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Abstract
Biological systems are extremely robust and exhibit high levels of redundancy for mul-
tiple cellular functions. Some of this redundancy manifests as alternative pathways in
metabolism. Synthetic double lethals in metabolic networks comprise pairs of reac-
tions, which, when deleted simultaneously, abrogate cell growth. However, when one
reaction from such pairs is removed, the cell reroutes its metabolites through alterna-
tive pathways. Very little is known about the set of reactions through which fluxes are
rerouted. Analysing this redistribution would help us to uncover the linkage between
the reactions in a synthetic double lethal and also understand the complexity underly-
ing the reroutings. Studying synthetic lethality in the context of pathogenic bacteria
can offer valuable insights into therapeutic interventions. In this work, we propose
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a constraint-based approach to unravel these alternate pathways and complex inter-
dependencies within and across metabolic modules. The approach involves a generic
optimisation that minimises the extent of rerouting between two reaction deletions,
corresponding to synthetic lethal pairs. We also include a systematic analysis of syn-
thetic lethals by identifying the reaction classes that make up these synthetic lethals.
We applied our computational workflow to several existing high-quality genome-scale
models to show that these rerouted reactions span across metabolic modules, thereby
illustrating the complexity and uniqueness of metabolism. Our results provide inter-
esting insights into the organisation of metabolic networks and their redundancy.
The algorithm is available at https://github.com/RamanLab/minRerouting.
Contact: kraman@iitm.ac.in
Supplementary information: Supplementary data are available online.

Keywords: Synthetic lethality, Flux switching, Genome-scale metabolic models,
minRerouting, Plasticity, and Redundancy

1 Introduction
Robustness in the face of environmental perturbations is an essential attribute of microor-
ganisms [1–3]. This robustness is often achieved by the presence of multiple alternate
pathways that achieve similar metabolic functions [4, 5]. The redundancy introduced
by alternate pathways comprises a large fraction of most metabolic networks [6–8].
The redundancies in reaction pathways also show surprising variance in their distribu-
tion [9, 10]. While some of the alternate pathways are very simple, arising due to gene
duplication, other alternate pathways could be extremely complex, with compensating
reactions spanning different metabolic subsystems [9, 10].

A straightforward method of studying these alternate pathways involves the iden-
tification of synthetic lethals in a metabolic model [10]. Synthetic lethals are sets of
genes/reactions where only the simultaneous loss of all genes/reactions in the set leads to
abrogation of cell growth [11]. When only one of the reactions is deleted, the cell is able
to summon alternate pathways to ensure its survival. In many cases, this is made possi-
ble through a complex rerouting of fluxes in the metabolic network which exploits the
redundancy in metabolism. However, very little is known about how these organisms
reroute their fluxes, and how various reactions in the cell can compensate for one another.

Previous uses of genome-scale models, including GIMME, iMAT, RELATCH, for
the study of flux distributions have focused on a given condition, the final steady state
of the cell, without considering the prior reference state of the organism [12–14]. REMI
and deltaFBA are algorithms that integrate differential expression of transcriptome and
metabolome with the flux distributions between two different states, a WT state and
a mutant state [15, 16]. These algorithms require gene expression data, which is only
sometimes available. Considering cells have a high order of redundancy and synthetic
lethals, we require a method that can computationally predict the rewiring of metabolism.
Previous studies [17, 18] used FBA to study redundancy using synthetic lethals in E. coli
and other bacteria. They used FBA directly to optimise the single deletions for the biomass
objective and find the differences in the flux distributions. However, this can ignore the
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biological costs associated with altering flux in an organism, which may result in sub-
optimal biomass production.

To identify this set of reactions that come into effect to rescue the cell from a non-
lethal deletion, we propose a novel approach termed minRerouting. By solving a minimum
p-norm problem, minRerouting can simultaneously solve for flux distributions that satisfy
the stoichiometric constraints, maximise the biomass constraint (with a slack, γ), and also
minimise the number of reactions with varying metabolic flux values. It gives us the set of
reactions with an altered flux as the output and, thus, helps us understand the redundan-
cies that help make the wild-type organism robust against perturbations and mutations.
In addition to studying synthetic lethals and redundancy, this approach is also ideal for
exploring and understanding indispensable changes in cellular metabolism between two
different conditions, for instance, a healthy state and a diseased state.

Robustness arising from double lethals has been studied previously. It has been pro-
posed that double lethal pair robustness in an organism can be ascribed to two classes
of reaction pairs—Plastic Synthetic Lethals (PSL) and Redundant Synthetic Lethals
(RSL) [18]. PSL pairs are reaction pairs where only one reaction is active, while the other
reaction is inactive. The second reaction becomes active only when the first reaction is
inactive. RSL pairs are reaction pairs where both the reactions are active simultaneously;
yet, the loss of one does not abrogate growth. It has also been shown that these classes
are conserved even across different nutrient conditions. The very presence of two dis-
tinct reaction pair classes calls for us to analyse the cause behind such selective activation.
Are the inactive reactions more “metabolically costly” than the active ones? What kind of
reactions make up the RSL pairs, especially when they are both simultaneously active?

To answer these questions and explore the structure of metabolic networks and
their underlying redundancy, we also make use of parsimonious Flux Balance Analysis
(pFBA; [19]). In pFBA, the genes and reactions in a metabolic network are classified based
on the maximum and minimum flux associated with them. We obtain the classes of each
double lethal pair using a novel workflow of Flux Variability Analysis, analyse the reac-
tion types contributing to the PSL and RSL classes, and uncover interesting patterns in
their distribution.

