brain-like representational spaces and more naturalistic 383 

voice reconstructions; (iii) that different ROIs have different degrees of brain-model 384 

relationship, with marked differences between A1 and the the a, m, and pTVAs. 385 

Low-dimensional spaces generated by machine learning have been used to approximate 386 

cerebral face representations and reconstruct recognizable faces based on fMRI (VanRullen 387 

et Reddy, 2019; Dado et al, 2022). In the auditory domain, however, they have mostly been 388 

used with a focus on linguistic (speech) information, ignoring identity-related information (but 389 

see Akbari et al., 2019). Here we applied them to brief voice stimuli–with minimal linguistic 390 

content but already rich identity-related information–and found that as little as 128 391 

dimensions account reasonably well for the complexity of cerebral responses to thousands 392 

of these voice samples as measured by fMRI (Fig. 2). LIN and VLS both showed brain-like 393 

representational geometries, particularly the VLS in the aTVAs (Fig. 3). They made possible 394 

what is to our knowledge the first fMRI-based voice reconstructions to preserve voice-related 395 

identity information such as gender, age or even individual identity, as indicated by above-396 

chance categorization or discrimination performance by both machine classifiers (Fig. 5a-c) 397 

and human listeners (Fig. 5d-f). Note that LIN and VLS also represent the limited linguistic 398 

content of the brief stimuli, as indicated by high language classification performance 399 

(Supplementary Figure 4). 400 
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Estimation of fMRI responses (encoding) by LIN yielded correlations largely comparable to 401 

those by VLS (Fig. 2b) although many voxels were only explained by one or the other space 402 

(Fig. 2c). But in the RSA, VLS yielded higher overall correlations with brain RDMs (Fig. 3), 403 

suggesting a representational geometry closer to that instantiated in the brain than LIN. 404 

Further, VLS-reconstructed stimuli sounded more natural than the LIN-reconstructed ones 405 

(Fig. 5g) and yielded both the best speaker discrimination by listeners (Fig. 5f) and speaker 406 

classification by machine classifiers (Fig. 5c). Unlike LIN, which was generated via linear 407 

transforms, VLS was obtained through a series of nonlinear transformations (Wetzel, 2017). 408 

The fact that the VLS outperforms LIN in terms of decoding performance is an indication that 409 

nonlinear transformation is required to better account for brain representation of voices 410 

(Naselaris et al., 2011; Cowen et al., 2014; Han et al., 2019). 411 

Comparisons between ROIs revealed important differences between A1 and the a, m and 412 

pTVAs. For both LIN and VLS, predictions of fMRI signal (encoding) were more accurate for 413 

the mTVAs than for A1, and for A1 than for the pTVAs (Fig. 2b). The aTVAs yielded the 414 

highest correlations with the models in the RSA (Fig. 3). Stimulus reconstructions (Fig. 4) 415 

based on the TVAs also yielded better gender, age and identity classification than those 416 

based on A1, with gender and identity best preserved in the pTVA-, and to a lesser extent, in 417 

the aTVA-based reconstructions (Fig. 5). These results show that the a and pTVAs not only 418 

respond more strongly to vocal sounds than A1, they also better represent identity-related 419 

information in voice better than mTVA, which was previously anticipated in some 420 

neuroimaging studies (Latinus et al., 2011; Charest et al., 2013; Aglieri et al., 2021). 421 

Overall, we show that a DNN-derived representational space provides an interesting 422 

approximation of the cerebral representations of brief voice stimuli that can preserve identity-423 

related information. We find remarkable that such results could be obtained to explain sound 424 

representations despite the poor temporal resolution of fMRI. Future work combining more 425 

complex architectures to time-resolved measures of cerebral activity such as magneto-426 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.27.582302doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.27.582302


21 

encephalography (Défossez et al., 2023) or ECoG (Pasley et al., 2012) will likely yield better 427 

models of the cerebral representations of voice information. 428 

Methods 429 

Experimental procedure overview 430 

Three participants attended 13 MRI sessions each. The first session was dedicated to 431 

acquire high-resolution structural data, as well as to identify the voice-selective areas of 432 

each participant using a ‘voice localizer’ based on different stimuli than those in the same 433 

experiment (Pernet et al., 2015; see below). 434 

The next 12 sessions began with the acquisition of two fast structural scans for inter-session 435 

realignment purposes, followed by six functional runs, during which the main stimulus set of 436 

the experiment was presented. Each functional run lasted approximately 12 minutes. 437 

Participants 1 and 2 attended all scanning sessions (72 functional runs in total); due to 438 

technical issues, Participant 3 only performed 24 runs. 439 

Participants were instructed to stay in the scanner while listening to the stimuli. To maintain 440 

participants’ awareness during functional scanning, they were asked to press an MRI-441 

compatible button each time they heard the same stimulus two times in a row, a rare event 442 

occurring 3% of the time (correct button hits (median accuracy ± s.d.): S1=96.67±7.10, 443 

