
Supplementary Material1

MultiMatch: Optimal Matching Colocalization in2

Multi-Color Super-Resolution Microscopy3

A Optimal Chain-Matching4

A.1 Unbalanced Multi-Marginal Formulation5

In the following we will denote the sets of two-dimensional particle coordinates
in the image domain for each of the k color channels as

X(1) :=
{
x
(1)
l

}n1

l=1
, . . . , X(k) :=

{
x
(k)
l

}nk

l=1
⊆ R2, (A1)

where number of particles nj ∈ N≥0 for j ∈ {1, . . . , k}. For simplicity and6

related to the considered data in this article, we will only consider the cases7

k = 2, 3 in the following. Generalization to larger k is straight-forward. In a8

chain-like particle arrangement of the form
(
x(1), . . . ,x(k)

)
with x(j) ∈ X(j),9

all neighbors x(j),x(j+1) have to be closer than the colocalization threshold t10

and we will denote according tuples as dkt -chains:11

Definition 1 (dkt -chain) Fix k ≥ 2. For setsX(1), . . . , X(k), a distance d : R2×R2 →
R≥0 and a predefined maximal threshold t ≥ 0 a tuple of k points(

x(1), . . . ,x(k)
)
∈ R2×k with x(j) ∈ X(j) for j ∈ {1, . . . , k} (A2)

is a dkt -chain, if pairwise point distances along the fixed tuple point order are smaller
or equal than t, i.e.,

d
(
x(j),x(j+1)

)
≤ t for j ∈ {1, . . . , k − 1}. (A3)

In the context of our colocalization problem, d is the Euclidean distance12

(this can easily be generalized), a d3
t -chain is a triplet and a d2

t -chain a pair.13

For given t, we now aim to detect as many dkt -chains as possible:14

Definition 2 (Optimal dkt -matching) A collection of pairwise disjoint dkt -chains is15

called dkt -matching. It is called optimal if its number of chains is maximal among all16

matchings.17

1



2 Supplementary Material - MultiMatch Colocalization

Such an optimal dkt -matching can be found by utilizing a multi-marginal18

and unbalanced formulation of OT. For example, if k = 3, for each channel19

i = 1, 2, 3, we interpret coordinates of detected particles as support points20

with mass 1 of a respective discrete distribution. Due to this discrete structure,21

the resulting optimization problem will be finite-dimensional. Since in our22

measurements the number of detected particles per channel might differ, we23

require an unbalanced formulation to compare distributions with different total24

masses. A wide variety of penalty terms for mass discrepancies has been studied25

in the literature, see for instance Liero et al (2016). Our problem formulation26

is closely related to an `1-penalty for unmatched particles, see also Le et al27

(2022). We first consider the problem of finding optimal d2t -matchings between28

two point clouds, i.e. k = 2. This can be solved via the following optimization29

problem:30

Definition 3 (Optimal d2
t -matchings via unbalanced optimal transport) Let λ ∈

R≥0, set the cost function

c : R2 × R2 → R≥0 ∪ {∞}, (x1, x2) 7→

{
d(x1, x2)− λ if d(x1, x2) ≤ t,
+∞ otherwise,

(A4)

and c ∈ Rn1×n2 the pairwise cost between all points in X(1) and X(2), defined by

ci1,i2 = c(x
(1)
i1
,x

(2)
i2

). The optimal unbalanced transport problem of interest can now
be stated as the following linear program

arg min
π∈Rn1×n2×n3

n1∑
i1=1

n2∑
i2=1

ci1i2πi1i2

s. t.

n2∑
i2=1

πi1i2 ≤ 1 for all i1 = 1, . . . , n1

n1∑
i1=1

πi1i2 ≤ 1 for all i2 = 1, . . . , n2

πi1i2 ≥ 0 for all (i1, i2) ∈ {1, . . . , n1} × {1, . . . , n2}.

(A5)

Entries of an optimal π indicate which particles have been matched. The31

constraints enforces that each particle can at most be part of one matching, but32

it may also be discarded. By the definition of the cost vector c, the solution of33

Equation (A5) does not match points x(1) and x(2) as soon as they are farther34

apart than t, but for each matching below distance t there is an incentive by35

the parameter λ. For λ sufficiently large in comparison to t one can show that36

the solution yields an optimal d2
t -matching. Among all optimal matchings the37

above problem prefers one with the lowest sum of pairwise particle distances38

among matched particles.39

We now generalize this to k = 3 via a multi-marginal transport problem.40
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Definition 4 (Optimal d3
t -matchings via unbalanced multi-marginal optimal trans-

port) Let λ ∈ R≥0, set the cost function

c : R2 × R2 × R2 → R≥0 ∪ {∞},

(x1, x2, x3) 7→

{
d(x1, x2) + d(x2, x3)− λ if d(x1, x2) ≤ t ∧ d(x2, x3) ≤ t,
+∞ otherwise,

(A6)

and let c ∈ Rn1×n2×n3 , be the cost tensor between all triplets in (X(1), X(2), X(3)),

defined by ci1i2i3 = c(x
(1)
i1
,x

(2)
i2
,x

(3)
i3

). Then the unbalanced multi-marginal OT
problem can be stated as the following linear program:

arg min
π∈Rn1×n2×n3

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

ci1i2i3πi1i2i3

s. t.