2 Methods
2.1 Flux Balance Analysis
Flux Balance Analysis (FBA) [20, 21] is a constraint-based approach that is used to predict
the steady-state flux distribution in a given organism’s metabolic network. FBA employs
a Linear Programming (LP) formulation, with an objective to maximise the biomass flux
under certain flux and stoichiometric constraints. The formulation of FBA is as follows:

max cT v ≡ max vbio (1a)
s.t. Sv = 0; vLB ≼ v ≼ vUB ; (1b)

Here, v represents the flux vector and the jth entry corresponds to the flux through the
jth reaction, c represents the objective function. Typically cT v = vbio, where vbio is the
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Fig. 1 A sample metabolic network used to illustrate the concept of minRerouting. The nodes and edges are
depicted as metabolites and reactions respectively. This metabolic network comprises 8 reactions, 7 metabolites,
and 3 double lethal pairs. The minRerouting Sets 1 and 2 are highlighted using orange and blue rectangular boxes
and the common reaction between the rerouting sets is R3.

biomass flux, S represents the stoichiometric matrix of dimensions m× r, where m is the
number of metabolites and r is the number of reactions, and vLB and vUB represent the
permissible lower and upper bounds of the reaction fluxes. FBA has been experimentally
validated in many scenarios [22, 23], and has widespread applications [24]. An important
extension of FBA is MoMA (Minimisation of Metabolic Adjustment; [25]), which seeks
to identify a minimally different flux from the wild-type flux (by minimising the l2 norm
of this difference), that is compliant with the new constraints imposed by a perturbation
such as a reaction deletion.

2.2 Identification of Synthetic Lethals
Fast-SL [26, 27] is an efficient algorithm that identifies synthetic lethals by systematic
pruning of the search space and exhaustive enumeration from the remaining reactions.
Fast-SL rapidly identifies synthetic lethals and scales well for higher-order lethals. In this
paper, we used Fast-SL to identify synthetic lethal reaction pairs in a given genome-scale
metabolic model. We used a threshold of 10−5 to identify active reactions in Fast-SL.

2.3 minRerouting Formulation
We define the ‘minRerouting set’ as the minimal reaction set comprising all the reactions
that have a modified flux following the individual deletion of synthetic double lethal reac-
tions. This can be seen in context in Figure 1, which represents a toy metabolic network
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comprising nine reactions and eight metabolites. The metabolites A and B are the ‘input’
metabolites and G is the ‘output’ metabolite.

The network consists of three double lethal pairs: {(R1, R2), (R4, R6) and (R5, R6)}.
Taking the reaction pair (R4, R6) into consideration, we can see that when reaction R4 is
active and R6 is deleted or inactive, all the fluxes will be routed through reactions R4 and
R5. Similarly, when reaction R6 is active and R4 is deleted or inactive, all the fluxes will
be routed through reaction R6. In addition to these changes, the fluxes routed through
the remaining reactions could vary based on which pathway is chosen. For instance, the
flux through reaction R3 could be significantly higher when the R4 pathway is used than
when the R6 pathway is used.

Hence, when reaction R4 is active and reaction R6 is inactive or deleted, the rerout-
ing set becomes R3, R4, R5. When reaction R6 is active and reaction R4 is inactive or
deleted, the rerouting set becomes R3 and R6. The common rerouting set for the double
lethal pair (R4, R6) consists of R3 and the complete rerouting set for the double lethal is
(R3, R4, R5, R6).

In order to determine the minRerouting set, we first obtain the WT flux distribution,
vWT , and the set of all lethal pairs in the model. Then for each lethal pair Ri and Rj , the
optimal flux distribution v∆Ri and v∆Rj , that minimises the distance between the flux
vectors is obtained, by an extension of the MOMA formulation.

The generalised p-norm formulation for obtaining the minRerouting of a model, for
a given lethal pair, is as follows:

Step 1: An adaptation of MOMA is performed to obtain the optimal flux distributions v∆Ri

and v∆Rj
with minimal flux distance between them.

min ∥v∆Ri
− v∆Rj

∥p (2a)
s.t. Sv∆Ri

= 0; Sv∆Rj
= 0; (2b)

vLB ≤ v∆Ri ≤ vUB ; vLB ≤ v∆Rj ≤ vUB ; (2c)
v∆Ri,Ri = 0; v∆Rj ,Rj = 0; (2d)
v∆Ri,bio ≥ (1− γ)v∗∆Ri,bio; (2e)

v∆Rj ,bio ≥ (1− γ)v∗∆Rj ,bio; (2f )

Step 2: The flux distributions v∆Ri
and v∆Rj

, obtained from Equation 2 are analysed. The
reactions that have different flux values in v∆Ri

and v∆Rj
are identified as the rerouting

set. The size of the rerouting set, the individual reaction flux difference and the total
flux difference is also analysed.

Here, v∆Ri and v∆Rj represent the flux distribution when reactions Ri and Rj are
deleted respectively. v∗∆Ri,bio

and v∗∆Rj ,bio
represent the optimal biomass flux in the models

when reaction Ri and Rj are deleted respectively. v∆Ri,Ri
and v∆Rj ,Rj

represent the flux
through reactions Ri and Rj in the models where Ri and Rj are deleted respectively. γ
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is the growth rate slack provided for the new flux distributions v∆Ri and v∆Rj from the
optimal biomass v∗∆Ri,bio

and v∗∆Rj ,bio
.