S2=100.00±0.89, S3=95.00±3.68). 444 

Scanning sessions were spaced by at least two days to avoid possible auditory fatigue due 445 

to the exposure to scanner noise. To ensure that participants' hearing abilities did not vary 446 

across scanning sessions, hearing thresholds were measured before each session using a 447 

standard audiometric procedure (Martin and Champlin, 2000; ISO 2004) and compared with 448 

the thresholds obtained prior the first session. 449 
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Participants 450 

This study was part of the project 'Réseaux du Langage' and was promoted by the National 451 

Center for Scientific Research (CNRS). It has been given favorable approval by the local 452 

ethics committee (Comité de Protection des Personnes Sud-Méditerranée) on the date of 453 

13th February 2019. The National Agency for Medicines (ANSM) has been informed of this 454 

study, which is registered under the number 2017-A03614-49. Three native French human 455 

speakers were scanned (all females; 26-33 years old). Participants gave written informed 456 

consent and received a compensation of 40€ per hour for their participation. All were right-457 

handed and no one had hearing disorder or neurological disease. All participants had normal 458 

hearing thresholds of 15 dB HL, for octave frequencies between 0.125 and 8 kHz. 459 

Stimuli 460 

The auditory stimuli were divided into two sequences. One ‘voice localizer’ sequence to 461 

identify the voice-selective areas of each participant (Pernet et al., 2015) and a main voice 462 

stimuli. 463 

Voice localizer stimuli. The voice localizer stimuli consisted of 96 complex sounds of 500ms 464 

grouped in four categories of human voice, macaque vocalizations, marmoset vocalizations, 465 

and complex non-vocal sounds (more details in Bodin et al., 2021). 466 

Main voice stimuli. The main stimulus set consisted of brief human voice sounds sampled 467 

from the Common Voice dataset (Ardila et al., 2020). Stimuli were organized into four main 468 

category levels: language (English, French, Spanish, Deutch, Polish, Portuguese, Russian, 469 

Chinese), gender (female/male), age (young/adult; young: teenagers and twenties; adult: 470 

thirties to sixties included) and identity (S1: 135 identities; S2: 142 identities; S3: 128 471 

identities; ~44 samples per identity). Throughout the manuscript, the term 'gender' rather 472 

than 'sex' was utilized in reference to the demographic information obtained from the 473 

participants of the Common Voice dataset (Ardila et al., 2020), as it was the terminology 474 

employed in the survey (‘male/female/other’). Stimulus sets were different for each 475 
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participant and the number of stimuli per set also varied slightly (number of unique stimuli: 476 

Participant 1, N=6150; Participant 2, N=6148; Participant 3, N=5123). For each participant, 477 

six stimuli were selected randomly among the sounds having a high energy (as measured 478 

with the amplitude envelope) from their stimulus set and were repeated extensively (60 479 

times), to improve the performance of the brain decoding (VanRullen et Reddy, 2019; 480 

Horikawa & Kamitani, 2017; Chang et al., 2019); these will be called the “repeated” stimuli 481 

hereafter, the remaining stimuli were presented twice. The third participant attended 5 482 

BrainVoice sessions instead of 12, one BrainVoice session corresponding to 1030 stimuli 483 

(1024 unique stimuli and 6 ‘test’ stimuli). Specifically, 5270 stimuli were presented to the 484 

third participant instead of ~12,000 for the two others. Among these 5270 stimuli, 5120 485 

unique stimuli were presented once, as for the two other participants, 6 ‘test’ stimuli were 486 

presented 25 times (150 trials). The stimuli were balanced within each run according to 487 

language, gender, age, and identity, as to avoid any potential adaptation effect. In addition, 488 

identity was balanced across sessions. 489 

All stimuli of the main set were resampled at 24414 Hz and adjusted in duration (250 ms). 490 

For each stimulus, a fade-in and a fade-out were applied with a 15 ms cosine ramp to their 491 

onset and offset, and were normalized by dividing the root mean square amplitude. During 492 

fMRI sessions, stimulus presentations were controlled using custom Matlab scripts 493 

(Mathworks, Natick, MA, USA) interfaced with an RM1 Mobile Processor (Tucker-David 494 

Technologies, Alachua, USA). The auditory stimuli were delivered pseudo-randomly through 495 

MRI-compatible earphones (S14, SensiMetrics, USA) at a comfortable sound pressure level 496 

that allowed for clear and intelligible listening. 497 

Computational models 498 

We used two computational models to learn representational space for voice signals, Linear 499 