n2∑
i2=1

n3∑
i3=1

πi1i2i3 ≤ 1 for all i1 ∈ [n1]

n1∑
i1=1

n3∑
i3=1

πi1i2i3 ≤ 1 for all i2 ∈ [n2]

n1∑
i1=1

n3∑
i3=1

πi1i2i3 ≤ 1 for all i3 ∈ [n1]

πi1i2i3 ≥ 0 for all (i1, i2, i3) ∈ [n1]× [n2]× [n3],

(A7)

where we used the notation [n] = {1, . . . , n}. As above note that per the41

marginal constraints particles may be matched at most once and can also be42

discarded. Likewise, by definition of the cost vector c only allows matchings43

between points that are valid d3
t -chains. Analogously there is a matching incen-44

tive via the parameter λ and for sufficiently high values (relative to t) one45

can show that the above problem provides an optimal d3
t -matching. Among46

all these matchings, one with minimal sum of pairwise distances is selected by47

the problem.48

Generalization of Definition 4 to arbitrary k is now obvious, leading to a49

multi-marginal problem with k marginals. In general, multi-marginal problems50

quickly become numerically impractical due to the large number of variables.51

The cost function c in (A6) has a chain structure, i.e. it can be written as a52

sum of functions only depending on (x1, x2) and (x2, x3). This chain structure53

allows the reformulation of the problem as a much more compact network flow54

problem (see Section below), and it implies the existence of optimal binary55

matchings. Problems where the cost exhibits a tree-structure can still be solved56

efficiently, see Beier et al (2022) and references therein, but they cannot be57

formulated as network flow problems and do not exhibit binary minimizers in58

general.59
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A.2 Network Flow Formulation of MultiMatch60

In this section we show that the multi-marginal optimal unbalanced transport61

problem corresponds to a min cost flow problem if the cost function has a62

chain structure as in (A6). This has two relevant consequences:63

1. It guarantees that (A7) has integer solutions and thus indeed corresponds64

to a matching problem, which in general does not hold true for discrete OT65

problems;66

2. It allows us to solve the multi-marginal optimal unbalanced transport67

problem efficiently.68

Definition 5 Let (V,E) be a directed graph with a source node S ∈ V , a target
node T ∈ V , an edge capacity function lE : E → R ∪∞ and an edge cost function
cE : E → R ∪ ∞. Then we call (V,E, cE , lE) a flow network. Given an amount of
flow, m ∈ R+ the min cost flow problem consists in finding a function f : E → R
that solves the following optimization problem:

min
f

∑
(u,v)∈E

f(u, v)cE(u, v)

s.t. 0 ≤ f(u, v) ≤ lE(u, v) for all (u, v) ∈ E (capacity constraints)∑
{u:(u,v)∈E}

f(u, v)−
∑

{w:(v,w)∈E}
f(v, w) = 0 for all v 6= S, T (flow conservation)

∑
{u:(S,u)∈E}

f(S, u)−
∑

{v:(v,S)∈E}
f(v, S) = m (flow source)

∑
{u:(u,T )∈E}

f(u, T )−
∑

{v:(T,v)∈E}
f(T, v) = m (flow sink).

Notably, due to the total unimodularity of the constraint matrix, the min69

cost flow problem with integer total flow m and integer capacity function lE70

has an integer solution (Theorem 13.11 in Alexander (2003)). In the following,71

we recast (A7) to a min cost flow problem (see sketch in Figure A1):72

• Node set V : Define source node S ∈ V and target node T ∈ V and add two73

nodes v
(j)
l and v̂

(j)
l for each detected particle position x

(j)
l in Equation (A1).74

• Edge set E:75

– Connect nodes referring to the same detected point and set edge costs76

cE(v
(j)
l , v̂

(j)
l ) = −λk where k is the number of point clouds as in (A1).77

– Add all possible edges of form (v̂(j), v(j+1)) ∈ E for j = 1, . . . , k − 1. Set
edge costs

cE(v̂(j), v(j+1)) =

{
∞, ifd(x(j),x(j+1)) > t

d(x(j),x(j+1)), otherwise.
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min(n1,n2,n3) -min(n1,n2,n3)
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Fig. A1 Scheme of the implemented min cost network flow problem as explained in
Section A.2.

– Include source and target nodes via edges of form78

(S, v(1)), (v̂(k), T ), (S, T ) ∈ E, and set its costs to 0.79

– Define edge capacities

lE(vi, vj) =

{
∞, if vi = S and vj = T

1, otherwise.