For obtaining the zero-norm solution, we use the LP formulation and IBM ILOG
CPLEX v12.8 solver as it was one of the few solvers which supported zero-norm
optimisation. The Gurobi solver is used for the one-norm and two-norm optimisation.

Fig. 2 Flowchart depicting the classification of reaction pairs into PSL or RSL pairs. After the initial FVA,
conditional FVAs are performed to classify the ambiguous reaction pairs. The reaction pairs are classified as RSL
only when both reactions are simultaneously active.

2.4 Parsimonious FBA (pFBA)
Parsimonious FBA (pFBA) [19] is a bi-level optimization problem, where first an opti-
mal flux distribution that maximizes the biomass production is identified, followed by the
minimization of total flux through all reactions. In addition to obtaining this flux distri-
bution, pFBA also classifies all the reactions based on its enzymatic/metabolic efficiency.
pFBA classifies the reactions into a total of six classes: Essential, ELE (Enzymatically Less
Efficient), MLE (Metabolically Less Efficient), pFBA optimal, blocked, and zero flux reac-
tions. These reaction classes are further used to classify the reactions in the lethal pairs and
derive insights into the categorical distribution of these lethal pairs.

2.5 Flux Variability Analysis (FVA)
FVA [28] is used to obtain the maximum and minimum flux values that a reaction can
carry in a model. FVA solves two LP problems (maximisation and minimisation) for each
reaction in the model, while constraining the objective function (or) biomass growth rate
value. FVA is formulated as follows:

min /max vj (3a)
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s.t Sv = 0; vLB ≤ v ≤ vUB ; vbio = vWT,bio; (3b)

2.6 Plasticity and Redundancy in Synthetic Lethals
Previously [18], it has been suggested that synthetic lethal reaction pairs can be classi-
fied into two categories: Plastic Synthetic Lethals (PSL) and Redundant Synthetic Lethals
(RSL). PSL comprises of reaction pairs where one reaction acts as a backup for the other,
i.e. the second reaction becomes active when the first reaction is deleted. RSL comprises
reaction pairs where both reactions are active simultaneously.

The classification approach proposed by a previous study[18] is based on flux vectors
which are predicted using FBA. While an FBA solution satisfies all the flux and stoichio-
metric constraints for a given model, it only represents one possible flux instance from the
permissible flux space. We propose a classification approach that is more systematic and
thorough, taking into consideration the allowable flux space for each reaction that is part
of a double lethal pair.

For instance, using the above approach, if the absolute fluxes of two reactions, reac-
tion 1 and reaction 2, obtained from FBA, are greater than 0, then they are classified as
RSL reactions. But, there is also a chance that reaction 2 can accommodate zero flux with-
out any change in the optimal biomass flux, while reaction 1 is active. In this case, the
reaction pair would have to be classified as a PSL pair. As the FBA only considers a single
flux instance from the permissible space, we would not be able to correctly classify these
reaction pairs. This necessitates a more thorough and systematic manner of classifying
the reaction classes.

In order to classify the lethal pairs as PSL or RSL, we performed an FVA on the model.
The product of the minimum and maximum flux ranges is used to determine the cate-
gory of the reaction pair. Only when both the reactions are simultaneously active (with
a positive or negative flux), while satisfying the biomass constraint, is the double lethal
considered a RSL pair. The product of the sign of the minimum and maximum fluxes for
RSL pairs includes the combinations [(< 0, < 0), (< 0, < 0)], [(> 0, > 0), (> 0, > 0)], [(<
0, < 0), (> 0, > 0)] and [(> 0, > 0), (< 0, < 0)]. In cases where this is not satisfied, a
conditional FVA is performed before the double-lethal pair is classified as PSL or RSL.

For each of the ambiguous conditions, two FVAs are performed. In the first FVA, the
flux of Ri is constrained to be greater than 0 and in the second, the flux of Ri is constrained
to be less than 0. In this manner, the maximum and minimum fluxes of reaction Rj are
obtained when reaction Ri is active. If the reaction Rj can carry a flux value of zero,
in either of the two constraint conditions, the reaction pair is considered to be a PSL
reaction pair, as Rj can be inactive when Ri is active. However, if Rj is always active
under both the constraint conditions, the reaction pair is considered to be an RSL. We
used this process to determine the classification of PSL and RSL classes instead of relying
on a simple FVA because, in FVA, we obtain the maximum and minimum flux values of
one reaction, independent of the activity of the other. The whole process is explained
pictorially in Figure 2.
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2.6.1 Number of Reactions Rerouted
For each synthetic lethal pair, the rerouting set would comprise two subsets — one for
each of the double lethal reactions. The union of these two subsets would consist of the
reactions with modified flux distribution. The reaction sets were analyzed, and the follow-
ing properties were studied: (a) size of the SL cluster, (b) size of the common SL cluster,
and (c) net difference between the flux vectors.

2.7 Metabolic Subsystem Analysis
A set of reactions that share a similar metabolic function is referred to as metabolic sub-
system [29]. All the reactions in a Genome-Scale Metabolic Model are categorised under
different metabolic subsystems. To identify the metabolic subsystem of the reactions that
comprise a double lethal pair, the set of all distinct reactions to be analysed is obtained.
Then, the subsystem of each of these reactions is obtained by systematically querying the
BiGG database [30].