Autoencoder (LIN) and Deep Variational Autoencoder (VAE; Kingma et Welling., 2014). Both 500 

are encoder-decoder models that are learnt to reproduce at their output their input while 501 

going through a low dimensional representation space usually called latent space (that we 502 
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will call voice latent space since they are learnt on voice data). The autoencoders were 503 

trained on a dataset of 182K sounds from the Common Voice dataset (Ardila et al., 2020), 504 

balanced in gender, language and identity to reduce the bias in the synthesis (Gutierrez et 505 

al., 2021). Both models operate on sounds which were represented as spectrograms that we 506 

describe below. These representations were tested in all the encoding/decoding and RSA 507 

analyses. 508 

Spectrograms 509 

We used amplitude spectrograms as input of the models that we describe below. Short term 510 

Fourier transforms of the waveform were computed using a sliding window of length 50 ms 511 

with a hop size of 12.5 ms (hence an overlap of 37.5 ms) and applying a Hamming window 512 

of size 800 samples before computing the Fourier transform of each slice. Only the 513 

magnitude of the spectrogram was kept and the phase of the complex representation was 514 

removed. At the end, a 250 ms sound is represented by a 21×401 matrix with 21 time steps 515 

and 401 frequency bins. 516 

We used a custom code based on 𝑛𝑢𝑚𝑝𝑦. 𝑓𝑓𝑡 package (Harris et al., 2020). The size and 517 

the overlap between the sliding windows of the spectrogram were chosen to conform with 518 

the uncertainty principle between time and frequency resolution. The main constraint was to 519 

find a trade-off between accurate phase reconstruction with the Griffin & Lim algorithm 520 

(1983) and a reasonable size of the spectrogram. 521 

We standardized each of the 401 frequency bands separately, by centering all the data 522 

corresponding to each frequency band at every time step in all spectrograms, which involved 523 

removing their mean, and dividing by their standard deviation. This separate standardization 524 

of frequency bands resulted in a smaller reconstruction error compared to standardizing 525 

across all the bands. 526 
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Deep neural network 527 

We designed a deep variational autoencoder (VAE; Kingma et Welling, 2014) of 15 layers 528 

with an intermediate hidden representation of 128 neurons that we refer to as the voice 529 

latent space (VLS). In an autoencoder model, the two sub-network components, the Encoder 530 

and the Decoder, are jointly learned on complementary tasks (Fig. 1a). The Encoder network 531 

(noted 𝐸𝑛𝑐 hereafter; 7 layers) learns to map an input, 𝑠 (a spectrogram of a sound), onto a 532 

(128-dimensional) voice latent space representation (𝑧; in blue in the middle of Fig. 1a), 533 

while the Decoder (noted 𝐷𝑒𝑐 hereafter; 7 layers) aims at reconstructing the spectrogram 𝑠 534 

from 𝑧. The learning objective of the full model is to make the output spectrogram 535 

𝐷𝑒𝑐(𝐸𝑛𝑐(𝑠)) as close as possible to the original one 𝑠. This reconstruction objective is 536 

defined as the L2 loss, ||𝐷𝑒𝑐(𝐸𝑛𝑐(𝑠)) − 𝑠||². The parameters of the Encoder and of the 537 

Decoder are jointly learned using gradient descent to optimize the average L2 loss 538 

computed on the training set ∑𝑠 ∈𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑒𝑡 ||𝐷𝑒𝑐(𝐸𝑛𝑐(𝑠)) − 𝑠||². We trained this DNN on 539 

the Common Voice dataset (Ardila et al., 2020) according to VAE learning procedure (as 540 

explained in Kingma et Welling., 2019) until convergence (network architecture and 541 

particularities of the training procedure are provided in Supplementary Table 1), using the 542 

PyTorch python package (Paszke et al., 2019). 543 

Linear autoencoder 544 

We trained a linear autoencoder on the same dataset (described above) to serve as a linear 545 

baseline. Both the Encoder and the Decoder networks consisted of a single fully-connected 546 

layer, without any activation functions. Similar to the VAE, the latent space obtained from the 547 

Encoder was a 128-dimensional vector. The parameters of both the Encoder and of the 548 

Decoder were jointly learned using gradient descent to optimize the average L2 loss 549 

computed on the training set. 550 
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Neuroimaging data acquisition 551 

Participants were scanned using a 3 Tesla Prisma scanner (Siemens Healthcare, Erlangen, 552 

Germany) equipped with a 64-channel receiver head-coil. Their movements were monitored 553 

during the acquisition using the software FIRMM (Dosenbach et al., 2017). The whole-head 554 

high-resolution structural scan acquired during the first session was a T1-weighted multi-555 

echo MPRAGE (MEMPRAGE) (TR = 2.5 s, TE = 2.53, 4.28, 6.07, 7.86 ms, TI=1000 ms  flip 556 

angle: 8°, matrix size = 208 × 300 × 320; resolution 0.8 × 0.8 × 0.8 mm3, acquisition time: 557 

8min22s). Lower resolution scans acquired during all other sessions were T1-weighted 558 