Proposition 1 Let f : E → R be an integer solution of the min cost flow prob-
lem for the flow network (V,E, cE , lE) defined above with transported mass m =
min(n1, n2, n3). Then one of the optimal solutions π∗ of the multi-marginal optimal
unbalanced transport problem (A7) is given by,

π∗i1i2i3 = f(v̂
(1)
i1
, v

(2)
i2

)f(v̂
(2)
i2
, v

(3)
i3

), (A8)

for i1 ∈ [n1], i2 ∈ [n2] and i3 ∈ [n3] with notation [n] = {1, . . . , n}.80

Proof First we show that π∗ as defined in (A8) is in fact a valid transport plan for
(A7). For any i3 ∈ [n3] we have that, using the conservation constraint,

n1∑
i1=1

n2∑
i2=1

π∗i1i2i3 =

n2∑
i2=1

f(v̂
(2)
i2
, v

(3)
i3

)

 n2∑
i1=1

f(v̂
(1)
i1
, v

(2)
i2

)


=

n2∑
i2=1

f(v̂
(2)
i2
, v

(3)
i3

)f(v̂
(2)
i2
, v

(2)
i2

)

≤
n2∑
i2=1

f(v̂
(2)
i2
, v

(3)
i3

) = f(v̂
(3)
i3
, v

(3)
i3

) ≤ 1
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Analogously it is easy to verify that π∗ satisfies

n1∑
i1=1

n3∑
i3=1

π∗i1i2i3 ≤ 1 for all i2 ∈ [n2]

n2∑
i2=1

n3∑
i3=1

π∗i1i2i3 ≤ 1 for all i1 ∈ [n1].

Hence, π∗ is a feasible solution of (A7). Further, since the source node S is directly
connected to the target node T with an edge of infinite capacity and finite cost,
the total flow cost must be finite. This implies that for any i1 ∈ [n1], i2 ∈ [n2] and

i3 ∈ [n3], we have that f(v̂
(1)
i1
, v

(2)
i2

) = 0 if d(x
(1)
i1
,x

(2)
i2

) > t and f(v̂
(2)
i2
, v

(3)
i3

) = 0 if

d(x
(2)
i2
,x

(3)
i3

) > t. Hence, using the shorthand notation

〈c,π〉 =

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

ci1i2i3πi1i2i3 ,

we can rewrite the total cost of the transport problem as

〈c,π∗〉 =

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

(
d(x

(1)
i1
,x

(2)
i2

) + d(x
(2)
i2
,x

(3)
i3

)− λ
)
f(v̂

(1)
i1
, v

(2)
i2

)f(v̂
(2)
i2
, v

(3)
i3

).

By the flow conservation constraints and the fact that f is an integer solution, we
can simply reformulate the sum above in terms of the network flow cost function to
obtain

〈c,π∗〉 =
∑

(u,v)∈E
cE(u, v)f(u, v).

Let us now assume that there exists a feasible solution of (A7), π̃, such that

〈c, π̃〉 < 〈c,π∗〉.

Then we can define the flow f̃ : E → R by setting:

f̃(v̂
(1)
i1
, v

(2)
i2

) =

n3∑
i3=1

π̃i1i2i3 and f̃(v̂
(2)
i2
, v

(3)
i3

) =

n1∑
i1=1

π̃i1i2i3 ,

for i1 ∈ [n1], i2 ∈ [n2] and i3 ∈ [n3]. The value of the flow on the remaining nodes
of E can then be determined by the conservation constraints. In particular, we have
f̃(S, T ) = min{n1, n2, n3}−

∑n1
i1=1

∑n2
i2=1

∑n3
i3=1 πi1i2i3 . This flow is a feasible solu-

tion of the given min cost flow problem and hence, by the definition of the cost
function for the edges we can derive a contradiction:∑

(u,v)∈E
cE(u, v)f̃(u, v) = 〈c, π̃〉 <

∑
(u,v)∈E

cE(u, v)f(u, v).

�81

As a result of Proposition 1, we immediately obtain that the multi-marginal82

optimal unbalanced transport problem (A7) has an integer solution and hence83

provides one-to-one point matchings.84

Another significant consequence of Proposition 1 is that we can solve85

the unbalanced optimal transport problem given in (A7) efficiently. While86
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it is often unfeasible to compute directly the solution of the n1 · n2 · · ·nk-87

dimensional linear programming problem in (A7), the min cost flow problem88

can be solved by the Scaling Minimum-Cost Flow Algorithm in Goldberg89

(1997) in O(|V |2|E| log(|V |)) elementary operations, where |V | is the number90

of nodes, |E| is the number of edges. In our case the number of nodes is of the91

order O(n1 · · · · · nk) and the number of edges can be upper bounded by an92

expression of the order O(n1 · n22 · · · · · n2k−1 · nk). In practice, it is further pos-93

sible to omit all edges with infinite cost, since the source S and the sink T are94

connected through an edge of cost 0 and with infinite capacity. This implies95

that for small t much fewer edges to the network are added which results in96

better computational performance.97

B The probability of Correct Tuple Detection98

The quality of fluorescence microscopy suffers from non-optimal labeling effi-
ciencies and point detection errors. This will be adressed by a statistical
framework to infer on how many of the detected structures in the image actu-
ally concur with the ground truth biological structure and how many detections
represent only incomplete parts of the underlying particle assembly. For color
channels i ∈ {1, . . . , k} let {