2.8 Implementation
The implementation of minRerouting and initial analysis were done using MATLAB. The
metabolic cost analysis and flux rerouting analysis were done using Python and R. The
figures were generated using R. The COBRA Toolbox [31] for MATLAB was used for
all metabolic network analysis. All code written as a part of this project is open-sourced
and can be accessed at https://github.com/RamanLab/minRerouting/.

3 Results
The analysis of theminRerouting sets has been carried out on eight genome-scale metabolic
models. We have chosen organisms that represent key bacterial pathogens relevant to
humans and are present in the BiGG database [30]. For Escherichia coli, found in the
human gut, we have depicted two models, e_coli_core [32] and iML1515 [33]. The model
e_coli_core represents the simplified versions of only the most crucial pathways needed
for its survival. The other models studied are for the bacteria Helicobacter pylori, Kleb-
siella pneumoniae, Mycobacterium tuberculosis, Salmonella Typhimurium, Shigella sonnnei,
and Yersinia pestis. These models and the number of single and double lethal reactions
predicted for them using Fast-SL are listed in Table 1.

3.1 Double lethals reveal metabolic redundancies
3.1.1 Comparison of reaction submodules forming double lethals
Formerly, two studies [17, 18] found the presence of double lethals in the species E. coli,
M. pneumoniae, S. Typhimurium, and S. sonnei using FBA. Notably, our work is consistent
with their results regarding the number of synthetic double lethals obtained for different
species and their composition of reactions. For the E. coli model iJO1366, 254 synthetic
lethals [18], and 229 synthetic lethals [17] were found, while we found 286 synthetic
lethals in the model iML1515.
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GSMM Total number
of Reactions

Single
Lethals Double Lethals Fraction of

Essential Reactions Reference

Escherichia coli (e_coli_core) 95 14 88 0.15 [32]
Mycobacterium tuberculosis (iEK1008) 1226 351 157 0.29 [34]
Helicobacter pylori 26695 (iIT341) 554 252 54 0.45 [35]
Escherichia coli (iML1515) 2712 253 286 0.09 [33]
Yersinia pestis (iPC815) 1961 212 189 0.11 [36]
Shigella sonnei (iSSON_1240) 2693 261 267 0.10 [37]
Klebsiella pneumoniae (iYL1228) 2262 199 144 0.09 [38]
Salmonella enterica (STM_v1_0) 2545 330 168 0.13 [39]

Table 1 List of all the models analysed as a part of the study. The third and fourth columns indicate the
number of single lethals and double lethal pairs identified using Fast-SL [26], [27]. The fifth column represents
the fraction of reaction space composed of essential reactions.

Fig. 3 Distribution of common double lethals across models. 500 reaction pairs are unique to the model
while very few pairs are present across all the eight models.

From Table 1, we see that the distribution of the number of synthetic single and dou-
ble synthetic lethals is distinct for the two species, M. tuberculosis and H. pylori , which
are known to be specially adapted to their host environments compared to the other
species [40, 41]. They exhibit limited metabolic diversity, depending primarily on a single
method of energy generation. Reactions associated with this method are indispensable to
these organisms. Thus, their genome-scale metabolic network encompasses 29% and 45%
of essential reactions. In contrast, generalists with multiple energy production pathways
do not focus on one pathway as critical or essential to their survival and display a lower pro-
portion of reactions essential to their networks. This parallels previous observations [4, 18]
that specialists have more essential genes, which are robust against perturbations mainly
because of gene duplications and not alternate pathways. Our results also show that the
double lethals for the two specialists are less than 50% of the single lethals present in the
reaction space, implying a lesser reliance on redundancies for robustness.

Figure 3 shows that more than 500 double-lethal pairs are present in at least one organ-
ism, indicating the high level of redundancy present across metabolic networks. Among
these, few are shared across at least five of the models analysed in the study. The tendency
of a reaction pair to appear in multiple species with different adaptations implies that these
could be potential super targets for drug therapies. The common synthetic lethal pairs
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Fig. 4 Metabolic Subsystem Analysis for the model iML1515. The distribution shows that more than half
the lethal pairs are from differing submodules. Only the submodules occurring more than the mean of the
distribution are depicted for clarity.

examined across the organisms are all from the Pentose Phosphate Pathway. The sec-
ond most common reactions are from the glycolytic pathway and different amino acid
biosynthesis pathways. Similar to observations made by Barve et al.[42], the reactions that
were essential belonged to linear or anabolic pathways such as ATP and histidine synthesis
while redundancies were present only in more reticulate pathways such as the pyruvate
or glycoysis metabolic pathways.

A broader understanding is obtained by looking at each organism’s submodule dis-
tribution of double lethals, as shown in Figure 4 and Figure 5 for the models iML1515
and iEK1008. While it is intuitive to think the reaction pairs would arise from the same
submodule, for all models, we see that at least 50% of the reactions are from different sub-
modules, i.e., the synthetic lethals are inter-pathway. This could be because of the ripple
effect caused by deleting one reaction, which causes small changes in all other connected
pathways. Inter-pathway synthetic lethals also highlight an organism’s need for cross-talk
between pathways, such as energy production and nucleotide metabolism [43].