MPRAGE scans (TR = 2.3 s, TE = 2.88 ms, TI=900ms,  flip angle: 9°, matrix size = 192 × 559 

240 × 256; resolution 1 × 1 × 1 mm3, sparse sampling with 2.8 times undersampling and 560 

compressed sensing reconstruction, acquisition time: 2min37). Functional imaging was 561 

performed using an EPI sequence (multiband factor = 5 , TR = 462 ms, TE = 31.2 ms, flip 562 

angle: 45°, matrix size = 84 × 84 × 35, resolution 2.5 × 2.5 × 2.5 mm3). Functional slices 563 

were oriented parallel to the lateral sulci with a z-axis coverage of 87.5 mm, allowing it to 564 

fully cover both the TVAs (Pernet et al., 2015) and the FVAs (Aglieri et al., 2018). The 565 

physiological signals (heart rate and respiration) were measured with the external sensors of 566 

Siemens. 567 

Pre-processing of neuroimaging data and general linear modeling 568 

Tissue segmentation and brain extraction was performed on the structural scans using the 569 

default segmentation procedure of SPM 12 (Ashburner et al., 2012). The preprocessing of 570 

the BOLD responses involved correcting motion, registering inter-runs, detrending and 571 

smoothing the data. Each functional volume was realigned to a reference volume taken from 572 

a steady period in the session that was spatially the closest to the average of all sessions. 573 

Transformation matrices between anatomical and functional data were computed using 574 

boundary-based registration (FSL; Smith et al., 2004). The data were respectively detrended 575 

and smoothed using the nilearn functions 𝑐𝑙𝑒𝑎𝑛_𝑖𝑚𝑔 and 𝑠𝑚𝑜𝑜𝑡ℎ_𝑖𝑚𝑔 (kernel size of 3mm) 576 
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(Abraham et al., 2014), resulting in the matrix 𝑌 ∈ 𝑅𝑆 × 𝑉, with 𝑆 the number of scans and 𝑉 577 

the number of voxels. 578 

A first general linear model (GLM) was fit to regress out the noise by predicting 𝑌 from a 579 

“denoised” design matrix, composed of 𝑅 = 38 regressors of nuisance (Supplementary 580 

Figure 4). These regressors of nuisance, also called covariates of no interest, included: 6 581 

head motion parameters (3 variable for the translations, 3 variables for the rotations); 18 582 

‘RETROICOR’ regressors (Glover et al., 2000) using the TAPAS PhysIO package (Kasper et 583 

al., 2017) (with the hyperparameters set as specified in Snoek et al.) were computed from 584 

the physiological signals; 13 regressors modeling slow artifactual trends (sines and cosines, 585 

cut frequency of the high-pass filter = 0.01 Hz); and a confound-mean predictor. The design 586 

matrix was convolved with an hemodynamic response function (HRF) with a peak at 6s and 587 

an undershoot at 16s (Glover et al., 1999), we note the convolved design matrix as 𝑋𝑑 ∈588 

𝑅𝑆 × 𝑅. The “denoise” GLM’s parameters 𝛽𝑑 ∈ 𝑅𝑅 ×𝑉   were optimized to minimize the 589 

amplitude of the residual  𝛽𝑑 =  𝑎𝑟𝑔𝑚𝑖𝑛𝛽∈𝑅𝑅 ×𝑉 ||  𝑌 − 𝑋𝑑  𝛽 ||2 . We used a lag-1 590 

autoregressive model (ar(1)) to model the temporal structure of the noise (Friston et al., 591 

2002). The denoised BOLD signal 𝑌𝑑 was then obtained from the original one according to 592 

𝑌𝑑 = 𝑌 − (𝑋𝑑  𝛽𝑑) ∈ 𝑅𝑆 ×𝑉. 593 

A second “stimulus” GLM model was used to predict the denoised BOLD responses for each 594 

stimulus using a design matrix 𝑋𝑠 ∈ 𝑅 𝑆×(𝑁𝑆+1)  (which was convolved with an hemodynamic 595 

response function, HRF as above) and a parameters matrix 𝛽𝑠 ∈ 𝑅 (𝑁𝑠+1)×𝑉   where 𝑁𝑆 stands 596 

for the number of stimuli. The last row (resp. column) of 𝛽𝑠 (resp. 𝑋𝑠) stands for a silence 597 

condition. Again, 𝛽𝑠  was learned to minimize the residual 𝛽𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽∈𝑅 (𝑁𝑠+1)×𝑉 || 𝑌𝑑 −598 

𝑋𝑠 𝛽 ||2 . Once learned, each of the first 𝑁𝑠 line of 𝛽𝑠 was corrected by subtracting the 599 

(𝑁𝑠+1)th line, yielding the contrast maps for stimuli �̃�𝑠 ∈ 𝑅 𝑁𝑆×𝑉.  We note hereafter �̃�𝑠[𝑖, : ] ∈600 