ξ
(i)
j

}ni

j=1
⊂ R2 (B9)

be the pairs of coordinates of all particles that lie within the scope of the99

microscope. Note that these point clouds do not necessarily equal those defined100

in (A1) describing the coordinates of detected particles, since we might not101

be able to measure all of the existing particles to do unsuccessful labeling or102

point detection errors.103

Definition 6 (Labeling Efficiency) For each color channel i ∈ {1, . . . , k} we assume104

that there is a specific probability si ∈ (0, 1] quantifying whether a particle of this105

channel is successfully imaged and detected. For simplicity in the following we will106

always call probabilities si labeling efficiencies.107

We further assume that the random event of successful detection is statis-
tically independent for each point. Accordingly, the detection success can be
described by independent Bernoulli variables{

Z
(i)
j

}ni

j=1
∼ Ber(si), (B10)

where si ∈ (0, 1] and ξ
(i)
j is detectable, if and only if Z

(i)
j = 1.108

If there exists a true dkt -chain of form
(
ξ(1), . . . , ξ(k)

)
, then this can only

be correctly identified as such, if each of the included particles was detected,
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i.e., if and only if
∏k
i=1 Z

(i) = 1. From independence it follows that

k∏
i=1

Z(i) ∼ Ber

(
k∏
i=1

si

)
. (B11)

B.1 Estimating the true abundances of structures109

Detecting an ABC triplet correctly is Ber(sAsBsC) distributed. Therefore, all110

possible substructures that can be detected conditioned on the true underlying111

ABC triplet, i.e.,112

1. ABC triplet, if we see all particles113

2. AB pair, if we do not see C114

3. BC pair, if we do not see A115

4. AC substructure, if we do not see B – which is detected as A and C singlets116

5. A singlet, if we do not see B and C117

6. B singlet, if we do not see A and C118

7. C singlet, if we do not see A and B119

8. ∅, if we do not see A,B and C– which can not be detected at all,120

can accordingly be modeled as Multinomial random variable

W·|ABC =



WABC|ABC
WAB|ABC
WBC|ABC
WAC|ABC
WA|ABC
WB|ABC
WC|ABC
W∅|ABC


. (B12)

This can be done in the same manner for all other structures of interest, i.e.,
true AB and BC pairs and A,B and C singlets (and their respective substruc-
tures) yielding random variables W·|AB ,W·|BC ,W·|A,W·|B ,W·|C . The actual
detectable numbers of those structures are

WABC =
∑

WABC|·,

WAB =
∑

WAB|·,

WBC =
∑

WBC|·,

WA =
∑

WA|· +
∑

WAC|·,

WB =
∑

WB|·,

WC =
∑

WC|· +
∑

WAC|·,

(B13)
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which define a random variable W = (WABC ,WAB ,WBC ,WA,WB ,WC)T .121

This leads to a statistical framework, that allows us to estimate the true122

underlying structures abundances from the detected number of structures.123

Theorem 2 Let known, positive labeling efficiencies sA > 0, sB > 0 and sC >124

0 and unknown structure abundances n = (nABC , nAB , nBC , nA, nB , nC)T and125

define N =
∑
i∈{ABC,...,C} ni. Assume the multinomial model as described in126

Equation (B12) and Equation (B13).127

Part 1: An unbiased estimator n̂ of true abundances n is given as

n̂ =



1
sAsBsC

0 0 0 0 0
sC−1
sAsBsC

1
sAsB

0 0 0 0
sA−1
sAsBsC

0 1
sBsC

0 0 0
sB−1
sAsB

sB−1
sAsB

0 1
sA

0 0
(1−sA)(1−sC)

sAsBsC
sA−1
sAsB

sC−1
sBsC

0 1
sB

0
sB−1
sBsC

0 sB−1
sBsC

0 0 1
sC


W . (B14)

Part 2: For n → ∞ entrywise, nj/N → fj with ∞ > fj > 0 constant for
each j ∈ {ABC, . . . , C}, and ΘΣ(n̂)ΘT invertible,

P
(
Ξ ≤ χ2

6,α

)
≤ 1− α, (B15)

where
Ξ = (n̂− n)T (Θµ)T

(
ΘΣ(n̂)ΘT

)−1
(Θµ)(n̂− n) (B16)

and χ2
6,α is the α-quantile of a chi-squared distribution with 6 degrees128

of freedom and with Θ, µ and Σ(n̂) defined as in the following proof.129

If
(
ΘΣ(n̂)ΘT

)−1
does not exist, we get Equation (B15) with χ2

r,α plug-130

ging its pseudoinverse
(
ΘΣ(n̂)ΘT

)+
in Equation (B16), where r =131

rank
(
ΘΣ(n̂)ΘT

)
.132

Proof Part 1: Conditioned on a true ABC triplet, the number of (mis)specifications
resulting from incomplete labeling efficiencies is multinomially distributed:

W·|ABC =



WABC|ABC
WAB|ABC
WBC|ABC
WAC|ABC
WA|ABC
WB|ABC
WC|ABC
W∅|ABC


∼ Mnom(nABC ,pABC) (B17)
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with probability vector

pABC =



sAsBsC
sAsB(1− sC)
(1− sA)sBsC
sA(1− sB)sC

sA(1− sB)(1− sC)
(1− sA)sB(1− sC)
(1− sA)(1− sB)sC

(1− sA)(1− sB)(1− sC)


, (B18)

where
∑8
j=1 pABC [j] = 1. Accordingly, the abundances of (mis)detections of a true