In simpler and closely related bacterial systems, such as E. coli and S. sonnei , more than
50% of synthetic lethal reactions involve cell envelope biosynthesis, where membrane
lipid metabolism reactions act as their backups. These systems also exhibit reaction pairs
from the cofactor and prosthetic group biosynthesis submodule. Y. pestis, K. pneumoniae,
and S. Typhimurium, phylogenetically different from the above two species [44], addi-
tionally had reaction pairs from submodules associated with amino acid metabolism and
glycerophospholipid metabolism. Finally, the specialist species M. tuberculosis and H. pylori
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Fig. 5 Metabolic Subsystem Analysis for the model iEK1008. The distribution shows lethal pairs from
unique submodules such as mycolic acid pathway and pyruvate metabolism. Unlike iML1515, Cell Envelope
Biosynthesis does not appear in any of the top pairs. Only the submodules occurring more than the mean of the
distribution are depicted for clarity.

have distinct dominant submodules, such as mycolic acid production and heme transport,
respectively. The distributions for the other six models are given in the Supplementary
Results presented in Appendix A. Thus, the redundancies are organism-specific, with dou-
ble lethal reactions from submodules required for biomass synthesis, directly or indirectly.
Some submodules, like the Pentose Phosphate Pathway, are shared in all organisms. These
findings align with those from earlier experiments [10, 17, 18].

Fig. 6 Mean Redundancy Index and Reaction Compensation Index of Reactions forming Synthetic
Lethal pairs, across Organisms. Reactions from e_coli_core have a higher RCI and RI compared to other
models.
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3.1.2 Tendency of reactions in forming double lethals
We next define the Redundancy Index (RI) as the number of times a reaction is repeated
in synthetic lethal pairs within a species. Several studies indicate that pathways lacking
redundancy tend to have more critical functions for survival than those with redundant
pathways [43, 45]. However, there is evidence contradicting this notion [10, 46]. Specif-
ically, when a reaction is engaged in multiple pairs as a synthetic lethal and consequently
possesses multiple backups, its function likely plays a significant role in ensuring the
organism’s survival. From Figure 6, we observed that the models had a mean RI in similar
ranges despite having different numbers of reactions and different adaptations. The reac-
tions with a high RI were from different submodules for each organism, ranging from
central carbon metabolism to transport and, more specifically, lipid metabolism for the
bacterium M. tuberculosis . As defined beforehand [42], a reaction is essential if its elimi-
nation turns off biomass production, which is indicated by the production of fatty acids,
amino acids, and purine/ pyrimidine. Thus, these submodules occurred more often in the
single lethals list, and reactions that had redundancy in the form of double lethals were
albeit important but impacted biomass production indirectly. The minRerouting approach
reveals an essential characteristic of metabolic networks, i.e., the inter-dependencies of the
pathways to produce biomass are revealed. These inter-dependencies are due to molecules
with a high RI acting as connecting points for other pathways in a network. Suthers et
al. [43] investigated the topological structure of redundancy and observed comparable
findings regarding the essentiality of various reaction modules.

The model e_coli_core exhibits a notably higher RI, approximately ten times greater
than other models, owing to its inclusion of only the essential reaction pathways. The
smaller number of reactions in it leads to a high level of redundancy since it necessitates
that the few genes become backups for each other. Specifically, the model has 88 dou-
ble lethals among only 95 reactions, implying extensive backing of the core metabolic
pathways. These pathways include central carbon metabolism, cell membrane synthesis,
transport, and amino acid biosynthesis. Varying the levels of complexity of a model results
in a change in which reactions have backups.

Similarly, the propensity of a reaction to be part of a synthetic cluster, or its Reaction
Compensation Index (RCI), has been tested and shows similar trends as RI in terms of
value, seen in Figure 6. However, the reactions that have a high RI do not necessarily have
a high RCI. A high RCI indicates reactions that are important for all the key pathways
that the synthetic clusters form but these are not necessarily essential at least at the order
of a double lethal.

To further understand how these reactions compensate for each other by rerouting
flux, and ensure their viability, we further analysed the results from the minRerouting
algorithm.

3.2 Flux Redistribution Analysis
For each of the p−norms, the resultant minRerouting set is analysed. The characteristics
of the minRerouting set, which are studied are as follows:
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Fig. 7 Cluster Size, Synthetic Accessibility, and the Net Flux Difference between the two metabolic
states of Reaction Pairs. Mostly, the pairs that have high synthetic accessibility have a low net flux difference
and small cluster size. Outliers showing different properties exist in the top left corner for all the models except
e_coli_core.

3.2.1 Size of the minRerouting Set
The size of the minimal rerouting set, as discussed in the Introduction, is the number
of reactions through which flux is rerouted. minRerouting allows the user to input their
preferred norm to minimise the rerouted flux since differences in the calculation of the
norms result in slightly different results. l2 norm is called the least squares error norm as
it minimises the sum of the square of the differences. As a result, it tends to be influenced
by outliers which can lead to unexpected solutions. However, its solution is unique and
stable. On the other hand, the l1 norm gives a sparse solution, but with the possibility of
multiple solutions for the minimisation problem. The l0 norm, computationally difficult
to compute also results in a sparse solution. The comparison of the minRerouting cluster
size across three norms, shown in Figure A4 thus reveals that the l0 norm optimisation
results in the smallest SL Cluster Size, followed by the l1 and l2 norms, respectively.

Interestingly, the sizes of the clusters in l1 norm are lesser than observations made
by Massucci et al. [17] as seen in Figure A12. In stressful environments, restructuring
metabolism incurs functional and structural costs. Our approach minimises the alterations
in flux required, even if it means a partial reduction in growth rate, such that the expenses
are reduced. Thus, a smaller cluster size is expected. The cluster size for each double lethal
pair of an organism is shown in Figure 7 along with other properties of the cluster for
easy comparison across models.
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Fig. 8 Cluster Size, Synthetic Accessibility and the Net Flux Difference between the two metabolic
states of Outliers across species. Here, we can see that RSLs have the highest flux difference owing to their
cluster size. Pairs with a higher synthetic accessibility have lesser flux differences despite large cluster sizes.

