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Abstract

Cells of different types perform diverse computations and coordinate their activity during sensation,
perception, and action. While electrophysiological approaches can measure the activity of many neu-
rons simultaneously, assigning cell type labels to these neurons is an open problem. Here, we develop
PhysMAP, a framework that weighs multiple electrophysiological modalities simultaneously in an unsu-
pervised manner and obtain an interpretable representation that separates neurons by cell type. PhysMAP
is superior to any single electrophysiological modality in identifying neuronal cell types such as excitatory
pyramidal, PV+ interneurons, and SOM+ interneurons with high confidence in both juxtacellular and
extracellular recordings and from multiple areas of the mouse brain. PhysMAP built on ground truth
data can be used for classifying cell types in new and existing electrophysiological datasets, and thus
facilitate simultaneous assessment of the coordinated dynamics of multiple neuronal cell types during
behavior.

Keywords: Cell types, Electrophysiology, Opto-tagging, Multi-Modal Analysis, Dimensionality
Reduction

(Abstract: 137 words)

Introduction1

Single cell transcriptomics, in vivo and in vitro electrophysiology, and morphological reconstruction2

have identified numerous neuronal cell types in the cerebral cortex (Scala et al., 2021; Gouwens et al.,3

2020; , BICCN) each with specific patterns of gene expression, morphology, and connectivity (Bomkamp4

et al., 2019). These interconnected cell types form cortical microcircuits which perform neural computa-5

tions and, ultimately, produce behavior (Keller et al., 2020; Kullander and Topolnik, 2021; Christensen6

et al., 2022). For instance, recent studies have identified how interactions between excitatory pyramidal,7

parvalbumin-positive (PV+), and somatostatin-positive (SOM+) cells enable gain modulation (Ferguson8
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and Cardin, 2020). These interactions have been used to model computation for functions such as the9

selective enhancement of certain visual stimuli (Millman & Ocker et al. 2020).10

However, how individual cell types contribute to the many other computations the brain conducts is11

largely unknown (Adesnik and Naka, 2018), as direct measurement of specific types necessitates molecular12

techniques (e.g., optogenetics and calcium imaging) that are not feasible in all situations. Such techniques13

are far from turnkey and are not easy to execute due to various factors e.g., a lack of viral serotype efficacy14

(Bohlen and Tremblay, 2023), the need for optical access and head-fixation (O’Shea et al., 2017), or15

the depth of relevant neural populations (Trautmann et al., 2021) etc. Even when these techniques are16

available, technical constraints restrict experimentation: only a few cell types are imageable at once and17

two-photon imaging is limited to cortical depths of around 600 µm (Takasaki et al., 2020). This precludes18

the study of cell types from deep structures and in many of the species most relevant for understanding19

human disorders such as non-human primates (Bliss-Moreau et al., 2022). Furthermore, in order to20

develop precision circuit-level therapies, cell type-specific activity is needed to validate microcircuit models21

as network properties are predictive of therapeutic response (Bloch et al., 2022). Thus, our current22

inability to capture cell type dynamics hinders our understanding of how circuits orchestrate behavior in23

intact and diseased states.24

In contrast to optical methods, extracellular electrophysiological recordings from single electrodes to25

high-density Neuropixels probes (Jun et al., 2017) can sample from diverse and deep populations of26

neurons simultaneously and require no genetic or optical access. This recording technique is also easily27

scalable to many cortical areas simultaneously (Steinmetz et al., 2019; Siegle & Jia et al. 2021; Chen28

& Liu et al. 2024). However, in these experiments, the cellular identities of the recorded neurons are29

almost entirely invisible. While atlases for identifying cell types from their transcriptomic expression are30

available (Tasic et al., 2018; Bakken et al., 2021), equivalent “cell type classifiers” that can match cell31

type to specific in vivo electrophysiological properties do not exist. This is because the correspondence32

between cell types and their in vivo electrophysiological properties are not understood.33

Classically, one solution was to use one-dimensional measures such as the action potential width to34

differentiate “broad-spiking” putatively excitatory from “narrow-spiking” putatively fast-spiking inhibitory35

neurons (Mitchell et al., 2007; Hussar and Pasternak, 2009). However, such a division neglects differences36

in waveform shape important for differentiating cell types (Lee et al., 2021; Amatrudo et al., 2012;37

Povysheva et al., 2013; Krimer et al., 2005; Zaitsev et al., 2008) which is ultimately the result of38

transcriptomic differences in the expression of ion channels (Bomkamp et al., 2019; Bakken et al., 2021).39

Another notable electrophysiological property that differs between cell types is a neuron’s intrinsic firing40

rate pattern called its inter-spike interval (ISI) distribution (Latuske et al., 2015; Schneider et al., 2023).41

In addition, the circuit connectivity of various cell types is often distinct leading to differences in the input42

that a cell receives (Zaitsev et al., 2008). These differences in input, in combination with a neuron’s43

intrinsic dynamics, shape firing rate pattern in responses to external stimuli and task events also known44

as a peri-stimulus time histogram (PSTH) (Pinto and Dan, 2015; Yu et al., 2019; Ramadan et al., 2022).45

Thus, each modality provides different but complementary information about a cell and therefore an ideal46

approach would be to combine these different modalities according to their reliability or informativeness in47

delineating differences in cell type. However, it’s unclear which of these “electrophysiological modalities”48

are most important or else how they can be combined to create cell type classifiers that allow for49

the monitoring of multiple cell types in vivo. Therefore, optimally combining the information present50

across different modalities is critical for building electrophysiological cell type classifiers and ultimately,51

uncovering the function of neural circuits.52

Here we present “PhysMAP”, an approach that reliably identifies different cell types by multi-modal inte-53
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gration of different physiological modalities such as a neuron’s waveform shape, ISI distribution, PSTH,54

derived electrophysiological metrics, etc. PhysMAP achieves multi-modal combination by combining non-55

linear dimensionality reduction (McInnes et al., 2018) with a weighted-nearest neighbor graph (WNN)56

construction from Seurat v4, a tool that has seen considerable success in multiomics (Hao & Hao et al.57

2021). PhysMAP offers three key features: First, PhysMAP can incorporate any number of electrophys-58

iological properties and arrive at a representation that captures underlying cell types better than any one59

modality (such as waveform shape) alone. Second, structure elicited by PhysMAP separates neurons60

by cell type and can delineate certain cell types in a manner that we demonstrate adheres closely to61

high-level “ground truth” labels available through optogenetic tagging (Yu et al., 2019; Lakunina et al.,62

2020; Petersen et al., 2021). Third, PhysMAP has the ability to learn a representation and infer cell63

types in new, unlabeled data allowing it to function as a cell type classifier. Thus, PhysMAP unlocks64

the study of circuit dynamics of multiple neuronal cell types simultaneously during sensation, perception,65

and action.66

(Introduction: 769 words)67

Results68

Multi-modal analysis of extracellular electrophysiology with PhysMAP69

Our PhysMAP approach uses a weighted graph combination solution developed in multiomics for intelligently70

integrating multiple modalities (transcriptomic, epigenomic, and proteomic data) in order to find cell type struc-71

ture that transcends single modalities (Hao et al., 2021). As in our previous WaveMAP approach (Lee et al.,72

2021, 2023), PhysMAP uses the average normalized data for each single unit. Unlike WaveMAP, PhysMAP looks73

at arbitrarily many modalities beyond simply waveform shape. PhysMAP then finds shared underlying structure74

by combining these modalities via a weighted nearest neighbor (WNN) graph. After assessing all modalities for75

all cells, this method unifies all modality-specific graphs weighing each according to their informativeness on a76

per-unit basis. This graph is then projected into two dimensions for visualization of high-dimensional multi-modal77

structure. In Fig. 1, we show how this WNN graph is constructed in the simple two-modality case combining78

waveform shape and ISI distribution. What follows here is a description of these steps appended by the motivation79

for each. These steps are also described in greater detail in Methods: Weighted Nearest Neighbors.80

1. Within-Modal Affinity: Within the waveform space (Fig. 1A), we select a single neuron (blue sphere81

in Fig. 1B), identify its k-nearest neighbors (in this example, k=5; red spheres in Fig. 1B), and average82

them to predict the waveform of said neuron (dashed red circle in Fig. 1C). We then calculate the within-83

modal affinity by passing the neuron’s actual waveform and its predicted waveform into a modified UMAP84

distance kernel (Fig. 1D, numerator), and thus a measure of how well a neuron’s waveform is predicted by85

its neighbors in waveform-space. In the third step, we will show how this will be useful when determining86

which modalities to “trust” more in the form of an “affinity ratio”.87

2. Cross-Modal Affinity: Next, we calculate a cross-modal affinity for the ISI distribution modality (Fig.88

1E). Using the same neuron and its same neighbors in Fig. 1B, but now in ISI-space where each dimension89

is a time point along an ISI distribution curve (Fig. 1F), we calculate a predicted ISI distribution for this90

neuron by averaging (dashed red circle in Fig. 1G). We do this again by passing the neuron’s true ISI91

distribution and it’s predicted ISI distribution into a modified UMAP distance kernel (denominator of Fig.92

1D), providing a measure of how well one modality versus another is predictive of a neuron’s properties93

using the same neighbors as to facilitate comparison.94

3. Affinity Ratio: We define the per-unit waveform affinity ratio, SWave(i), (fraction in Fig. 1D) as the ratio95

of this neuron’s waveform within-modal affinity divided by its ISI dist. cross-modal affinity. Conversely, the96