AB pair are 

WABC|AB
WAB|AB
WBC|AB
WAC|AB
WA|AB
WB|AB
WC|AB
W∅|AB


∼ Mnom(nAB ,pAB) (B19)

with

pAB =



0
sAsB

0
0

sA(1− sB)
(1− sA)sB

0
(1− sA)(1− sB)


. (B20)

This can be done accordingly for all other stuctures of interest, i.e. BC pairs and
A,B and C singlets yielding

W·|ABC ∼ Mnom(nABC ,pABC)

W·|AB ∼ Mnom(nAB ,pAB)

W·|BC ∼ Mnom(nBC ,pBC)

W·|A ∼ Mnom(nA,pA)

W·|B ∼ Mnom(nB ,pB)

W·|C ∼ Mnom(nC ,pC)

(B21)

with

pBC =



0
0

sBsC
0
0

sB(1− sC)
(1− sB)sC

(1− sB)(1− sC)


, pA =



0
0
0
0
sA
0
0

(1− sA)


, pB =



0
0
0
0
0
sB
0

(1− sB)


, pC =



0
0
0
0
0
0
sC

(1− sC)


.

(B22)
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Note, that ∅ can not be detected at all and substructure AC is counted as a separate
A and C singlet Hence, the total numbers of detected triplets, pairs and singlets are
defined as the following sums

WABC = WABC|ABC

WAB = WAB|ABC +WAB|AB

WBC = WBC|ABC +WBC|BC

WA = WA|ABC +WAC|ABC +WA|AB +WA|A

WB = WB|ABC +WB|AB +WB|BC +WB|B

WC = WC|ABC +WAC|ABC +WC|BC +WC|C .

(B23)

This can be rewritten as

W =


WABC

WAB

WBC

WA

WB

WC

 = Θ
(
W·|ABC +W·|AB +W·|BC +W·|A +W·|B +W·|C

)
,

(B24)
using the transformation matrix

Θ =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0

 ∈ R6×8. (B25)

With this definition of Θ we delete the last entry in each binomial distributed vec-
tor and add an AC substructure appearance to singlet detections A and B. By
Equation (B24) we get that

E[W ] = Θµn (B26)

with
µ =

[
pABC pAB pBC pA pB pC

]
∈ R8×6. (B27)

Hence, with positive labelling efficiencies sA > 0, sB > 0 and sC > 0, multiplying

(Θµ)−1 =



1
sAsBsC

0 0 0 0 0
sC−1
sAsBsC

1
sAsB

0 0 0 0
sA−1
sAsBsC

0 1
sBsC

0 0 0
sB−1
sAsB

sB−1
sAsB

0 1
sA

0 0
(1−sA)(1−sC)

sAsBsC
sA−1
sAsB

sC−1
sBsC

0 1
sB

0
sB−1
sBsC

0 sB−1
sBsC

0 0 1
sC


(B28)

with W introduces an unbiased estimator n̂.133

Part 2: We utilize that by the central limit theorem for a multinomially
distributed random variable M ∼ Mnom(m,p) with probability vector p =
(p1, p2, . . . , pk)T

1√
m

(M −mp)
D→ Nk

(
0k, diag(p)− ppT

)
for m→∞, (B29)
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where

diag(p) =

p1 0 · · ·
0 p2 · · ·
...

... pk

 (B30)

and 0k = (0, ..., 0)T ∈ Rk (see, e.g., Morris, 1975). Hence, for n entrywise large
enough, we can approximate properly scaled independent, multinomial random
vectors

W·|ABC , W·|AB , W·|BC , W·|A, W·|B , W·|C (B31)

with multi-dimensional normal distributions, respectively. In the following assume
n → ∞ entrywise and nj/N → fj with ∞ > fj > 0 constant for each j ∈
{ABC, . . . , C}, where N =

∑
i∈{ABC,...,C} ni. Then, it holds that∑

i∈{ABC,...,C}

√
ni
N

1
√
ni

(
W·|i − nipi

)
=

√
1

N

∑
i∈{ABC,...,C}

(
W·|i − nipi

)
D→ N8

08,
∑

i∈{ABC,...,C}
fi

(
diag(pi)− pipTi

) .

(B32)

For now, suppose
∑
ni

(
diag(pi)− pipTi

)
is invertible. Then in the limit(∑

fi

(
diag(pi)− pipTi

))−1/2
√

1

N

∑(
W·|i − nipi

)
=
(∑

Nfi

(
diag(pi)− pipTi

))−1/2∑(
W·|i − nipi

)
=
(∑

ni

(
diag(pi)− pipTi

))−1/2∑(
W·|i − nipi

) (B33)

and hence(∑
ni

(
diag(pi)− pipTi

))−1/2∑(
W·|i − nipi

)
D→ N8 (08, I8×8) , (B34)

where I8×8 is the 8-dimensional identity matrix. In the following we denote

Σ(n) =
(∑

ni

(
diag(pi)− pipTi

))
. (B35)

Multiplying (Θµ)−1Θ with Equation (B32) consequently yields(
(Θµ)−1ΘΣ(n)ΘT

(
(Θµ)−1

)T)−1/2 (
(Θµ)−1Θ

∑
W·|i − (Θµ)−1Θ

∑
nipi

)
=

(
(Θµ)−1ΘΣ(n)ΘT

(
(Θµ)−1

)T)−1/2

(n̂− n)
D→ N6 (06, I6×6)