3.2.2 Size of the Common minRerouting Cluster Set
The size of the common minimal rerouting set, as discussed in the Introduction, is the
number of common reactions through which flux is rerouted. The comparison of the
common minRerouting Set size across norms is shown in Figure A4.

Once again, the results obtained show that the l0 norm optimisation results in the
smallest Common SL Cluster Size, followed by the l1 and l2 norms, respectively. In cer-
tain models, the median Common SL Cluster Size is 0. This indicates that the l0 norm,
in addition to ensuring minimum SL Cluster size, forces the two flux vectors to take
completely exclusive reaction pathways, with no reaction (with modified flux) overlap.
Since the organism undergoes complete rewiring, the number of new reactions flux is
rerouted through is termed Synthetic Accessibility. The organism has to divert its energy
into activating/ deactivating the reactions not common between the two reaction pair
deletions. A Synthetic Accessibility of 1 would imply no common reactions between the
metabolic states of a synthetic lethal pair. While the range of Synthetic Accessibility is
vast, on average, at least 25% of reactions in a cluster are turned on/off when switching
states. A low Synthetic Accessibility could mean that the function of the reaction is not
being completely replaced but is being compensated for by a collective group of reac-
tions mediated through its pair. A high Synthetic Accessibility could mean that most of
the reactions that get activated in the mutant are not needed in the wild-type state. In
literature, there are multiple schools of thoughts for the role of redundancy in metabolic
networks. True redundancy is believed to not be possible as it is evolutionarily unsta-
ble [47, 48]. A genuinely redundant gene coding for the redundant reaction would be
lost completely through genetic drift since its mutation would incur no fitness costs to the
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organism. Hence, we see that synthetic accessibility indeed has a vast range. However,
the clusters with a small cluster size tend to have a high Synthetic Accessibility. Thus,
the backing is efficient and reactions are not unnecessarily active. However, one group of
clusters is unique as seen in Figure 7. They are clusters that have a high cluster size and a
low Synthetic Accessibility as seen in the top left corner of every model. Thus, Synthetic
Accessibility gives us an idea of the efficiency of the metabolic network and the cost of
replacing that function that the organism is willing to bear, even with a decrease in its
growth rate.

3.2.3 Net Flux Difference
The flux difference is the total flux difference between the two flux vectors represent-
ing the deletion of individual reactions that make up the double lethal. The comparison
of the net flux difference across norms is shown in Figure A5. Flux difference shows the
same trend for l0, l1, and l2 norms. When comparing with Massucci et al. [17], the net
flux difference between reaction pairs is significantly lesser when comparing our l1 norm
results with theirs for the organism E. coli, S. sonnei , and S. Typhimurium as seen in
Figure A12. The flux difference gives an indication of the cost of maintaining the redun-
dancy between the reaction pairs. minRerouting thus reveals the flux redistribution that
the organisms can undertake to decrease this cost further. Since the net flux difference is
comparable between the norms while the cluster size is more for l2, the average change
in a reaction flux is lower for l2 norm than l1 and l0 norm. This may be because the l2
norm penalises differences more as it squares them to obtain the error.

Fig. 9 PSL-RSL distribution across models. While in most models the fraction of PSLs are much greater
than that of RSLs, the trend is reversed in the case of the model e_coli_core. This could be expected because
e_coli_core only comprises the metabolic core of E. coli, and hence, most of the double lethal pairs comprise
reactions that require to be simultaneously active.

The average flux difference of clusters is high in the e_coli_core model, due to its
limited ability to adjust to perturbations. Thus, even though organisms do not need many
reactions to exist, more reactions provide robustness to the network.

The outlier group for all models barring e_coli_core, mentioned previously, consisting
of clusters with a low Synthetic Accessibility and high cluster size also have a high net flux
difference which can be seen in Figure 8. From the bubble plot, we see that the outliers
exist as two subgroups in each species. The outliers that still have a lesser flux difference
all have higher Synthetic Accessibility and lesser cluster size. The ones with higher are
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the second group with lower Synthetic Accessibility and bigger cluster size. The Pentose
Phosphate Pathway module and reactions from various transport submodules show up
in many of the organisms along with species-specific reactions. In K. pneumoniae, we see
histidine metabolism as a replacement for the TCA cycle as a major subgroup of the
outliers. For M. tuberculosis we see the reaction space from mycolic acid metabolism and
for H. pylori , reactions from the urea metabolism are present in the outliers. These outliers
are important reactions of interest since they are not bypassed even though their deletion
causes a major disruption in the flux distribution of the organism.

The rerouting also occurs with two strategies- PSLs and RSLs. What difference does
the plasticity or redundancy make to the observations we have seen? We next check how
they impact the robustness of metabolism.