𝑅 𝑉 the contrast map for a given stimulus, it is the i th line of �̃�𝑠. 601 
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A third “identity” GLM was fit to predict the BOLD responses of each voice speaker identity, 602 

using a design matrix 𝛽𝑖 ∈ 𝑅 (𝑁𝑖+1)×𝑉  and a design matrix 𝑋𝑖 ∈ 𝑅 𝑆×(𝑁𝑖 +1)  (which was again 603 

convolved with an hemodynamic response function, HRF) where  𝑁𝑠 stands for the number 604 

of unique speakers. Again the last row/column in 𝛽𝑖 and 𝑋𝑖 stands for the silent condition. 𝛽𝑖 605 

is learned to minimize the residual  𝛽𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽∈𝑅 (𝑁𝑖+1)×𝑉  ||𝑌𝑑 − 𝑋𝑖  𝛽 ||2  (Supplementary 606 

Figure 3a). Again, the final speaker contrast maps were obtained by contrasting (i.e., 607 

subtracting) the regression coefficients in a row of 𝛽𝑖  with the silence condition (last row; 608 

Supplementary Figure 3a), yielding �̃�𝑖 ∈ 𝑅𝑁𝑠 × 𝑉. Here the jth  row of �̃�𝑖,  �̃�𝑖[𝑗, : ] ∈ 𝑅𝑉 , 609 

represents the amplitude of the BOLD response of the contrast map for speaker j  (i.e. to all 610 

the stimuli from this speaker). 611 

A fourth “localizer” GLM model was used to predict the denoised BOLD responses of each 612 

sound category from the Voice localizer stimuli presented above. The procedure was similar 613 

as described for the two previous GLM models. Once the GLM was learned, we contrasted 614 

the human voice category with the other sound categories in order to localize for each 615 

participant the posterior Temporal Voice Area (pTVA), medial Temporal Voice Area (mTVA) 616 

and anterior Temporal Voice Area (aTVA) in each hemisphere. The center of each TVA 617 

corresponded to the local maximum of the voice > non voice t-map whose coordinates were 618 

the closest to the TVAs reported in (Pernet et al., 2015). The analyses were carried on for 619 

each region of interest (ROI) of each hemisphere. 620 

Additionally, we defined for each participant the primary auditory cortex (A1) as the 621 

maximum value of the probabilistic map (non-linearly registered to each participant 622 

functional space) of Heschl’s gyri provided with the MNI152 template (Penhune et al., 1996), 623 

intersected with the sound vs silence contrast map. 624 

Identity-based and stimulus-based representations 625 

We performed analyses either at the stimulus level, e.g. predicting the neural activity of a 626 

participant listening to a given stimulus (�̃�𝑠’s lines) from the voice latent space representation 627 
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of this stimuli, or at the speaker identity level, e.g. predicting the average neural activity in 628 

response to stimuli of a given speaker identity (�̃�𝑖’s lines) from this speaker’s voice latent 629 

space representation. The identity-based analyses were used for the characterization of the 630 

voice latent space (Fig. 1), the brain encoding (Fig. 2), and the representational similarity 631 

analysis (Fig. 3), while the stimulus-based analyses were used for the brain decoding 632 

analyses (Fig. 4, 5). 633 

We conducted stimulus-based analyses to examine the relationship between stimulus 634 

contrast maps in neural activity (�̃�𝑠) and the encodings of individual stimulus spectrograms 635 

computed by the encoder of an autoencoder model (either linear or deep variational 636 

autoencoder) on the computational side. We will note 𝑧𝑠
𝑙𝑖𝑛 ∈ 𝑅𝑁𝑠×128 encodings of stimuli 637 

by the LIN model and 𝑧𝑠
𝑣𝑎𝑒 ∈ 𝑅𝑁𝑠×128 the encodings of stimuli computed by the VAE 638 

model. The encoding of the kth stimuli by one of these models is the kth  row of the 639 

corresponding matrix and it is noted as 𝑧𝑠
𝑚𝑜𝑑𝑒𝑙[𝑘, : ]. 640 

For identity-based analyses we studied relationships between identity contrast maps in �̃�𝑖 on 641 

the neural activity side, and an encoding of speaker identity in the VLS implemented by an 642 

autoencoder model (LIN or VAE) on the computational side, e.g. we note  𝑧𝑖
𝑣𝑎𝑒[𝑗] the 643 

representation of speaker j as computed by the vae model. We chose to define a speaker 644 

identity-based representation as the average of a set of sample-based representations for 645 

stimuli from this speaker, e.g. 𝑧𝑖
𝑚𝑜𝑑𝑒𝑙[𝑗]  = 1/|𝑆𝑗| ∑𝑘 ∈𝑆𝑗

𝑧𝑠
𝑚𝑜𝑑𝑒𝑙[𝑘, : ] where 𝑆𝑗 stands for the 646 

set of stimuli by speaker j and model stands for vae or lin. Averaging in the voice latent 647 

space is expected to be much more powerful and relevant than averaging in the input space 648 

spectrograms (VanRullen & Reddy, 2019). 649 

Characterization of the autoencoder latent space 650 

We characterized the organization of the voice latent space (VLS) and of the features 651 

computed by the linear autoencoder (LIN) by measuring through classification experiments 652 
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the presence of information about speaker’s gender, age, and identity in the representations 653 

learned by these models. 654 

We first computed the speaker's identity voice latent space representations for each of the 655 