(B36)

with n̂ = (Θµ)−1Θ
∑
W·|i and n = (Θµ)−1Θµn = (Θµ)−1Θ

∑
nipi. By law of

large numbers, it holds that

1

N
(n̂− n) =

n̂

N
− n

N

P→ 06. (B37)

and hence for all j ∈ {ABC, . . . , C}
n̂j
N

P→ fj . (B38)
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By Slutsky’s Lemma we can use Equation (B38) to replace n in Σ(n) with n̂. For
n→∞ entrywise this yields

Ξ = (n̂− n)T (Θµ)T
(

ΘΣ(n̂)ΘT
)−1

(Θµ)(n̂− n)
D→ χ26. (B39)

In case ΘΣ(n̂)ΘT is not invertable, one can use its pseudoinverse yielding convergence134

to a chi-square distribution with r degrees of freedom, i.e., χ2r in Equation (B39),135

where r = rank
(

ΘΣ(n̂)ΘT
)

. �136

With Part 2 of Theorem 2 we can construct a confidence ellipsoid around n̂137

in a straight-forward manner. To show that Ξ in our setting is approximately138

chi-square distributed for finite sample sizes and to compare simulated and139

theoretical coverages of n̂, we performed a simulation study as described in140

the following section.141

B.2 Simulation study of incomplete labeling efficiencies142

We simulated incomplete labeling efficiencies by following the statistical143

framework developed in the Proof of Theorem 2, Part 1: The numbers of144

detectable triplets, pairs and singlets W were simulated from true abun-145

dances n by drawing 10,000 values from respective multinomial distributions146

based on predefined staining efficiencies sA, sB , sC (see multinomial model in147

Equation (B12) and Equation (B13)). All combinations of abundances and148

staining efficiencies that were simulated are listed in Table B1, where we149

also recorded the respective empirical coverage of constructed joint confidence150

ellipsoids at a theoretical coverage of 1− α = 0.90.151

For sA = sB = sC = 0.95 and nABC = 500, nA = nB = sC = 50, matrix152

ΘΣ(n̂)ΘT was invertable in every simulation and, as we can see in Figure B2,153

simulated Ξ values are approximately chi-square distributed with 6 degrees of154

freedom.155

chi-square density (6 dof)

d
en

si
ty

0.00

0.05

0.10

confidence interval statistic 
0 10 20 30

Fig. B2 10,000 simulated Ξ values for simulation setting sA = sB = sC = 0.95 and
nABC = 500, nA = nB = sC = 50 (see Section B.2) approximately follow a chi-square
distribution with 6 degrees of freedom.
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sA = sB = sC nABC nAB = nBC = nA = nB = nC Empirical Coverage

0.80 50 50 0.8879
0.80 100 50 0.8884
0.80 500 50 0.8955
0.85 50 50 0.8893
0.85 100 50 0.8919
0.85 500 50 0.8897
0.90 50 50 0.8906
0.90 100 50 0.8984
0.90 500 50 0.8963
0.95 50 50 0.8898
0.95 100 50 0.8953
0.95 500 50 0.8940

Table B1 Empirical coverage for the simulation of different triplet, pair and singlet
abundances n and labeling efficiencies sA, sB , sC (see Section B.2) at a theoretical
coverage of 1 − α = 0.90.

C ConditionalColoc Comments156

We experienced that ConditionalColoc, although aiming to output probabil-157

ities, in some cases yields values greater than one and hence the errors in158

relative abundance detection are not bounded by one as well. In the following159

Figure C3 we show the ConditionalColoc outliers not depicted in Figure 2.160

0.0

0.3

0.6

0.9

0.0

0.5

1.0

1.5

2.0

e
rr

o
r 

o
f 

re
l. 

a
b
u

n
d

a
n

c
e

0

1

2

3

4

e
rr

o
r 

o
f 

re
l. 

a
b
u

n
d

a
n

c
e

wABC

wAB

wBC

Scenario 1 Scenario 2
A, B and C singlets only all allowed pairs and singlets

Scenario 3
all possible chain structures

B
lo

b
P

ro
b

C
o

n
d

C
o

lo
c

S
O

D
A

M
u

lt
iM

a
tc

h
 I

M
u

lt
iM

a
tc

h
 I

I

e
rr

o
r 

o
f 

re
l. 

a
b
u

n
d

a
n

c
e

B
lo

b
P

ro
b

C
o

n
d

C
o

lo
c

S
O

D
A

M
u

lt
iM

a
tc

h
 I

M
u

lt
iM

a
tc

h
 I

I

B
lo

b
P

ro
b

C
o

n
d

C
o

lo
c

S
O

D
A

M
u

lt
iM

a
tc

h
 I

M
u

lt
iM

a
tc

h
 I

I

colocalization method

object-basedpixel- object-basedpixel- object-basedpixel-

Fig. C3 Simulation study with ConditionalColoc outliers. As Figure 2 but including
outliers of ConditionalColoc resulting in errors in relative abundances greater than one.
In each Scenario 100 STED images and different abundances of triplets, pairs and singlets
were simulated with 100% labeling efficiency. A. Method specific boxplots of the errors in
detected relative (scaled by the total number of points in channel B) structure abundances
are displayed. The error is computed by subtracting true relative abundance from detected
relative abundances. In Scenario 1 only A,B and C singlets, in Scenario 2 all possible
singlets as well as AB and BC pairs and in Scenario 3 ABC triplets, AB, BC pairs and A,
B and C singlets were simulated.
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D MultiMatch Mode II: Experimental Settings161