3.3 Metabolic Efficiency Analysis

Fig. 10 Schematic of reaction pair distribution between the RSL and PSL classes for e_coli_core. Major-
ity of the reaction pairs that are classified as RSL pairs are (pFBA optimal, pFBA optimal) pairs as seen in the left
sub figure. The distribution for the rest of the models can be accessed in the supplementary results provided in
Appendix A

Fig. 11 Schematic of reaction pair distribution between the RSL and PSL classes for iYL1228. Majority
of the reaction pairs that are classified as RSL pairs are (pFBA optimal, pFBA optimal) pairs as seen in the left
sub figure. The distribution for the rest of the models can be accessed in the supplementary results provided in
Appendix A.
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3.3.1 Overall Distribution
Using Flux Variability Analysis and the methodology described above, we have classified
the clusters into Redundant Synthetic Lethals (RSLs) and Plastic Synthetic Lethals (PSLs).
This classification of synthetic pairs is based on the two strategies taken by the synthetic
pairs to maintain robustness. It helps explain different properties seen till now concern-
ing cluster size, flux difference, and composition. Previous analysis [17, 18] has revealed
that PSLs are the more complicated way of acquiring redundancy, needing sophisticated
functional organisation with fewer resources, while RSLs represent a more rudimentary
strategy. For simple species like E. coli, their results showed that RSLs had more intra-
pathway submodule pairs, PSLs had more inter-pathway submodule pairs, and for M.
pneumoniae, no pattern was observed for RSLs or PSLs. From Figure 9, we see that the
number of RSLs is higher than PSLs only in the e_coli_core model, which is the sim-
plified metabolic network of E. coli without any functional or structural complexities of
metabolic networks. Thus, the organisms tend to promote the plasticity of networks. The
clusters do not prefer inter-pathway or intra-pathway reaction pairs but seem to depend
more on the organism and which pathways are important to it. For organisms like E. coli,
the most common submodules for pairs were inter-pathway due to their dependency on
the cell envelope synthesis pathway and the membrane lipid biosynthesis pathway.

From Figure A13, PSLs exhibit a smaller cluster size for each species than RSLs, as
depicted in the figure. This smaller cluster size indicates that transitioning between two
states is structurally simpler, with fewer changes needed. This ease of transition is also
reflected in the functional costs, as PSLs have a lower flux difference between the two
states as seen in Figure A15. The difference in costs and efficiency is highlighted by the
higher Synthetic Accessibility of PSLs as compared to RSLs in Figure A14. These trends
are again not seen in e_coli_core, which is unique due to limited flexibility stemming
from its reactions and connectivity.

While the RSLs and PSLs help us understand the above trends, why does the network
have differing strategies? Why don’t the RSL reaction pair compete against each other,
with only one reaction becoming evolutionarily stable? In PSLs, why does the inactive
reaction stay in the network when it is not needed in wild-type scenarios? To under-
stand why this happens and dive deeper into the types of reactions that contribute to RSL
and PSL pairs, the metabolic efficiency analysis of the reactions was performed using the
reaction classes returned by pFBA [19].

3.3.2 Model wise distribution
Firstly, we see how the type of reaction, pFBA Optima, blocked, enzymatically less effi-
cient (ELE), metabolically less efficient (MLE), zero flux reaction, or essential reactions,
influenced double lethal pair formation. From Figure A2, we see that the Redundancy
Index does not depend on the type of reaction. In fact, we see a high composition of ELE
and MLE reactions to be redundant which is unexpected yet concurrent with the study
by Wang et al. [46]. We also see that the percentage composition of RSL pairs is lesser
than PSLs, possibly because of the more evolved nature of PSLs. Yet, the RSLs are found
to be composed of mainly pFBA Optima reaction pairs (Figure 10, Figure 11). In PSLs,
while one of the reactions was pFBA Optima (possibly the active reaction in wild type
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state), the other reaction was seen to be part of any of the other types of reactions. The
reason reactions other than pFBA Optima form redundant pairs in nature is puzzling, but
can be explained by various evolutionary forces acting simultaneously over the organism
while under the influence of the environment [46].

From the metabolic efficiency analysis, it is clear that the type of reaction influences the
formation of different classes of synthetic lethals and in turn, its properties. Comparisons
between e_coli_core and iML1515 also reveal that the extent of connections and density
of the network also impact the rerouting of metabolism. These results indicate how the
robustness of metabolic networks is more complex than anticipated.

4 Discussion
In this study, we have looked at how organisms, especially pathogenic bacteria, rely on
the presence of redundancy in the form of synthetic lethals to make themselves robust
against genetic perturbations. With the help of synthetic lethals and our proposed algo-
rithm, minRerouting, we have analysed how flux is redirected in metabolic networks upon
perturbations. While we see that the specialist bacteria studied here, M. tuberculosis and
H. pylori do not prefer the use of alternate pathways as a strategy for robustness, other
species rely on double synthetic lethals for various kinds of functions. Yet, there is a set
of synthetic lethals that are common across species. These are from the Pentose Phos-
phate Pathway. Reactions that are from these common pathways are important as their
functionalities could be potential targets for therapy and antimicrobial resistance. They
represent nodes in the network that interact with multiple other nodes simultaneously.

Our optimisation formulation, minRerouting, is used to obtain the minimal set of reac-
tions through which fluxes are rerouted. We used three different approaches based on the
norms - sparse (l0), linear (l1) and quadratic (l2) approaches and obtained different min-
Rerouting sets for each of the norms. It is likely that the l0 captures the final steady-state of
the cell post-adaptation to the knock-out, while the other norms could capture the tran-
sient response of the cell to the perturbation, i.e. gene deletion, similar to those observed
by Shlomi et al. [49].

We showed that the size of the minRerouting set is the smallest when the sparse formu-
lation is used and learnt that sparsity also forces the use of exclusive reaction rerouting,
which results in a null common rerouted reaction set Figure A4.