ISI distribution per-unit affinity ratio SISI(i) is also obtained (not shown) by considering the ISI distribution-97

space as the within-modality and the waveform shape-space as the cross-modality. This ratio compares98

how well one modality versus another is predictive of a neuron’s properties and will be used to determine99

how much to weigh each modality for this neuron.100
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Figure 1: Schematic of PhysMAP and weighted-nearest neighbors algorithm. (A) A sample of normalized average
single unit extracellular action potential waveforms. (B) Waveforms in (A) are shown in high-dimensional space with
each axis pertaining to each time point along the waveform’s trace. For a sample unit (blue sphere), its nearest neighbor
waveforms are highlighted (numbered red spheres). (C) The nearest neighbor waveforms are averaged to generate a
prediction of the original waveform (dashed red circle). (D) The numerator of the waveform affinity ratio (SWave(i)), the
“within-modal affinity”, is taken as the difference between the original neuron’s average waveform and its nearest neighbor
prediction. This “reconstruction error” distance is passed through a modified UMAP distance kernel. (E) Normalized ISI
distributions drawn from the same neurons that produced the waveforms in (A). (F) The same neuron in (B; blue sphere)
and its same nearest neighbors in waveform space are now shown in ISI distribution space. (G) As in (C), a prediction is
made for the sample unit but this time in ISI-space (red dashed circle). The difference between these, passed again through
a modified UMAP distance kernel, is used to form the “cross-modal affinity” that appears in the denominator of the affinity
ratio in (D). The ratio of within- and cross-modal affinities form the waveform affinity ratio (SWave(i)) for the sample unit.
This ratio is calculated for each unit’s waveform and ISI affinity ratios (SWave(i) and SISI(i)). (H) Per-unit affinity ratios
(SModality(i)) for each modality are converted into per-unit modality weights (βWave(i) and βISI(i)) via these formulae.
(I, top) The difference between a sample pair of points in high-dimensional waveform space is another type of “affinity”
(θWave(i, j)). This is found by passing the distance into UMAP’s distance kernel as before. (I, bottom) The same pair of
points as in (I, top) with the UMAP distance between them in high-dimensional ISI space (θISI(i, j)). (J) The equation
for calculating weighted affinities (θWNN) as a linear combination used in constructing the weighted-nearest neighbors
graph. This weighted average of affinities is calculated for all points to construct an affinity connectivity matrix. The final
multi-modal projection is found after applying k-nearest neighbors to the affinity connectivity matrix and projecting into
two dimensions with UMAP’s projection algorithm (a force-directed graph layout procedure).
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4. Modality Weight: We then calculate the weight associated with a unit for a particular modality (βModality(i))101

as the ratio of the exponentiated affinity ratio for a modality divided by the sum of exponentiated affinity102

ratios over all modalities (Fig. 1H; left equation for waveforms, right equation for ISI dists.). Thus for each103

neuron, each modality is differentially weighted according to how well the cell’s properties are predicted in104

each.105

5. Pair-Wise Unit Distances: The distances between every pair of points (in every modality) is also passed106

into the same modified UMAP distance metric for construction of each modality-specific graph before107

re-weighting (Fig. 1I). For example, the edge between a pair of units i and j in waveform shape-space is108

θWave(i, j). In this way, subsequent calculations use UMAP’s notion of distance which has been shown to109

capture underlying low-dimensional manifold structure (McInnes et al., 2018).110

6. WNN Construction and Visualization: Finally, we calculate a connectivity matrix of new pair-wise111

edges by taking the weighted linear combination of edges in the waveform space and ISI space with the112

pair-wise distances and affinity weights calculated in the previous steps (Fig. 1J). The final WNN graph113

is derived from this matrix by using k-nearest neighbors algorithm with k set to a large number (here114

it is 200). Using UMAP’s force-directed graph layout procedure, we then visualize the high-dimensional115

multi-modal structure by projecting the graph into two dimensions.116

These steps proceed similarly in the case of three or more modalities with affinity ratios calculated for each117

modality against every other. The summations in the denominators of Fig. 1H and weighted average of Fig. 1J118

expand to include these other modalities as well. In the next sections, we use this PhysMAP approach and show119

how it can combine multiple modalities to delineate cell types in three different datasets.120

PhysMAP combines electrophysiological modalities to uncover cell type and laminar structure121

Ex vivo experiments have shown that the relationship between cell type and electrophysiology spans many different122

physiological properties (Gouwens et al., 2020; Krimer et al., 2005; Zaitsev et al., 2008). These results are very123

promising and suggest that cell types could, in principle, be identified purely from modalities available from in124

vivo extracellular electrophysiological recording.125

We examined if combining multiple electrophysiological modalities can find a structure that aligns to cell types126

better than any modality alone by applying PhysMAP to in vivo juxtacellular recordings from the mouse so-127

matosensory (whisker barrel) cortex (Yu et al., 2019). Juxtacellular recordings provide low noise and well-isolated128

somatic waveforms recorded unambiguously from single neurons. This dataset also included anatomical and129

molecular discrete cell type information obtained through measured probe insertions, optogenetic tagging, and130

immunohistochemistry (Kvitsiani et al., 2013) allowing us to assess if PhysMAP can produce representations131

that align with ground-truth labels.132

We first examined the two-dimensional embeddings produced by applying UMAP to these modalities individually133

(roughly equivalent to applying PhysMAP to single modalities). We found that UMAP applied to waveform134

shape (the approach taken by WaveMAP; Lee et al. 2021, 2023), led to embeddings that align quite well with135

underlying cell types and laminar structure (Fig. 2A) as each unit, labeled by cell type and layer, segregates136

accordingly. However, in this waveform modality, some cell types (such as layer 4 excitatory cells [E-4], in orange)137

are split in their structure. This split disappears in other modalities such as PSTH (Fig. 2B) or ISI distribution138

(Fig. 2C). In these other two representations, the structure delineating certain other cell types are lost. For139

example, PV+ and SOM+ cells are less clearly delineated from other populations in both the PSTH and ISI140

distribution visualizations. These results suggest that different modalities provide differing views into underlying141

structure and perhaps, by optimally combining several modalities, one can find a more robust delineation of cell142

types.143

To assess if multimodal combination is useful, we examined the two-dimensional representation of PhysMAP144

colored according to cell type and layer. We find that a combined representation obtained by weighting each145

modality on a per-neuron basis appears to best separate cell types (Fig. 2E). The resultant multi-modal repre-146

sentation also offers additional insight even in the two-dimensional projection: In this visualization, we see that147
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Figure 2: Multi-modal combination of physiological properties leads to structured representations that align with
cell types. (A) UMAP on normalized average waveform shapes of neurons recorded in vivo juxtacellularly from mouse
primary somatosensory cortex (Yu et al., 2019). Each unit is colored according to its ground truth cell type and layer listed
above. Each modality was combined in different proportion according to the sum of each modality’s per-unit contribution
to the total; this total contribution is listed as a percentage below each scatter plot. (B) UMAP on ISI distributions of
the same neurons in (A). (C) UMAP on the PSTH firing rate distributions from each neuron in response to a deflection
of a whisker during whisking. (D) Each neuron in PhysMAP’s WNN representation weighs each modality differently;
these modal contributions are the sum of nearest neighbor edge modality weights (βModality in Fig. 1J) and are shown as
proportions of each pie chart. (E) Each of the three modalities are integrated into one representation using the weighted
nearest neighbors approach (Hao & Hao et al. 2021) and shown. Again, each neuron is colored according to their ground
truth cell type and layer. (F) All three modalities in the dataset from Yu et al. (2019) were concatenated into a single
data vector per unit and passed into UMAP. This represents each modality in unweighted combination (as opposed to
the WNN approach in PhysMAP). Each neuron in the projected representation is again labeled according to cell type and
layer.
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fast-spiking parvalbumin-positive cells (PV+) are tightly clustered and segregated by layer. This visualization148

also shows that while many SOM+ cells are separable they occupy a large area in the PhysMAP representation149

which implies underlying physiological diversity (Urban-Ciecko and Barth, 2016; Wu et al., 2023; Yavorska and150

Wehr, 2016). Similarly, we observe that excitatory cells are highly distinct between layers 4 and 5.151

To gain insight into how the WNN approach works, we next examined how PhysMAP combines each of these152

modalities on a per-neuron basis. Fig. 2D plots the proportion of each modality used for each data point in153

Fig. 2A, B, and C after combining all three modalities in PhysMAP and projecting into two dimensions. For154

the majority of units, waveform shape is the most informative modality as shown by the predominance of its155

color (orange) across most units. Tallying the contribution of waveform shape, it composes 44% of the total156

as opposed to PSTH which provides 35% and ISI dist. with 22%. However, there are certain regions of the157

projection in which other modalities (such as ISI distribution at bottom center of the plot) are more important.158

Together, these visualizations and results suggest, but do not confirm, that PhysMAP takes a nuanced per-neuron159

approach to combining modalities and this may help better separate cell types.160