405 speakers in the main voice dataset (135+142+128 see Stimuli section) as explained 656 

above. 657 

Next we used these speakers' voice latent space representation to investigate if the gender, 658 

age, identity were encoded in the VLS. To do so we divided the data in separate train and 659 

test sets and learned classifiers to predict gender, age, or identity from the train set. The 660 

balanced (to avoid the small effects associated with unbalanced folds) accuracy of the 661 

classifiers were then evaluated on the test set. The higher the performance on the test set 662 

the more we are confident that the information is encoded in the VLS. More specifically for 663 

each task (gender, age, identity), we trained a Logistic Regression classifier (linear 664 

regularized logistic regression; L2 penalty, tol=0.0001, fit_intercept=True, 665 

intercept_scaling=1, max_iter=100) using the scikit-learn python package (Pedregosa et al., 666 

2018). 667 

In order to statistically evaluate the significance of the results and to avoid a potential 668 

overfitting, the classifications were repeated 20 times with 20 different initializations (seed) 669 

and the metrics were then averaged for each voice category (gender, age). More 670 

specifically, we repeated the following experiment 20 times with 20 different random seeds. 671 

For each seed, we performed 5 train-test splits with 80% of the data in the training and 20% 672 

in the test set. For each split we used 5-fold cross validation on the training set to select the 673 

optimal value for the regularization hyperparameter C (searching between 10 values 674 

logarithmically spaced on the interval [-3, +3]). We then computed the generalization 675 

performance on the test set of the model trained on the full training set with the best 676 

hyperparameter value. Reported results were then averaged over 20 experiments. Note that 677 

data were systematically normalized with a scaler fitted on the training set. We used a robust 678 
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scaling strategy for these experiments (removing the median, then scaling to the quantile 679 

range; 25th quantile and 75th quantile) which occurs to be more relevant with a small training 680 

set. 681 

To investigate how speaker identity information is encoded in the latent space 682 

representations of speakers' voices, we computed speaker identity voice latent space 683 

representations by averaging 20 stimulus-based representations, in order to obtain a limited 684 

amount of data per identity that could be distributed across training and test datasets. 685 

We first tested whether the mean of the distribution of accuracy scores obtained for 20 686 

seeds was significantly above chance level using one-sample t-tests. We then evaluated the 687 

difference in classification accuracy between the VLS and LIN via one-way ANOVAs 688 

(dependent variable: test balance accuracy; between factor: Feature), for each category 689 

(speaker gender, age, identity). We performed post-hoc planned paired t-tests between the 690 

models to test the significance of the VLS-LIN difference. 691 

Brain encoding 692 

We performed encoding experiments on identity-based representations for each of the three 693 

participants (Fig. 2). For each participant we explored the ability to learn a regularized linear 694 

regression that predicts a speaker-based neural activity, e.g. the  jth speaker’s contrast map 695 

�̃�𝑖[𝑗] ∈ 𝑅𝑉, from this speaker’s voice latent space representation, that we note 𝑧𝑖
𝑚𝑜𝑑𝑒𝑙[𝑗] ∈696 

𝑅128  (Fig. 2a). We carried out these regression analyses for each ROI (A1, pTVA, mTVA, 697 

aTVA) in each hemisphere and participant, independently. 698 

The regression model parameters �̂�𝑒𝑛𝑐𝑜𝑑 ∈ 𝑅128×𝑉  were learned according to: 699 

�̂�𝑒𝑛𝑐𝑜𝑑 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑊𝑒𝑛𝑐𝑜𝑑∈𝑅128×𝑉  ∑

𝑗=1..𝑁𝑖

(𝑧𝑖
𝑚𝑜𝑑𝑒𝑙[𝑗] × 𝑊𝑒𝑛𝑐𝑜𝑑  − �̃�𝑖[𝑗])2 +  𝜆‖𝑊𝑒𝑛𝑐𝑜𝑑‖2 700 
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where 𝜆 is a hyperparameter tuning the optimal tradeoff between the data fit and the 701 

penalization terms above. We used the ridge regression with built-in cross-validation as 702 

implemented as 𝑅𝑖𝑑𝑔𝑒𝐶𝑉 in the scikit-learn library (Pedregosa et al., 2018). 703 

The statistical significance of each result was assessed with the following procedure. We 704 