To compare MultiMatch Mode I and II, we repeated the colocalization anal-162

ysis of experimental STED image settings with MultiMatch Mode II (see163

Figure D4). As expected, the mean relative abundance curves ŵ and the cor-164

responding estimation results of n̂ are comparable to the results reported by165

Mode I (see Figure 4 for analysis output by Mode I). However, since Mode II166

does not prioritize the detection of triplets, unlike Mode I, the triplets frequen-167

cies are more underestimated in Setting 3, where only triplets should occur in168

the image. The maximal relative mean abundance of detected ABC triplets,169

which is attained for colocalization threshold t = 10 pixels is wABD = 0.77. For170

MultiMatch Mode I it is closer to the (by experimental design known) truth of171

having triplets only, by reaching a maximal relative abundance of wABC = 0.8172

(see Figure 4).173
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Fig. D4 MultiMatch Mode II relative abundance curves w(t) for experimental
STED images. As Figure 4 but analysed with MultiMatch Mode II instead of Mode I. For
each setting the solid curves are mean relative abundances with standard deviation bands
across a range of colocalization thresholds t from 0 to 10 pixels (25 nm = 1 pixel). The
abundances are scaled by the total number of points detected in channel B. Additionally,
incomplete labeling efficiency (90% in each channel) corrected abundances are plotted as
dotted curves. The true colocalization threshold of 70 nm within nanoruler structures is
depicted as a vertical line. A. Setting 1 contains singlet, Setting 2 triplet, pair and singlet
and Setting 3 triplet nanorulers only.

E Additional Analysis: Simulated Scenarios174

E.1 Method comparison across colocalization thresholds175

We also tested the performances of considered colocalization methods across176

different colocalization thresholds t and show results in Figure E5. Methods177

were evaluated on the colocalization grid t ∈ {1, 2, 3, 4, 5, 6, 7, 8} pixels. We178

experienced, that BlobProb and ConditionalColoc were not directly applica-179

ble to a batch of images at once. In particular, BlobProb requires the user180

to load every image separately into an ImageJ/Fiji Graphical User Interface,181

where parameters as the colocalization threshold have to be adjusted by hand,182

respectively. For the MATLAB implementation of ConditionalColoc, all images183
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within a simulation scenario had to be combined into a ’movieList’, which could184

then be input as a whole for colocalization analysis. However, the analysis had185

to be performed separately for each colocalization threshold. With the runtime186

of 2 minutes per image and colocalization radius, as reported in the Con-187

ditionalColoc manual (https://github.com/kjaqaman/conditionalColoc), the188

evaluation of our simulation study with ConditionalColoc took about 1000189

times longer than with our MultiMatch implementations (0.1 seconds per190

image and colocalization radius, see Methods Section 4.2).191
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Fig. E5 Simulation study for three combinations of chain structures along dif-
ferent colocalization thresholds t. Simulation setup described in Section 2.2: In each
Scenario 100 STED images and different abundances of triplets, pairs and singlets were sim-
ulated with 100% labeling efficiency. Mean relative abundances curves (scaled by the total
number of points in channel B) are shown per colocalization method and chain structure.
True simulated relative abundances are plotted as transparent, horizontal dashed lines. A.
In Scenario 1 only A,B and C singlets, in B. Scenario 2 all possible singlets as well as AB
and BC pairs and in C. Scenario 3 ABC triplets, AB, BC pairs and A, B and C singlets
were simulated.

https://github.com/kjaqaman/conditionalColoc
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E.2 Comparison with Nearest Neighbor Matching192

In addition to the considered colocalization methods provided as packages,193

plugins or executable scripts, one can also consider greedy Nearest Neighbor194

Matchings as a compatible algorithm to MultiMatch.195

Nearest Neighbor Matchings can be implemented in several ways depend-196

ing on the order of points within a channel and the order of channels being197

matched in pairs. For the method comparison below, we used the following198

implementation:199

1. For each point in channel A, assign it to its nearest neighbor in B as soon200

as their pairwise distance is smaller than the colocalization threshold t. If201

matched, do not consider the respective B point for further nearest neighbor202

searches of channel A points. The match is stored as AB pair.203

2. Repeat 1. to match points in channel B to their nearest neighbors in channel204

C. Respective matches are stored as BC pairs.205

3. If an AB and a BC pair share the same B point, they are re-annotated into206

one ABC triplet.207

We applied MultiMatch Mode I and II and the above described Nearest208

Neighbor Matching approach directly to the simulated point clouds without209

additional conversion to microscopy intensity images. To illustrate the differ-210