One concern is that perhaps our PhysMAP representations are a trivial result of having more information through161

the simultaneous inclusion of multiple modalities. To test if this was the case, we concatenated all three modalities162

into a single feature vector and ran PhysMAP on this concatenated “super property” which can also be thought163

of as all three modalities in unweighted combination (Fig. 2F). We found that the representation obtained by164

simple concatenation of the physiological properties alone demonstrated far weaker structure than the one found165

in PhysMAP (compare Fig. 2F to Fig. 2E). E-5 and SOM+ neurons are more intermixed with one another166

and also with PV+ types. Furthermore, all cell types form less well-structured clusters. This visualization shows167

that PhysMAP’s improvement in segregating neurons by cell types and layer is not a trivial result due to more168

information and instead that per-neuron weighted averaging is better in making use of multiple modalities.169

We emphasize that the two-dimensional representations in this section serve purely as visualizations of high-170

dimensional structure and as such we only examine them here qualitatively. In the following sections, we analyze171

higher-dimensional representations directly to perform quantitative comparisons.172

PhysMAP delineates cell types better than any modality alone or in unweighted combination173

The results from the previous section showed that, visually at least, the multi-modal representations obtained174

from PhysMAP align better with cell types than representations generated by individual modalities alone or175

in unweighted combination. To more precisely quantify these results in each case (uni-modal, unweighted176

multi-modal, and weighted multi-modal), we conducted two analyses, one supervised with a classifier and one177

unsupervised with clustering.178

In a supervised analysis, we trained a classifier to identify each cell type using either the individual modality179

representations, the unweighted concatenation, or the weighted PhysMAP representation. For comparison,180

we also trained classifiers on derived electrophysiological metrics and the full dimensional raw data without181

dimensionality reduction. See Methods: Classifier Analysis for more details. For these classification analyses, we182

projected the WNN or unimodal UMAP graphs into a 10-dimensional embedding space for each of the various183

modality representations. We conducted an 15-85% test-train split and trained a gradient boosted tree model184

(GBM) with five-fold cross-validation on this dataset to identify one of five cell types that had over 25 examples185

each and this process was repeated 10 times with different random seeds. For each of the weighted multi-186

modal (PhysMAP), unweighted multi-modal (concatenation), and three individual uni-modal representations, we187

trained this classifier on a 10-dimensional embedding of the WNN graph. We plotted the performance of each188

of these classifiers trained on the high-dimensional representations against each other. PhysMAP matched or189

exceeded the performance of all other modalities singularly or in unweighted combination for all cell types (Fig.190

3A), fully consistent with the visualizations in Fig. 2D and E,. We point out that the waveform modality (WF)191

performed nearly as well as PhysMAP and equating performance for three cell types (PV+-4, E-4, and SOM+)192

which confirms our previous observation that waveform shape is the most cell type informative modality (Fig.193

2D). This finding of waveform shape’s importance in classifying cell types also serves as validation of our previous194
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Figure 3: PhysMAP identifies cell types from juxtacellular recordings better than any modality alone. (A) A
gradient boosted tree model (GBM) classifier was trained with 5-fold cross-validation on the 10-dimensional projection
of each modality’s UMAP graph individually or on the 10-dim. projection of the multi-modal WNN graph. The same
classifier was also trained directly on the full data (that is, without constructing a UMAP graph and projecting it), on the
10-dim. projection of the UMAP graph of the data concatenated into a single feature, and on the two derived waveform
metrics (spike width and peak-to-trough ratio). The balanced accuracy performance of this classifier (mean ± S.E.M.)
on held-out data for each modality, combined modalities, and derived metrics is shown for the five cell type classes with
over 25 units each. (B, top) The PhysMAP projection of neurons with their ground truth cell type and layer (left) next
to an example Leiden clustering (Traag et al., 2019) with resolution parameter set to 2. (B, bottom) Leiden clustering is
applied to the UMAP graphs of each modality alone (waveform [WF], ISI dist., and PSTH), in weighted (PhysMAP), or
unweighted combination (concat.) and shown with the associated modified adjusted Rand index (MARI; Sundqvist et al.
(2020)) calculated across a range of resolution parameter values from 0.1 to 3.0 in 0.1 step increments. Arrow marker
indicates the clustering on PhysMAP used above in B. Waveform metrics and raw data were omitted in this analysis
because these do not yield a high-dimensional UMAP graph. (C) The spike width, peak-to-trough ratio, and spiking onset
latency for each neuron are shown via log transformed marker size under PhysMAP’s two-dimensional projection.

approach and findings with WaveMAP (Lee et al., 2021). The benefit of adding the additional modalities comes195

from the improved classifiability of the E-5 and PV+-5 neurons from the rest, which was much poorer with only196

waveforms.197
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PhysMAP also demonstrated better classification performance than the modalities in an unweighted combination198

(concatenated) for all cell types. Similar to visualizations comparing the embeddings of the weighted and un-199

weighted modalities in combination (Fig. 2E vs Fig. 2F), our classification analysis demonstrates that PhysMAP200

is able to draw out cell type structure in a manner that is not trivially the result of including several modalities201

simultaneously.202

Finally, PhysMAP (and the full waveform) far outperform derived waveform metrics which are how cell types are203

traditionally identified. This is a result that is consistent with general notions in machine learning that hand-204

derived metrics, while seemingly “interpretable” can lose important information. In our case features do not fully205

capture the full diversity of waveform shape in a way that is useful for identifying cell types.206

Control: Classification performance from PhysMAP was robust to both the embedding dimensionality chosen for207

the WNN graph. First, based on a linear estimate of intrinsic dimensionality using principal component analysis, a208

10-dimensional embedding was chosen for the classification analysis given that the “elbow”, normally regarded as209

the sufficient number of dimensions to capture dataset variance, was at the third, fourth, and third PC’s (which210

sum to 10) representing 91%, 80%, and 93% of the total variance for waveform shape, ISI dist., and PSTH211

respectively (Fig. S1). However, we also found that the particular choice of embedding dimensionality actually212

did not have a large effect on classifier performance. We examined the full range of embedding dimensionalities213

from 30 (matching the lowest ambient dimensionality of the input modalities) down to 2 (the plot Fig. 2E itself)214

and found very similar patterns of classification accuracy across all cell types and all modalities (Fig. S2A).215

Control: Similarly, the particular classification algorithm used had little effect on this classification analysis. We216

also performed this supervised classification analysis across five other classifiers: a random forest, radial basis217

support vector machine (rbSVM), a classification tree, a k-neighbor nearest classifier, and a neural network with218

single hidden layer. Each showed very similar results demonstrating that our results are not classifier-dependent219

(Fig. S2B). Thus, in Fig. 3A we demonstrate that PhysMAP is able to intelligently combine multiple modalities220

in a manner that draws better cell type delineations than any modality alone or in unweighted combination.221

Comparison: One potential criticism is that the interpretability of our PhysMAP approach comes with a cost222

and that some information is lost. However, PhysMAP performs nearly as well as a classifier on the raw data223

in detecting cell types. When the GBM classifier is trained directly on the full dimensional dataset from all224

modalities directly (that is, not on a low-dim. projection of the UMAP graph), performance is not much better225

on most cell types except for SOM+ cells (Fig. 2A, dashed line). Furthermore, training a classifier directly on226

the data loses all interpretability since it only returns a probability that some neuron belongs to a given class.227

Thus, while there is some information loss because of PhysMAP’s dimensionality reduction, it still produces228

a representation that contains most of the information necessary for both cell type classification. In return it229

provides a useful visualization for exploring physiological diversity. We will explore how this is useful in the next230

section.231

PhysMAP is also better in unsupervised settings232

We also examined if PhysMAP representations aligns to underlying cell types even when no labels are available233

to train on. In most electrophysiological datasets, only a subset of the recorded cells will have ground truth234

labels. In a fully-unsupervised analysis, we asked the question of “without access to any ground truth, how well235

do unsupervised methods identify cell types?”. Thus, by examining the representations produced by PhysMAP in236

the extrema of having both complete ground truth or zero ground truth (supervised vs. unsupervised algorithms),237

we gain a more complete picture of PhysMAP’s performance over a range of possible dataset conditions.238

We assessed how well unsupervised clusters aligned to underlying ground truth cell types by calculating the239

modified adjusted Rand index (MARI; Sundqvist et al. (2020)) between each. This is a measure of how often the240

same ground truth cell types co-cluster under an unsupervised clustering. We used cluster labels generated from241

Leiden clustering applied to the high-dimensional graphs produced by PhysMAP and each physiological modality242

(that is, the graphs before projection) across a range of resolutions (cluster sizes) and calculated the MARI243
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score between the two sets of labels. See Methods: MARI Calculation for more details. The greater the MARI244

value, the more the clusters contain singular cell types each. To provide an example of how Leiden clustering on245