repeated the following experiment 20 times with different random seeds. Each time, we 705 

performed 5 train-test splits with 80% of the data in the training and 20% in the test set. For 706 

each split we used RidgeCV (relying on leave-one-out) on the training set to select the 707 

optimal value for the hyperparameter 𝜆 (searching between 10 values logarithmically spaced 708 

on the interval [10
−1; 10

8]). Following standard practice in machine learning, we then 709 

computed the generalization performance on the test set of the model trained on the full 710 

training set with the best hyperparameter value. Reported results are then averaged over 20 711 

experiments. Note that here again with small training sets data were systematically 712 

normalized in each experiment using robust scaling. 713 

Evaluation relied on the ‘brain score’ procedure (Schrimpf et al., 2018) which evaluates the 714 

performance of the ridge regression with a Pearson’s correlation score. Correlations 715 

between measured neural activities �̃�𝑖 and predicted ones 𝑧𝑖
𝑚𝑜𝑑𝑒𝑙  ∗ 𝑊̂

𝑒𝑛𝑐𝑜𝑑 were computed 716 

for each voxel and averaged over repeated experiments (folds and seeds) yielding one 717 

correlation value for every voxel and for every setting. The significance of the results was 718 

assessed with one-sample t-tests for the Fisher z-transformed correlation scores (3 x 719 

participants x 2 hemispheres x V voxels). For each region of interest, the scores are reported 720 

across participants and hemispheres (Fig. 2b). The exact same procedure was followed for 721 

the LIN modeling. 722 

In order to determine which of the two feature spaces (VLS, LIN) and which of the two ROI 723 

(A1, TVAs) yielded the best prediction of neural activity, we compared the means of 724 

distributions of correlations coefficients using a mixed ANOVA performed on the Fisher z-725 
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transformed coefficients (dependent variable: correlation; between factor: ROI; repeated 726 

measurements: Feature; between-participant identifier: voxel). 727 

 For each ROI, we then used t-tests to perform post-hoc contrasts for the VLS-LIN difference 728 

in brain encoding performance (comparison tests in Fig. 2b; Supplementary Table 4). We 729 

finally conducted two-sample t-tests between the brain encoding model's scores trained to 730 

predict A1 and those trained to predict temporal voice areas to test the significance of the 731 

A1-TVAs difference (Supplementary Table 5). 732 

The statistical tests were all performed using the pingouin python package (Vallat., 2018). 733 

Representational similarity analysis 734 

The RSA analyses were carried out using the package rsatoolbox (Schütt et al., 2021; 735 

https://github.com/rsagroup/rsatoolbox). For each participant, region of interest and 736 

hemisphere, we computed the cerebral Representational Dissimilarity Matrix (RDM) using 737 

the Pearson’s correlation between the speaker identity-specific response patterns of the 738 

GLM estimates �̃�𝑖 (Walther et al., 2016) (Fig. 3a). The model RDMs were built using cosine 739 

distance (Xing et al., 2015; Bhattacharya et al., 2017; Wang et al., 2018), capturing speaker 740 

pairwise feature differences predicted by the computational models LIN and the VLS (Fig. 741 

3a). For greater comparability with the rest of the analyses described here, the GLM 742 

estimates and the computational models’ features were first normalized using robust scaling. 743 

We computed the Spearman correlations coefficients between the brain RDMs for each ROI, 744 

and the two model’s RDMs (Fig. 3b). We assessed the significance of these brain-model 745 

correlation coefficients within a permutation-based ‘maximum statistics’ framework for 746 

multiple comparison correction (one-tailed inference; N permutations = 10,000 for each test; 747 

permutation of rows and columns of distance matrices, see Giordano et al., 2023 and Maris 748 

& Oostenveld, 2007; see Fig. 3b). We evaluated the VLS-LIN difference using a two-way 749 

repeated-measures ANOVA on the Fisher z-transformed Spearman correlation coefficients 750 

(dependent variable: correlation; within factors: ROI and Feature; participant identifier: 751 
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participant hemisphere pair). The same permutation framework was also used to assess the 752 

significance of the difference between the RSA correlation for the VLS and LIN models. 753 

Brain decoding 754 

Brain decoding was investigated at the stimulus level. The stimuli’s voice latent space 755 

representations  𝑧𝑠
𝑚𝑜𝑑𝑒𝑙  ∈  𝑅𝑁 × 128 and voice samples’ contrast maps �̃�𝑠 ∈ 𝑅𝑁 × 𝑉 were 756 

divided into train and test splits, normalized across voice samples using robust scaling, then 757 

fit to the training set. For every participant and each ROI, we trained a 𝐿2-regularized linear 758 

model 𝑊 ∈ 𝑅𝑉 × 128 model to predict the voice samples’ latent vectors from the voice 759 

samples’ contrast maps (Fig. 4a). The hyperparameter selection and optimization was done 760 

similarly as in the Brain encoding scheme. Training was performed on non repeated stimuli 761 