We also proposed a systematic, conditional FVA approach to classify double lethal pairs
into PSL (Back-Up Reactions) or RSL (Parallel-Use Reactions) reaction pairs. Parallel to
remarks made previously[18], the Synthetic Accessibility of PSLs highlights their sophis-
ticated nature in contrast to RSLs and in all models barring the e_coli_core, the PSLs
were higher in number. These RSL and PSL pairs have differing properties in terms of the
number of reactions through which flux is rerouted, the new set of reactions that become
active when flux is rerouted, as well as the costs of rerouting. We explored the reasons for
such a disparity and hypothesised that the RSL Pairs should have higher metabolic effi-
ciency as both the reactions are simultaneously active, while reactions in the PSL Pairs
would have lower metabolic efficiency. The results of our study have proved that this
was indeed true. The RSL Reaction Pairs of most of the organisms (excluding Shigella
sonnei), comprise completely (or majorly) of (pFBAOptimal, pFBAOptimal) reaction
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pairs. As pFBAOptimal reactions are considered crucial for the growth of an organism,
our hypothesis was validated. Reactions comprising PSLs must have come about by var-
ious evolutionary processes such as horizontal gene transfer, and pleiotropy and may not
have been a result of back-up for adaptation or robustness. These observations were made
possible by the results from the minRerouting algorithm.

An extension of the minRerouting can be used to understand the complex metabolic
reroutings that occur in several diseases. Particularly, in the case of cancer, where the
cells re-programme their metabolic activities, rerouting fluxes in such a way that they
can continue to proliferate and maintain their malignant properties, minRerouting can
help us understand these reroutings and perhaps help in finding better therapeutic cures.
Potential synergistic effects of drugs can be unearthed from applications of this algo-
rithm. The submodule distribution and the metabolic efficiency results take us one step
closer to understanding the structure of redundancy present across metabolic networks.
They reveal hidden dependencies between reactions and the influence they have on
flux rerouting in a network. This approach of interpreting flux switching is crucial to
understanding redundancies in metabolic networks and their differing roles.

Supplementary information. Supplementary information has been provided in
Appendix A.
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Appendix A Extended Data
The reaction distribution is explained pictorially in Figure A1.
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Fig. A1 Representation of the Reaction Space and the different Rerouting Sets.

Fig. A2 Redundancy Index of Reactions distributed over the type of reaction for each species. There is
no relation between the type of reaction and its tendency to form redundant pairs.
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Fig. A3 Distribution of SL Cluster Size across Organisms and Norms. Notice that the SL Cluster Size is
the smallest for the zero and one norms, while the SL Cluster Size obtained using two norm is approximately
an order of magnitude higher.

Fig. A4 Distribution of Common SL Cluster Size across Organisms and Norms. Notice that the Common
SL Cluster Size is the smallest for the zero and one norms, while the Common SL Cluster Size obtained using
two norm is approximately an order of magnitude higher.
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Fig. A5 Distribution of Net flux difference between reaction pairs, across Organisms and Norms. The
net flux difference shows similar results across the norms.

Fig. A6 Metabolic Subsystem Analysis for the model e_coli_core. Distribution of DLs.
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Fig. A7 Metabolic Subsystem Analysis for the model iYL1228. Distribution of DLs.

Fig. A8 Metabolic Subsystem Analysis for the model iIT341. Distribution of DLs.
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Fig. A9 Metabolic Subsystem Analysis for the model STM_v1_0. Distribution of DLs.

Fig. A10 Metabolic Subsystem Analysis for the model iSSON_1240. Distribution of DLs.
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Fig. A11 Metabolic Subsystem Analysis for the model iPC815. Distribution of DLs.
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Fig. A12 Comparison of Cluster Size and Net Flux Difference of Clusters for two different approaches
to Synthetic Lethals—minRerouting and Massucci [17]. Notice that the net flux difference is significantly
lesser for minRerouting than for the observations made previously. [17]. [Wilcoxon test was conducted. Signif-
icance levels: *** implies p-value < 0.001, ** implies p-value < 0.01, * implies p-value < 0.05]
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Fig. A13 Distribution of Size of Clusters, across Organisms and Classes of the Cluster. The size is greater
for RSLs than for PSLs. [Wilcoxon test was conducted. Significance levels: *** implies p-value < 0.001, ** implies
p-value < 0.01, * implies p-value < 0.05]

Fig. A14 Distribution of Synthetic Accessibility of SL pairs, across Organisms and Classes of the Clus-
ter. The Synthetic Accessibility is smaller for RSLs than for PSLs as PSLs activate new reactions while switching
fluxes. [Wilcoxon test was conducted. Significance levels: *** implies p-value < 0.001, ** implies p-value < 0.01,
* implies p-value < 0.05]
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Fig. A15 Distribution of Net Flux Difference of SL pairs, across Organisms and Classes of the Cluster.
The net flux difference is also higher for RSLs than for PSLs. [Wilcoxon test was conducted. Significance levels-
*** implies p-value < 0.001, ** implies p-value < 0.01, * implies p-value < 0.05]

Fig. A16 Schematic of reaction pair distribution between the RSL and PSL classes for iIT341.

Fig. A17 Schematic of reaction pair distribution between the RSL and PSL classes for iEK1008.
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Fig. A18 Schematic of reaction pair distribution between the RSL and PSL classes for iML1515.

Fig. A19 Schematic of reaction pair distribution between the RSL and PSL classes for iPC815.

Fig. A20 Schematic of reaction pair distribution between the RSL and PSL classes for iSSON_1240.

Fig. A21 Schematic of reaction pair distribution between the RSL and PSL classes for STM_v1_0.
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