PhysMAP compares to ground truth, we show neurons in PhysMAP colored according to cell type (Fig. 3B, top246

left) alongside a sample Leiden clustering with resolution set to 2 (Fig. 3B, top right). Examining each resolution247

parameter of Leiden clustering, PhysMAP produced higher MARI scores than any electrophysiological modality248

alone or in unweighted combination for all Leiden resolutions (Fig. 3B). This performance was followed by249

modalities in unweighted combination and waveform shape alone, PSTH, and then ISI distribution. Collectively,250

these results demonstrate that PhysMAP is useful in identifying cell types in both supervised and unsupervised251

settings.252

PhysMAP provides interpretable representations and biological insight253

Thus far, we have demonstrated that PhysMAP outperforms individual modalities at uncovering the link between254

electrophysiological properties and underlying cell types in supervised and unsupervised settings. However, it is255

increasingly clear that cell types are not “discrete” and physiological variation within a cell class is the norm and256

not the exception (Cembrowski and Menon, 2018). Ideally, any tool for cell type identification should allow one257

to visualize this diversity, both within and across discrete cell types.258

We found that PhysMAP’s visualizations were ideal for this purpose of examining underlying diversity. Fig. 3C,259

shows the PhysMAP plot in Fig. 2E but now with marker radius scaled to either reflect waveform spike width,260

peak-to-trough ratio, and onset latency. Examining spike width Fig. 3C, left, many trends immediately pop out:261

PV+ cells seem to be uniformly narrow no matter the layer; SOM+ cells occupy a gradient of widths and overlap262

with E-5 cells at their widest; and the widest spiking cells are E-4. This finding regarding SOM+ cells occupying263

a range of spike widths is likely because it is composed of several subtypes of varying widths (Hostetler et al.,264

2023) which have distinct computational roles (Wu et al., 2023). Waveform peak-to-trough ratios also differ265

between cell types Fig. 3C, middle with PV+ and SOM+ cells having the smallest and both E-4 and E-5 cells266

occupying a range which includes the largest ratios. Finally, we replicated that onset latency (half the time it267

takes to reach peak firing rate after whisker deflection; Fig. 3C, right) is fastest for PV+ cells and SOM+ cells268

are some of the slowest, consistent with the reports from the original study (Yu et al., 2019).269

These insights were less clear than when only examining the metrics without using the PhysMAP representation.270

We examined a scatter plot of the spike width and peak-to-trough-ratio to assess whether any structure easily271

pops out (Fig. S3). While the scatter plot shows some cell type structure it appears like one continuous272

relationship and fails to show any easy separability between SOM+, PV+ and excitatory cells. In addition, in273

either waveform shape metric, the distributions of the the PV+ and excitatory cells of different layers overlap as274

shown by the coinciding PV+-4/PV+-5 or E-4/E-5 histograms on the marginals of Fig. S3.275

In summary, PhysMAP provides the ability to easily and simply combine multimodal electrophysiological data276

to obtain a representation that 1) classifies cell types better than any individual modality or feature alone, 2)277

can also be used in unsupervised settings to separate out candidate cell types, and 3) provides an interpretable278

visualization that can be used for additional exploration and development of hypotheses about data.279

PhysMAP uncovers cell types in extracellular electrophysiological recordings280

The juxtacellular recordings analyzed in the previous section represent a best case scenario for PhysMAP for several281

reasons. First, this recording method offers access to somatic waveforms that are unperturbed by distance to282

spike origination site or from differences in spike shape occurring due to the differential ion channel properties283

of neurites (axons and dendrites) (Someck et al., 2023). Second, juxtacellular recordings offer unambiguous284

isolation of single unit activity. In contrast, extracellular recordings are prone to poor isolation which blurs the285

properties of different cell types (Vincent and Economo, 2023). This results in many multi-unit “cell types”286

occupying intermediary properties. Third, juxtacellular recordings allow for the preferential targeting of particular287

cell types that may be less prevalent. Inhibitory types make up only 20% of neurons in mouse cortex (Tremblay288

et al., 2016) but in this set of juxtacellular recordings they compose 56% of the dataset as they have been289
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Figure 4: PhysMAP identifies cell types in extracellular recordings. (A) PhysMAP applied to extracellular recordings
from mouse auditory cortex (Lakunina et al., 2020) using silicon probes. We used waveform shape and ISI distribution
as our modalities and neurons are colored according to cell type whose identities were obtained via optogenetic tagging.
Marker size is set according to the increase in spike rate from optogenetic stimulation. Highlighted are a population of
wide-spiking SOM+ cells (top) and narrow-spiking SOM+ cells (right). (B) A GBM classifier with five-fold cross-validation
was trained on the 10-dimensional graph of each modality, PhysMAP, or waveform spike width to identify each optotagged
cell type or untagged label. The balanced classification accuracy is shown (mean ± S.E.M.) with many error bars smaller
than marker size. (C) Normalized average waveforms in this dataset are passed into UMAP and their projection shown with
optotagged cells colored and degree of optogenetic modulation (average change in spikes/s during stimulation epochs)
shown by marker size. (D) Similarly, ISI distributions for these same neurons are also passed into UMAP and their
projection shown. (E) Probability density estimates for the distribution of each optotagged type across a range of spike
widths is shown both as a histogram and with a kernel density estimator (solid line). (F) Additionally, spike width is shown
for all cells, including untagged ones.

preferentially targeted for recordings. This provides the downstream benefit in that a classifier will not be biased290

towards more prevalent cell types or will fail to classify less common ones. We asked whether PhysMAP could291

identify find cell types even when applied to recordings acquired via extracellular probes. To address this question,292

we first analyzed an extracellular electrophysiological dataset collected from mouse primary auditory cortex (A1,293

Lakunina et al., 2020) with optotagged cells.294

In this experiment, Lakunina et al. (2020) recorded from neurons in A1 with extracellular probes while mice295

were presented with auditory stimuli. They identified both SOM+ and PV+ units using optogenetic tagging and296

recorded each unit’s waveform shape and ISI distribution (over 50 ms windows). We passed these two modalities297

into PhysMAP to produce a combined representation (Fig. 4A). In this projected space, both SOM+ and PV+
298

cell types (purple and teal respectively) are well-separated and occupy a distinct region of the embedding that299

clusters away from a much larger number of “untagged” (presumably excitatory) cells (in gray, Fig. 4A). This300

result complements the findings in the previous juxtacellular dataset (Yu et al., 2019) and confirms that PhysMAP301

is able to separate out cell types even in an extracellular setting.302

We again examined if PhysMAP better separates out these cell types than any single modality or waveform303

metrics alone. As in the previous section, we quantified this separation by training a classifier to identify each304

cell type using PhysMAP and benchmarked this classifier’s performance against classifiers trained on individual305

modalities (waveform shape or ISI distribution) or waveform metrics (spike width). Note that MARI was not306

calculated for this dataset as such an analysis is only valid when all labels are known. The classifier on PhysMAP307

identified PV+ and SOM+ cells with high accuracy (97% and 95% mean balanced accuracy, respectively) and308
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surpassed classification performance using ISI distributions or waveform metrics (82% and 72% or 80% and309

75% mean balanced accuracy, respectively), the latter of which are how cell types are identified in much of the310

literature (Fig. 4B). PhysMAP also slightly outperformed classification on waveform shape for both PV+ and311

SOM+ cells (92% and 90% mean balanced accuracy, respectively). The reason for this near-equivalence is that312

waveform shape is highly informative of underlying cell types and thus PhysMAP correctly prioritizes this modality.313

The median unit weight associated with the waveform shape and ISI distribution modalities were 0.71 and 0.29314

respectively. This prioritization of waveform shape over ISI distribution was also evident in their respective UMAP315

visualizations: the PhysMAP’s projection appears almost exactly the same as UMAP on waveform shape (Fig.316

4C). In contrast, a UMAP applied to ISI distribution shows far less structure Fig. 4D. Furthermore, although317

these does not correspond to a particular cell type, classification with PhysMAP outperforms any other modality318

in identifying “untagged” cells. By mirroring results from our previous analysis of juxtacellular recordings, we319

establish that PhysMAP is also capable of uncovering cell types in extracellular recording settings.320

Again, as in the juxtacellular dataset, the PhysMAP approach provided interpretable representations. To illustrate321

this point, we identified two sub-populations of SOM+ cells not documented in the original publication of this322

dataset (Lakunina et al., 2020) but predicted by the literature (Hostetler et al., 2023; Wu et al., 2023; Urban-323

Ciecko and Barth, 2016). These wide-spiking SOM+ (WS-SOM+, Fig. 4A, upper) and narrow-spiking SOM+
324

(NS-SOM+, Fig. 4A, lower right) sub-populations occupied separate regions of the PhysMAP embedding and325

differed significantly in their spike width (0.48 ± 0.04 vs. 0.37 ± 0.05 ms [median ± S.D.], respectively; p326

< 0.001, Mann-Whitney U test). These sub-populations have been observed in other experiments to pertain327

to SOM+ cellular subtypes with specific synaptic targeting (Wu et al., 2023) and differential function during328

behavior (Kvitsiani et al., 2013; Kim et al., 2016).329

Note that these two sub-populations are again not trivially identifiable from spike width alone: SOM+ cells, as a330

whole, were part of a continuum under this metric (Fig. 4E, in purple) and overlapped with PV+ cells (Fig. 4E,331

in teal) in width. Even if an arbitrary width cutoff was used to bisect SOM+ cells into two sub-populations, the332

WS-SOM+ cells would occupy a range of widths that strongly coincides with large number of other untagged—333

presumably excitatory—cell types (Fig. 4F) and thus would not be able to be identified uniquely. Only PhysMAP334

is able to simultaneously disambiguate these two SOM+ subtypes in addition to PV+ and untagged putatively335

excitatory cells.336

PhysMAP finds the same cell types across heterogeneous datasets from different labs337