ences between MultiMatch’s global optimization procedure and the effect of211

local, greedy Nearest Neighbor searches, we chose to simulate settings with a212

high particle density and an especially high number of triplets:213

Scenario i: 1000 ABC triplets only.214

Scenario ii: 1000 ABC triplets and 1000 B singlets.215

Scenario iii: 1000 ABC triplets, 500 A, B and C singlets, respectively.216

As in all other simulation scenarios, the pixel size was simulated as 1 pixel217

= 25 nm, the image size was set to 400×400 pixels and the true colocalization218

distance was fixed to t = 70 nm. For each setting 100 images were simulated,219

but we directly evaluate the coordinates of simulated point clouds without220

further translation into an intensity image nor simulation of microscopy noise221

or point spread function convolution (see examples in Figure E6D).222

As can be seen in Figure E6A, in Scenario i the Nearest Neighbor Matching223

approach underestimates the number of ABC triplets and overestimates the224

abundance of AB and BC pairs, although only triplets were simulated. For225

the a colocalization threshold of 4 pixels = 100 nm, the mean abundance226

detected by the Nearest Neighbor Matchings only reaches around 939.43 of227

1000 simulated ABC triplets with a standard deviation of ca 0.197, while in228

both MultiMatch Modes I and II all 1000 simulated ABC triplets are recovered229

for every simulated image.230

In Scenario ii we can showcase a similar behavior: Nearest Neighbor Match-231

ings only reach a maximal average abundance of 838.71 out of the 1000232

simulated ABC triplets for t = 4 pixels.233
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Additionally, we can observe that this setting is also challenging Multi-234

Match Mode II: Similar to Nearest Neighbor Matchings, MultiMatch Mode235

II underestimates triplets due to the disproportionate abundance of Type B236

particles and the dense particle distribution. Mode II finds more AB pairs237

with lower overall pairwise particle distances and therefore on average misses238

around 15% of all simulated ABC triplets in maximal colocalization threshold.239
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Fig. E6 Simulation study for three combinations of chain structures along differ-
ent colocalization thresholds t. The simulation setup is described in detail in Section E.2.
Mean absolute abundances curves with standard deviation bands are shown per method and
chain structure. True simulated relative abundances are plotted as transparent, horizontal
dashed lines. A. In Scenario i only ABC triplets and in B. Scenario ii ABC triplets as well
as B singlets were simulated. C. Scenario ii ABC triplets as well as A,B and C singlets were
simulated. D. Representative particle clouds for Scenarios i-iii.
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Interestingly, the shape of abundance curves for the Nearest Neighbor240

Matching is very similar between Scenarios i, ii and iii altough in the first we241

only simulated triplets and in the latter two we added different types and ratios242

of singlets. The Nearest Neighbor Matching approach does not only under-243

estimate triplet abundances but also shows no clear plateau to discriminate244

between different colocalization structures. MultiMatch Mode I abundance245

curves, on the other hand, stabilizes at the correct abundance for triplet abun-246

dances for Scenario i and ii. If a random distribution of more than one type247

of singlets is present in the image (Scenario iii), singlets are matched as soon248

as the colocalization threshold is high enough. Still, one can observe that the249

abundance curve slopes visibly drop for t ≥ 4 pixels.250

E.3 Additional Four-Color STED Simulation Scenarios251

Supporting Section 2.5, we additionally simulated the following three four-color252

STED image scenarios:253

Scenario III: 50 A, B, C and D singlets, respectively, and no further254

quadruples, triplets nor pairs.255

Scenario IV: 200 ABCD quadruples and 100 A,B, C and D singlets,256

respectively.257

Scenario IV: 500 ABCD quadruples only.258

From the respective MultiMatch Mode II results of those two simulations259

scenarios, shown in Figure E7, one draws that abundance curves again are sta-260

bilizing after a colocalization threshold of t = 4 pixels. In case the detection of261

chain structures, here ABCD quadruples, is aggravated by incomplete label-262

ing efficiency, our estimation framework leads to a consistent improvement of263

detection results towards the simulated ground truth.264

For simulation Scenarios IV and V it becomes obvious, that due to high265

number of particles in the image, the simulated noise and according point266

detection errors, MultiMatch can not recover all simulated quadtrupels. In267

this case, the interactive napari viewer (napari contributers, 2019) can help268

to evaluate the noise level, point detection performance and matching results.269

For uniform noise levels and point detection errors across all channels, we270

recommend to evaluate channel-wise scaled instead of absolute abundance271

curves.272
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Fig. E7 MultiMatch Mode II abundance curves w(t) and estimation results
n̂(t) for simulated four-colour STED images. For each scenario, images with complete
labelling efficiency (left) and with incomplete labelling efficiency (middle) were simulated.
Solid curves are mean absolute detected abundances with a standard deviation bands. Cor-
rected abundances are plotted as dotted curves. For one exemplary STED image simulated
with incomplete labelling efficiency, corrected abundance curves and corresponding confi-
dence bands are shown (right). A. Scenario III: Only singlets were simulated. B. Scenario
IV: ABCD quadruplets and A,B,C and D singlets were simulated. C. Scenario IV: ABCD
quadruplets only were simulated. D. Representative STED image for Scenario V with image
details in the interactive napari viewer allowing a visual check of the image and MultiMatch
output quality.
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