(see Stimuli section). We then used the trained models to predict for each participant the 6 762 

repeated stimuli that were the most presented. Waveforms were estimated starting from the 763 

reconstructed spectrograms using the Griffin-Lim phase reconstruction algorithm (Griffin & 764 

Lim, 1983). 765 

We then used classifier analyses to assess the presence of voice information (gender, age, 766 

speaker identity) in the reconstructed latent representations (i.e., the latent representation 767 

predicted from the brain activity of a participant listening to a specific stimulus) (Fig. 5a, b, c). 768 

To this purpose, we first trained linear classifiers to categorize the training voice stimuli 769 

(participant 1, N = 6144; participant 2, N = 6142; participant 3, N = 5117; total, N = 17403) by 770 

gender (2 classes), age (2 classes) or identity (17 classes) based on VLS coordinates. 771 

Secondly, we used the previously trained classifiers to predict the identity information based 772 

on the VLS derived from the brain responses of the 18 Test voice stimuli (3 participants x 6 773 

stimuli). We first tested using one-sample t-tests that the mean of the distribution of accuracy 774 

scores obtained across random classifier initializations of classifiers (2 hemispheres x 20 775 

seeds = 40) was significantly above chance level, for each category, ROI and model. We 776 

then evaluated the difference in performance at preserving identity-related information 777 

depending on the model or ROI via two-way ANOVAs (dependent variable: accuracy; 778 
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between factors: Feature and ROI). We performed post-hoc planned paired t-tests between 779 

each model pair to test the significance of the VLS-LIN difference. Two-sample t-tests were 780 

finally used to test the significance of the A1-TVAs difference. 781 

Listening tests 782 

We recruited 13 participants through the online platform Prolific (www.prolific.co) for a series 783 

of online behavioral experiments. All participants reported having normal hearing. The 784 

purpose of these experiments was to evaluate how well voice identity information and 785 

naturalness are preserved in fMRI-based reconstructed voice excerpts. In the main session, 786 

participants carried out 4 tasks, in the following order: ‘speaker discrimination’ (~120 min), 787 

‘perceived naturalness’ (~30 min), ‘gender categorization’ (~30 min), ‘age categorization’ 788 

(~30 min). The experiment lasted 3 hours and 35 minutes, and each participant was paid 789 

£48. 790 

Prior to the main experiment session, participants carried out a short loudness-change 791 

detection task to ensure that they wore headphones, and that they were attentive and 792 

properly set up for the main experiment (Woods et al., 2017). On each of 12 trials, 793 

participants heard 3 tones and were asked to identify which tone was the least loud by 794 

clicking on one of 3 response buttons: ‘First’, ‘Second’, or ‘Third’. Participants were admitted 795 

to the main experiment only if they achieved perfect performance in this task. We 796 

additionally refined the participant pool by excluding those who performed badly on the 797 

original stimuli. 798 

The next three tasks were each carried out on the same set of 342 experimental stimuli, 799 

each presented on a different trial: 18 original stimuli, 36 stimuli reconstructed directly from 800 

the LIN and the VLS models, and 18 stimuli x 2 models x 4 regions of interest x 2 801 

hemispheres= 288 brain-reconstructed stimuli. 802 
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In the ‘perceived naturalness’ task, participants were asked to rate how natural the voice 803 

sounded on a scale ranging from ‘Not at all natural’ to ‘Highly natural’ (i.e., similar to a real 804 

recording), and were instructed to use the full range of the scale. 805 

During the ‘gender categorization’ task, participants categorized the gender by clicking on a 806 

‘Female’ or ‘Male’ button. 807 

Finally, in the ‘age categorization’ task, participants categorized the age of the speaker by 808 

clicking on a ‘Younger’ or ‘Older’ button. 809 

In the ‘speaker discrimination’ task, participants carried out 684 trials (342 experimental 810 

stimuli x 2) with short breaks in between. On each trial, they were presented with 2 short 811 

sound stimuli, one after the other, and participants had to indicate whether they were from 812 

the same speaker or not. 813 

To evaluate the performance of the participants, we firstly conducted one-sample t-tests to 814 

examine whether the mean accuracy score calculated from their responses was significantly 815 

higher than the chance level for each model and ROI. Next, we used two-way repeated-816 

measures ANOVAs to assess the variation in participants’ performances in identifying 817 

identity-related information (dependent variable: accuracy; between-participant factors: 818 

Feature and ROI). To determine the statistical significance of the VLS-LIN difference, we 819 

carried out post-hoc planned paired t-tests between each model pair. Finally, we employed 820 

two-sample t-tests to evaluate the statistical significance of the A1-TVAs difference. 821 

Data and code availability 822 

All data and codes will be made publicly available upon the article publication.  823 
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