We have demonstrated that PhysMAP uncovers cell types in datasets from single labs but it would be beneficial if338

a classifier could also find cell type structure across datasets gathered by different labs. Cell type classifiers could339

then be built by small collaborations of interested investigators across different labs. To this end, we combined340

extracellular recording datasets originating from separate labs each containing cells from both visual cortex and341

hippocampus (Siegle et al., 2021; Petersen et al., 2020) released as part of CellExplorer (Petersen et al., 2021).342

For neurons from both datasets, we had measurements of waveform shape, ISI distribution, spike autocorrelogram343

(ACG), and eleven derived electrophysiological metrics such as spike width, coefficient of variation, and ACG344

delay time constant etc (full list in Methods: Extracellular Mouse Visual Cortex and Hippocampus Dataset).345

Similar to our two previous analyses, all modalities ostensibly showed cell type-dependent structure but differed346

in which cell types were better separated: waveform shape (Fig. 5A) splits PV+ cells into two regions whereas347

the other modalities do not. Similarly, pyramidal cells are well-isolated under ISI distribution (Fig. 5B) but less348

well in others like ACG (Fig. 5C). Derived electrophysiological metrics (Fig. 5D) present an intuitive PV+ to349

SOM+ to pyramidal cell structure but separate out SOM+ cells less than using the ISI distribution. PhysMAP350

combines these modalities to produce a representation that produces a clear separation of cell types (Fig. 5E).351

In order to evaluate PhysMAP quantitatively for this dataset, we again calculated both the accuracy of a classifier352

and each representation’s MARI score. We again trained a GBM classifier with 5-fold cross-validation to identify353

the four cell types with more than 25 units each from the 10-dimensional embedding of each modality and354
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Figure 5: PhysMAP is able to identify cell types across areas and labs. (A - D) Across a pooled dataset of
visual cortex and hippocampal extracellular recordings from CellExplorer, we show 2-D UMAP visualizations applied to
waveform shape, inter-spike interval distribution, autocorrelogram, and thirteen various derived electrophysiological metrics
respectively. Cell type classifications were obtained by opto-genetic tagging. (E) The previous four modalities are combined
into a unified PhysMAP representation and visualized in 2D. (F) A gradient boosted tree model (GBM) classifier with
5-fold cross-validation was trained on the 10-dimensional projection of each modality’s high-dimensional UMAP graph or
on PhysMAP’s multi-modal WNN graph. The balanced accuracy for the classifier is shown for each modality and cell type
that contained more than 25 examples. (G) Leiden clustering is applied to each modality alone and to PhysMAP and the
corresponding modified adjusted Rand indices are calculated across a range of resolution parameter values from 0.1 to 3.0
in 0.1 step increments. All cell type labels were included in this calculation.

PhysMAP. For all cell types (pyramidal, PV+, SOM+, and axo-axonic [a PV+ subtype]), PhysMAP provided the355

best classification accuracy (Fig. 5F).356

Next we evaluated how well cell types clustered by calculating the MARI score of each representation. As before,357

across nearly all Leiden resolution values, PhysMAP provided the best unsupervised clustering of cell types (Fig.358

5G). We also examined if hippocampal and cortical inhibitory cells were differentiable (Fig. S4A). Both PV+
359

(Fig. S4B) and SOM+ (Fig. S4C) cells did not form separate populations in PhysMAP regardless of the area360

despite being well-differentiated between types. Thus, we expect that that a cell type classifier will generalize361

across areas to some extent even between areas as different as hippocampus and neocortex. Thus, even when362

combining data from multiple labs and areas, PhysMAP better separates cell types than any single modality363

suggesting the feasibility of building cell type classifiers in a collaborative manner. We next evaluate how well364

PhysMAP performs as a cell type classifier.365

PhysMAP allows for the creation of a cell type classifier to accurately identify several major cell types366

So far, we have shown that PhysMAP is better able to unsupervisedly identify cell types in three areas of367

mouse cortex and hippocampus but in these analyses, we compared modalities by training a classifier after data368

transformation to facilitate comparison with limited data sizes. In order to properly test PhysMAP’s functioning369

as a cell type classifier, we evaluate classification on held-out, un-transformed data. To build the cell type370

classifier, we took advantage of Seurat’s multi-modal reference mapping tool which allows for classification of371
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Figure 6: PhysMAP makes it possible to construct a cell type classifier for three major cell types. (A) Using
the previous CellExplorer dataset, axo-axonic cells were relabeled as PV+ (because they are a PV+-subtype) and VGAT+

cells were omitted since they label inhibitory neurons as a whole. The four modalities in (Fig. 5A-D) were then passed
into PhysMAP for a given training set and a 2-D visualization for this “reference map” is shown. (B) The held-out test
set is then projected into the reference map space using anchor alignment and visualized as a “query mapping”; cell type
labels are according to nearest neighbor predictions after projection. Incorrect predictions identified by a small “x” plotted
over each data point. Each cell is also sized according to “prediction score” which is an empirical measure of the quality
of nearby anchors; greater prediction scores imply a closer match between local query mapping and the reference map at
that location. (C) A confusion matrix of query mapping predictions used as a classifier across the four major cell types in
(A). Each row contains the mean percentage (after 10 instances of classifier training) that each predicted cell type label
was assigned to its true target cell type. The percentage of cells that were correctly predicted is shown along the main
diagonal. Some tiles are left blank because no predictions were made for that pair of predicted and target cell type.

cell types given some reference dataset. Here, we take the previous CellExplorer dataset and test PhysMAP’s372

ability to identify the identity of a random subset of the total dataset with the remainder used to build a “reference373

map”. With this analysis, we show that PhysMAP maintains good generalization on three of four major cell types374

available (excitatory pyramidal, PV+ interneurons, and SOM+ interneurons).375

To begin, we consolidated the CellExplorer dataset such that axo-axonic PV+ chandelier cells were relabeled376

as “PV+” (Dudok et al., 2021) and removed VGAT+ neurons as they are pan-inhibitory and thus do not label377

one particular inhibitory cell type. We then divided the 417 resulting cells into an 15-85% test-train split. The378

training data—containing waveform, ISI distribution, and single derived metrics measuring the former two—was379

passed into PhysMAP to generate a reference map (Fig. 6A). A query dataset of held-out neurons was then380

mapped onto this reference using anchor point alignment (Haghverdi et al., 2018) and cross-projection of query381

data onto the reference map (Stuart & Butler et al. 2019). See Methods: Reference Mapping with Anchors and382

Cell Type Classification for methodological details.383

Fig. 6B shows a sample query mapping of the test set colored according to predicted cell type with incorrect384

predictions overlaid with a black “x”. Cell type predictions are made based upon a query cell’s nearest neighbors385

in the reference map. These data points are also sized according to their “prediction score” which is a per-neuron386

measure of confidence in the anchor alignment; higher scores are associated with higher quality alignment. In387

this sample query mapping, neurons with low prediction score more often result in incorrect predictions. Thus,388

if a more conservative prediction of cell types is desired, only neurons with higher prediction scores can be used.389

To evaluate the anticipated performance on this dataset with PhysMAP performing as a cell type classifier, we390

conducted ten random test-train splits of the dataset and examined the average classification performance. We391

found that although VIP+ cells were not identifiable (the query mapping never predicted them due to low sample392

number) all other cell types were highly identifiable (Fig. 6C). Each of SOM+, PV+, and excitatory pyramidal393

cells were identified at or above 75% accuracy which was far above chance (25%). In summary, we find PhysMAP394

not only locates more cell type structure than other modalities, it also provides a cell type classifier that can be395

used to identify multiple cell types from in vivo extracellular recordings.396
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Discussion397

Our goal in this study was to assess if a method to compute a weighted combination of electrophysiological398

modalities could identify underlying neuronal cell types and serve as a classifier. Our approach, PhysMAP,399

integrates electrophysiological modalities to produce a combined representation that separates out cell types400

better than any single modality alone or in unweighted combination. Specifically, in both juxtacellular and401

extracellular in vivo experiments, the multi-modal representation produced by PhysMAP was better at uncovering402

cell types in both unsupervised and supervised settings. We also demonstrated excellent classification performance403

in identifying three major cell types from held-out data in an interpretable manner.404

We note that PhysMAP is not the only approach for merging information from multiple modalities. Other405

prominent tools in multiomics including MOFA (Argelaguet et al., 2020) and MOJITOO (Cheng et al., 2022)406

can perform similar integration of multiple modalities. We used the WNN algorithm from Seurat v4 to develop407

our PhysMAP approach because it has demonstrated excellent performance for multiomics problems (Cheng408

et al., 2022) and we found that this performance extends to identifying cell types when combining multiple409

electrophysiological modalities. We also used Seurat because it is perhaps the most extensively used package in the410

multiomics community, has a large community of contributors, and is continually being improved. For instance,411

Seurat v5 adds “bridge integration” allowing the prediction of a cell’s proteomic profile given its transcriptomic412

expression by means of a “dictionary” (Hao et al., 2023). Applied to an electrophysiological recording, one might413

envision predicting a neuron’s waveform shape given only knowledge of its ISI distribution.414

We used the waveform, inter-spike interval, and peri-stimulus time histogram in PhysMAP to differentiate cell415

types. Other modalities might also be important for delineating cell types. For example, the spike-local field416

potential (spike-LFP) coupling has been posited to separate PV+ and SOM+ cell types (Wei et al., 2023; Onorato417

et al., 2023). In addition, there may be particular “localizer” stimuli that can be used to generate PSTHs to418

discriminate certain cell types. For example, a full-field flash has long been used to identify thalamocortical input419

cells into V1 (Heynen and Bear, 2001). However, one must be judicious about the modalities chosen because of420

circularity. That is, if a certain cellular property wants to be compared between cell types, it should not be passed421

into PhysMAP because such properties will already be used to select the groups to be compared (Kriegeskorte422

et al., 2009).423

PhysMAP offers two advantages over optical imaging approaches: simultaneous monitoring of neuronal cell types424

on single trials and the exploration of cell types in primates. First, they allow for the simultaneous monitoring425

of neural populations, which is currently difficult in optical imaging experiments due to constraints on optics426

that limit imaging to only two fluorophores (Aharoni and Hoogland, 2019). Simultaneous monitoring will help427

better understand circuit dynamics on single trials (Peixoto et al., 2021; Boucher et al., 2023), and bridge the428

gap between anatomical microcircuits and dynamics (Esparza et al., 2023). Second, cell type-specific imaging429

often requires transgene delivery and expression. In contrast, PhysMAP only requires recordings of the electrical430

activity of single neurons and is therefore particularly useful for the study of cell type-specific neural dynamics in431

non-human primates (NHPs). NHPs are a valuable and scarce resource and each fully-trained animal can perform432

multiple sophisticated tasks. Primate researchers are therefore cautious in using direct cell type-specific recording433

techniques that entail risky procedures such as viral injections or cranial window installations. In addition, in434

primates, optical methods and genetic engineering tools are difficult to execute without enormous resources and435

the geometric constraints are even more complicated because of the size of cortex (Trautmann, O’Shea, & Sun436

et al. 2021, O’Shea et al., 2017). For this reason, PhysMAP would be a no risk solution to obtaining cell types437

when applied to routine electrophysiology experiments.438

Naively, one might be tempted to question why dimensionality reduction methods like PhysMAP should be used439

at all. Instead, would a purely classification-based approach not suffice to identify cell types? While current440

classifiers will delineate some cell types from electrophysiological properties (Schneider & Azabou et al. 2023,441

Ye & Shelton et al. 2023), we find that these do not outperform PhysMAP in identifying the same cell types.442

More importantly, PhysMAP has two key advantages over pure discrete classification approaches.443
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First, PhysMAP produces interpretable visualizations that can reveal heterogeneity within and across cell types.444

This heterogeneity manifests as an overlap in the embeddings of one cell type over another in the PhysMAP445

visualization. For example, we observe considerable variability within SOM+ cell types in both juxtacellular and446

in vivo extracellular settings and across cortical areas. In both the mouse S1 and A1 datasets, we found that447

SOM+ cells were heterogeneous being composed of both broad- and narrow-spiking waveforms, with some of the448

SOM+ cells co-localizing with excitatory neurons in the PhysMAP representations. This is entirely expected given449

the known heterogeneity of SOM+ cells which have variations in morphology as well as physiological properties450

relating to underlying sub-cellular types (Wu et al., 2023). In particular, many SOM+ cells demonstrate a fast-451

spiking phenotype in rodents and are known to express fast-spiking potassium channels (Urban-Ciecko and Barth,452

2016). In contrast other SOM+ cells, such as Calb2, exhibit broad-spiking phenotypes (Hostetler et al., 2023).453

Similarly, in the juxtacellular dataset, excitatory neurons formed a broad class and layer 4 excitatory neurons454

had different and distinct electrophysiological properties from layer 5 excitatory neurons. While not directly455

investigated, this is in agreement with findings from intracellular recordings in motor cortex that corticothalamic-456

(deep layer 5 and layer 6) and intratelencephalic-projecting neurons (layer 2/3 and superficial layer 5) have distinct457

electrophysiological properties and morphologies (Scala et al., 2021). We anticipate this is at least in part why458

excitatory cells of different layers segregate in PhysMAP’s visualizations. These heterogeneities in SOM+ and459

excitatory cells, among others, are likely because cell types are not discrete and increasingly studies suggest they460

lie on a continuum. Said differently, variation within a discrete “cell type” is the norm and not the exception461

and can emerge from differences in morphology, laminar location, and gene expression (Cembrowski and Menon,462

2018; Scala et al., 2021). This true underlying physiological variation is invisible to typical discrete classifier463

approaches but readily apparent with PhysMAP.464

Second, PhysMAP offers a head-to-head comparison of each modality that many purely classifier methods do465

not provide easily. For instance, in both juxtacellular and extracellular recordings, waveform shape is the most466

reliable modality for delineating ground truth cell type. These results reaffirm our previous work (Lee et al.,467

2021) and with the observation that the expression of many genes which determine waveform shape often covary468

with neuronal cell types in different layers of cortex (Bomkamp et al., 2019). For instance, analysis of a mouse469

Patch-seq dataset revealed that the gene expression of many different potassium ion channels (e.g., Kcnh7470

and Kcnc2) correlated with properties of the waveform such as amplitude of after-hyperpolarization between471

excitatory and inhibitory cell types (e.g., Lamp5, Pvalb, etc, Bomkamp et al., 2019). Similarly, Scn1b is a472

gene encoding a voltage-gated sodium channel whose expression correlates with the width of the spike and473

many other electrophysiological properties (e.g., the first principal component) for both excitatory and inhibitory474

neuron classes. Thus, based on this data, it is perhaps expected that waveform shape would be one of the475

most reliable electrophysiological modalities for delineating cell types in vivo. In addition, this close covariation476

between transcriptomics and electrophysiological properties is perhaps the reason why our PhysMAP and previous477

WaveMAP approaches are successful in delineating transcriptomic cell types from electrophysiological recordings.478

When conducting this study, we also realized that a key requirement for PhysMAP is high-quality ground truth479

datasets that cover the full range cell types. However, high-quality single unit recordings with opto-tagging are480

difficult to obtain for at least two main reasons: opto-tagging yield/specificity and single unit isolation.481

First, opto-tagging experiments are technically challenging due to light attenuation through brain tissue or lack482

of transgene expression/specificity (Li et al., 2019), yield per recording is especially low when searching for less483

common cell types such as VIP+ cells which compose only ∼13% of inhibitory neurons (Prönneke et al., 2015).484

These physically small cell types like VIP+ are often “missed” even on high-density probes. but are detected485

on ultra high-density probes possibly due to increased signal quality and denser sampling (Ye & Shelton et al.486

2023). Furthermore, most opto-tagging protocols isolate directly tagged cells by examining the first 10 ms after487

the onset of a light pulse (Lima et al., 2009). However, Beau et al. (2024) find that some cells that fire within488

this 10 ms window after stimulation, have their spiking abolished by the introduction of blockers of synaptic489

transmission. Thus, more experiments are needed to refine opto-tagging experimental protocols and with devices490

that are able to catch all cell types in an unbiased manner.491
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Second, single unit isolation is a significant challenge for electrophysiology (Buccino et al., 2022). Even with492

modern recording technologies (Jun et al., 2017) and spike sorting methods (Pachitariu et al., 2016), single493

neuron isolation is difficult (Vincent and Economo, 2023). Poor isolation will lead to a multi-unit being classified494

as a single neuron and impacts PhysMAP because it blurs the physiological differences between cell types. For495

example, averaging together waveforms from a fast-firing narrow-spiking PV+ cell and a slow-firing broad-spiking496

excitatory pyramidal cell could lead to an artifactual intermediate width waveform neuron that is neither PV+
497

nor an excitatory pyramidal neuron. This mixing of cell types would complicate inferences from PhysMAP.498

We anticipate that these technical challenges will be overcome. However, one key need for PhysMAP and other499

cell type classifiers is a more exhaustive characterization of the many cell types in the brain. Inhibitory cell types500

receive the most attention in opto-tagging experiments whereas excitatory populations have typically been under501

explored. In the datasets we analyzed here, only one (CellExplorer data from Buzsaki lab) contains positive502

identification of excitatory cells and this from an older study that precedes optogenetics (Henze et al., 2000).503

This is possibly the result of reliance on classical heuristics in the field that broad-spiking cells are excitatory504

neurons (McCormick et al., 1985). However, not all broad-spiking cells are excitatory (Wu et al., 2023) and505

not all excitatory cells are broad-spiking (Vigneswaran et al., 2011). This complex relationship between spike506

width and cell types is especially true in primates (Lemon et al., 2021). Another possible reason for this lack of507

attention to direct tagging of excitatory cells is that it can be hard to distinguish which cells are being directly508

stimulated due to the density of labeling and degree of post-synaptic secondary stimulation (Li et al., 2019). One509

way to label excitatory neurons more sparsely and specifically, is to use projection targeting approaches identifying510

neurons with long-range compared as opposed to local connections (Economo et al., 2018). Building full cell511

type classifiers (for cortex) will necessitate the opto-tagging of major projection classes most notably the three512

major excitatory types (intratelencephalic-, extratelencephalic-, and corticothalamic-projecting) and also two of513

the major remaining major inhibitory cell types (Lamp5 and Sncg). Furthermore, it should be explored the514

extent to which electrophysiological signatures of these cell types are shared between brain areas. The conserved515

transcriptomic identity of many cell types across areas seems to suggest that this is the case at least for cortex516

(Yao et al., 2023).517

Thus, PhysMAP and other cell type classifiers (Beau et al., 2024) would benefit from dedicated opto-tagging518

experiments that assess a wide of cell types, prioritizing single unit isolation, and with robust opto-tagging519

yields. Fortunately, two technological advances will help with these experiments. First, Neuropixels probes have520

dramatically increased the number of recording sites and capture the same neuron across multiple channels to521

provide a “multi-channel waveform”. This has been shown to better capture morphological details which might522

be important for differentiating cell types that only differ in their structure (Jia et al., 2019; Ye et al., 2023;523

Sibille et al., 2022; Carr et al., 2024). Second, new enhancer-based viruses demonstrate excellent cell subtype-524

specificity (Green et al., 2023) along with efficacy across diverse organisms including humans (Graybuck et al.,525

2021). The combination of these technical advances with our PhysMAP approach will likely provide robust cell526

type classifiers that will allow the simultaneous assessment of the dynamics of neuronal cell types in vivo during527

sensation, perception, and action in multiple species.528

(Discussion: 1852 words)529
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Methods530

The methods are organized as follows. We first describe the datasets that we used for the paper and then531

describe the weighted nearest neighbor method from PhysMAP. Finally, we describe the various analyses used532

for quantifying the performance of PhysMAP relative to individual modalities and also other controls.533

Open Datasets534

Here, we only briefly detail the most relevant aspects of each dataset for our purpose of validating our PhysMAP535

approach (Table 1). We refer the reader to each dataset’s respective publication for additional methodological536

information.537

Juxtacellular Mouse S1 Dataset538

The juxtacellular dataset used in Fig. 2 and Fig. 3 and analyzed in section were collected by Yu et al. (2019)539

and downloaded from the associated file sharing portal (see Table 1). Recordings were performed in the primary540

somatosensory (barrel) cortex of Sst-IRES-Cre × Ai32, Pvalb-IRES-Cre/Pvalb-Cre × Ai32, or Vip-IRES-Cre541

× Ai32 mice. These experiments focused on in vivo juxtasomatic electrophysiological recordings using glass542

micropipettes. After the end of recording, the cells were filled with biocytin/neurobiotin. Filled neurons both543

acted as a verification of the recorded cell type via their morphology and also served as landmarks to align544

recording depths of each cell with cortical layers as determined by histology.545

ChR2-expressing neurons were located during recording by observing laser-evoked spikes that occurred 1-2 ms546

after the onset of brief light pulses (5 ms) delivered at low frequency (5 Hz) for 3 out of every 10 s. Spikes547

were examined by eye and non-spike events were removed after projection in PCA-space. To control for drift,548

only waveforms between the 25th and 75th percentile of all spikes from a cell were used in further waveform549

shape analyses (average waveform and waveform shape metrics). Averaged waveform shapes and ISI distribution550

were extracted for each neuron from the spkwaveform_all.mat file in the corresponding cell type structs. In551

addition, the waveform shape metrics of spike width and peak-to-trough ratio were also collected from this552

file. Cells labeled “fake SOM+” were reassigned to the PV+population and cells labeled “putative SOM+” were553

reassigned to SOM+. This reassignment was based on a careful investigation in Yu et al. (2019) confirming earlier554

findings that off-target recombination occurs in fast-spiking neurons of somatostatin-IRES-Cre mice possibly due555

to transient Cre expression during development (Ma et al., 2006; Hu et al., 2013). PSTHs were calculated only556

from whisker touches during active whisking and activity resulting from both whisker protraction and retraction557

were used. Spiking was aligned to touch-onset and a PSTH calculated using 1 ms time bins. As not all cells558

contained PSTHs, only the subset of units containing all three modalities (waveform shape, ISI distribution, and559

PSTH) were used. To create the “concatenated” modality, we simply concatenated the waveform shape, ISI560

distribution, and PSTH for a given unit into a single long feature vector. Waveform metrics—peak-to-trough561

duration and peak-to-trough ratio—were calculated in the originating publication as the time from the first peak562

to the first trough and the ratio of absolute values of the peak to the trough respectively.563

Extracellular Mouse A1 Dataset564

The extracellular data we analyzed from Lakunina et al. (2020) was downloaded from GitHub (see Table 1).565

PV+and SOM+ cells were identified by opto-tagging in Pvalb-Cre or Sst-Cre mice respectively that were the566

Study N Available modalities Classifiable cell types Data URL

Yu et al. (2019) 246 Waveform shape, ISI dist., PSTH PV+-4, PV+-5, SOM+, E-4, E-5 Link

Lakunina et al. (2020) 373 Waveform shape, ISI dist. PV+, SOM+ Link

Petersen et al. (2021) 430 Waveform shape, ISI dist., Auto-
correlation, Derived ephys. metrics

PV+, SOM+, E Link

Table 1: The three datasets analyzed with the modalities used and the cell types identified in each.
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progeny of crossing LSL-ChR2 mice. Photoidentification of ChR2-expressing cells was relatively conservative567

with positively identified cells being those that exhibited significant firing rate changes (p < 0.001) in firing rate568

during the first 10 ms of stimulation-onset. Recordings were collected from primary auditory cortex via silicon569

probe and stimulation was via an optical fiber located at the top of the probe recording sites. Spikes were sorted570

offline in Klustakwik and the units used in further analyses only if ISI violation rate (number of spike intervals571

< 2 ms) was less than 2% per cluster. In the original publication, only cells with spike quality index (SQI; ratio572

between the peak amplitude of the waveform and the average variance, calculated using the channel with the573

largest amplitude) above 2.5 were used; in our analysis, we only used cells with SQI above 4.0. Mean waveforms574

were calculated for a unit using the channel with greatest amplitude of spikes.575

Extracellular Mouse Visual Cortex and Hippocampus Dataset (CellExplorer)576

The third dataset was obtained from the CellExplorer package (Petersen et al., 2021) and is heterogeneous being577

composed of two separate extracellular electrophysiological data from the Allen Institute’s Brain Observatory578

and the Buzsaki lab and included waveform shape, ISI distribution, autocorrelogram (ACG), and various derived579

electrophysiological metrics. We used the derived eletrophysiological metrics that all units shared and this included580

the following eleven:581

• Spike width (troughToPeak)582

• Peak-to-trough derivative (troughtoPeakDerivative)583

• Pre-hyperpolarization peak-to-post depolarization peak ratio (ab_ratio)584

• Coefficient of variation (cv2) measuring ISI distribution585

• ACG tau rise (acg_tau_rise)586

• ACG tau decay (acg_tau_decay)587

• ACG tau bursts (acg_tau_burst)588

• ACG refractory period (acg_refrac)589

• ACG decay amplitude (acg_c)590

• ACG rise amplitude (acg_d)591

• ACG burst amplitude (acg_h).592

More information on these metrics are available on the CellExplorer website docs (link). For the analyses, these593

metrics were concatenated for each neuron into a single vector per-unit to form the electrophysiological metrics594

modality. Given the large number of publications and protocols that have contributed to the CellExplorer dataset,595

we only provide a brief overview here.596

CellExplorer: Allen Institute Data597

Data from the Allen Institute was collected from mouse primary visual cortex (V1) and higher visual areas (HVAs)598

using simultaneous Neuropixels probe recordings (Siegle et al., 2021). Opto-tagging was conducted for PV+,599

SOM+, and VIP+ cell types using Pvalb-IRES-Cre × Ai32, Sst-IRES-Cre × Ai32, and Vip-IRES-Cre × Ai32600

mice respectively. Stimulation was conducted at the end of each behavior session via blue LED/laser through an601

optical fiber with surface illumination of the cranial window using a rounded 10 ms square pulse. Tagged cells602

were identified by an average two times increase in base firing rate during stimulation relative to baseline.603

CellExplorer: Buzsaki Lab Data604

Data from the Buzsaki lab were collected under several different protocols but CA1 excitatory neurons were605

identified by paired intra- and extra-cellular recordings (Henze et al., 2000). V1 PV+cells from PV-Cre × Ai32606

mice were identified as those that were stimulated to over 8 standard deviations of the mean of baseline in the607

first 6 ms of stimulation with a 10 ms square pulse (Senzai et al., 2019). Hippocampal PV+cells were obtained608

from PV-Cre × Ai32 using a 50 - 100 ms light pulse and identified as tagged if they 1) had a statistically609

significant increase in firing rate and 2) if the stimulated firing rate was over 50% of the baseline (English &610

McKenzie et al. 2017).611
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PhysMAP Preprocessing612

Modalities from all neurons were preprocessed via the same steps required by and performed using Seurat v4:613

1. PCA reduction: All modalities were initially dimensionality reduced to the smallest input modality di-614

mension. For the S1 dataset, this is 30-dimensions; for the A1 dataset, this is 20-dimensions; and for615

CellExplorer, this is 40-dimensions.616

2. Normalization: Each modality is separately normalized using a centered log ratio transform.617

3. Rescaling and centering: Each feature of each modality is linearly rescaled to occupy the same unit618

variance. Each feature is then centered by mean subtraction.619

Weighted Nearest Neighbor (WNN) Algorithm620

The PhysMAP approach uses the WNN algorithm available from Seurat v4 (Hao & Hao et al. 2021) which is621

summarized as the following steps.622

1. Nearest neighbor identification: Within the preprocessed, high-dimensional space of a given modality623

(here, waveform shape Fig. 1A), a single unit is selected (Fig. 1B, blue sphere) and its nearest neighbors624

identified via Euclidean distance in the ambient (un-dimensionality reduced) space (Fig. 1B, red spheres).625

2. Nearest neighbor prediction (within modality): A prediction of the selected single unit’s waveform is626

made via unweighted averaging the k-nearest neighbors identified in Fig. 1B. By default, we use k = 20627

and Euclidean distances in the ambient space to locate the nearest neighbors.628

3. Within-modal affinity calculation: The unit’s nearest neighbor predicted waveform shape generated by
k-nearest neighbors (x̂i,knn=20) and its actual waveform shape (xi) are then passed into a modified UMAP
distance kernel,

dUMAP(xi, x̂i) ≡ exp
−max

(
0, dL2(xi, x̂i,knn=20)− dL2(xi, xi,knn=1)

)
σi − dL2(xi, xi,knn=1)

where dL2(·) is the Euclidean (L2-norm) distance metric; dL2(xi, xi,knn=1) is the Euclidean distance from629

xi to its nearest neighbor; and σi is a modified UMAP bandwidth equal to the average of the Euclidean630

distances from the ith unit to the 20 nearest units with lowest non-zero Jaccard index. This equation is631

used to calculate the “within-modal affinity” which gives a measure of how predictive a certain modality is632

of this unit. This forms the numerator of the “affinity ratio” shown in Fig. 1D.633

4. Nearest neighbor identification (cross modality): Examining normalized single unit ISI distributions634

(the “cross-modal” space) generated from the same neurons in Fig. 1E, we locate the same unit and635

nearest neighbors previously identified but in ISI distribution-space Fig. 1F.636

5. Nearest neighbor prediction (cross modality): As in Fig. 1C, a nearest neighbor prediction is made637

but this time, in a different modality albeit using the same neurons identified in the original modality Fig.638

1G, red dashed circle.639

6. Affinity ratio calculation: This unit and its prediction in the cross modality (ISI distribution-space)640

are used to compute the “cross-modal affinity” by passing it into a modified UMAP distance kernel; this641

forms the denominator of the waveform affinity ratio for a given unit (SWave(i)) shown in Fig. 1D. This642

process is repeated for every unit in the dataset and also in the reverse manner: beginning with the ISI643

distribution-space as the within modality and with the waveform shape-space as the cross modality. For644

datasets with more than two modalities, the affinity ratio is calculated for each modality versus every645

other and for every unit. Thus for a dataset with d data points and n feature modalities, there will be646

d · 2 n!
2!(n−2)! = d · n(n− 1) affinity ratios to calculate.647

7. Converting affinity ratios to modality weights: With affinity ratios calculated for both waveform and648

ISI distribution across all units, modality weights (βWave(i) and βISI(i)) for each unit can be calculated.649

For a given unit, this weight is the ratio of a given modality’s affinity ratio for that unit divided by the650

sum of all other modality’s affinity ratios for that unit. For the two-modality case, this is summarized by651

the equation in Fig. 1H.652
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8. Calculating unit pair-wise affinities: For every pair of units, an affinity is also calculated by passing both653

of them and their coordinates into UMAP’s distance kernel. This occurs for the same pair of units in both654

the waveform shape-space Fig. 1I, top and the ISI distribution-space Fig. 1I, bottom to determine pair-wise655

affinities θWave(i, j) and θISI(i, j) respectively. This is done for all pairs of points and all modalities.656

9. Creating the WNN: To create the weighted-nearest neighbors representation, a modality-weighted sum657

of the pair-wise affinities Fig. 1J, top is taken to produce a “connectivity matrix” Fig. 1J, bottom. The k-658

nearest neighbor algorithm is applied to this matrix to form the final WNN (default number of neighbors is659

k = 200) which is then visualized into two dimensions with UMAP’s force-directed graph layout projection660

for visualization.661

Classification Analysis662

After a WNN is constructed for a dataset, we used UMAP’s force-directed graph layout procedure to project663

the graph into a 10-dimensional embedded space. We then used a random 15-85% test-train split and trained664

a stochastic gradient boosted tree model (GBM) classifier on the training set with five-fold cross-validation665

using the caret package in R (Kuhn, 2008) to identify each underlying cell type with multiclass (one-vs-rest)666

objective function. We then repeated this train-test split 20 times and averaged the balanced accuracy over667

these independent runs. Each classifier also underwent hyperparameter tuning via a grid search. This procedure668

was run identically for the controls in Fig. S2A, B except with varying graph embedding dimension and using669

different classifiers available in the caret package.670

Leiden Community Detection671

To calculate the MARI score for each dataset across different numbers of clusters we used Leiden clustering (Traag
et al., 2019) on each dataset’s WNN graphs with resolution between 0.1 and 3.0 in 0.1 resolution intervals. The
Leiden algorithm is a method for “community detection” which finds highly inter-connected nodes on a network
graph akin to clustering in a metric space. Algorithms like Leiden (and the simpler Louvain algorithm) attempt
to find a partitioning of the network into a set of communities that maximizes the modularity of each community.
This modularity, H, is a measure of how inter-connected the nodes are within a community versus outside of it.
In the below definition, m is the total number of edges in the network, ec is the number of edges in a community
c, γ is the resolution parameter, and Kc is the sum of the degrees of the nodes in community c.

H ≡ 1

2m

∑
c

(
ec − γ

K2
c

2m

)

Thus, the resolution parameter is effectively a prior on the number of expected communities that should be672

found during the optimization; with lower resolution, less communities are found and with higher resolution,673

more communities are found.674

Modified Adjusted Rand Index (MARI) Calculation675

Once this partitioning of a graph into communities is computed, a MARI score (Sundqvist et al., 2020) is676

calculated between each of these each neuron’s community membership and the ground truth cluster identity to677

determine how closely they corresponded. To understand MARI, which is a modification of the adjusted Rand678

index (ARI), we begin with an explanation of the Rand index. Given two clusterings, X and Y of the same679

dataset, the number of pair-wise elements that share cluster membership in both X and Y is a and the number680

of pair-wise elements that share different cluster memberships is b. The Rand index (RI) is RI = a+b

(n2)
where n is681

the total number of pairs. The Rand index can also be interpreted as the sum of the number of true positive and682

true negative correspondences divided by the total number of guesses if one clustering is regarded as a classifier683

prediction of the other. However, in the classifier interpretation, the Rand index is not corrected for chance684

predictions. The ARI corrects for these chance predictions by subtracting the expected Rand index under the685

hypergeomtric distribution given two independent clusterings and fixed number of clusters in each. MARI further686
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refines this metric by instead incorporating a multinomial distribution which does not enforce cluster size and is687

a better assumption given that most clustering algorithms (including Leiden) do not fix cluster sizes. This was688

used to compare each of the Leiden clusterings at different resolutions to underlying ground truth clusters.689

Reference Mapping with Anchors and Cell Type Classification690

Unlike the previous classification analyses, an 80-20 train-test split was conducted before applying PhysMAP.
This was done to combat bias in cross-validation because of data leakage due to pre-processing transformations
(Moscovich and Rosset, 2022). The training set was used to create the reference mapping upon and the test set
was used to create the query dataset. To construct the reference mapping, an WNN was constructed from each
neuron’s waveform shape, ISI distribution, autocorrelogram, and derived electrophysiological metrics as before.
Following the procedure for multi-modal reference mapping recommended in Hao & Hao et al. 2021, we first ran
supervised principal component analysis (SPCA) on the reference data. Next, the query dataset is projected onto
the reference using the previously computed SPCA transform. Now that reference and query datasets occupy
the same space, “anchors” can be calculated between the reference and query. These anchors are pairs of cells
between the reference and query that are located within each other’s neighborhoods; this concept is also referred
to as mutual nearest neighbors (MNN). These neighborhoods are defined by computing k-nearest neighbors with
k = 5. This nearest neighbor search is conducted in only the top-30 SPC’s. Once all anchors are found, they
are scored which is an assessment of how confident we are in their correspondences. This score is calculated for
each anchor given the 30 nearest neighbors in each reference and query dataset for both the reference and query
data points of the anchor respectively. The overlap of these nearest neighbor matrices between the 0.01 and
0.90 quantiles is then linearly rescaled to be between 0 and 1 for all reference-query anchor pairs; this provides
a score for each anchor. A weight matrix is then constructed between each query cell c and each ith nearest
anchor ai (where i ∈ [1, 50]) based upon the distance to each query cell and the corresponding anchor score.
These weighted distances Dc,i are calculated as

Dc,i = Sai

(
1− ||c, ai||

||c, a50||

)

where Sai is the score of the ith anchor where || · || is the Euclidean distance. These distances are passed through
a Gaussian distance kernel D̃c,i as,

D̃c,i = 1− −Dc,i

e4

to form the entries of a weight matrix

Wc,i =
D̃c,i∑j=50

i D̃c,i

.

For cell type classification, a classification matrix L is created where each row corresponds to a ground truth
cell type class and each column corresponds to each reference anchor. If a certain reference anchor pertains to
a certain cell type, it is given a 1 and a 0 if otherwise. Label predictions P are then computed simply as,

P = LW T .

This returns a prediction score for each cell in the query dataset. A query cell is thus given a predicted cell type691

of whichever class has the highest prediction score.692
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