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ABSTRACT 31 

 32 

While alterations in nucleus size, shape, and color are ubiquitous in cancer, 33 

comprehensive quantification of nuclear morphology across a whole-slide histologic 34 

image remains a challenge. Here, we describe the development of a pan-tissue, deep 35 

learning-based digital pathology pipeline for exhaustive nucleus detection, 36 

segmentation, and classification and the utility of this pipeline for nuclear morphologic 37 

biomarker discovery. Manually-collected nucleus annotations were used to train an 38 

object detection and segmentation model for identifying nuclei, which was deployed to 39 

segment nuclei in H&E-stained slides from the BRCA, LUAD, and PRAD TCGA cohorts. 40 

Interpretable features describing the shape, size, color, and texture of each nucleus 41 

were extracted from segmented nuclei and compared to measurements of genomic 42 

instability, gene expression, and prognosis. The nuclear segmentation and classification 43 

model trained herein performed comparably to previously reported models. Features 44 

extracted from the model revealed differences sufficient to distinguish between BRCA, 45 

LUAD, and PRAD. Furthermore, cancer cell nuclear area was associated with increased 46 

aneuploidy score and homologous recombination deficiency. In BRCA, increased 47 

fibroblast nuclear area was indicative of poor progression-free and overall survival and 48 

was associated with gene expression signatures related to extracellular matrix 49 

remodeling and anti-tumor immunity. Thus, we developed a powerful pan-tissue 50 

approach for nucleus segmentation and featurization, enabling the construction of 51 

predictive models and the identification of features linking nuclear morphology with 52 

clinically-relevant prognostic biomarkers across multiple cancer types. 53 

 54 
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INTRODUCTION 56 

 57 

Histological assessment of tissue is central to the diagnosis and classification of 58 

malignancy, and critically informs patient management. Pathologists routinely report 59 

visible alterations in nuclear morphology. Altered nuclear features are ubiquitous in 60 

cancer, and changes in nuclear size, shape, coloration, texture, nucleoli, and nuclear-61 

cytoplasmic ratio, as well as their intratumoral variance, are important features of 62 

histologic grade, which has prognostic relevance independent of disease stage1,2.  The 63 

enumeration and morphologic features of mitoses also informs pathologist assessment 64 

of malignancy3. Furthermore, nuclear morphology can be important diagnostic features 65 

of certain cancers, such as nuclear clearing (“Ophan Annie Eyes”) and 66 

pseudoinclusions of papillary thyroid carcinoma4.  67 

A complex interplay exists between nuclear morphology and the genetic, 68 

epigenetic, and transcriptomic milieu of cancer cells, reflecting the importance of the 69 

nucleus to the process of oncogenic transformation. Distorted nuclei can indicate 70 

dysregulated replication processes, aneuploidy, genomic instability, and genetic 71 

mutations that affect stability and function of the nuclear envelope5.  Indeed, many 72 

cancers have altered expression of nuclear envelope components, resulting in nuclear 73 

rupture and micronuclei formation, further increasing genomic instability5,6. In addition, 74 

components of the nuclear envelope are known to bind to both chromatin and 75 

transcription factors, providing a spatial regulation to gene transcription and 76 

expression5,7. Therefore, the visual appearance of cancer cell nuclei has the potential to 77 

reveal key information about the biology of a tumor. 78 

The quantitation of nuclear morphology has been a long sought-after goal8. Early 79 

studies used semi-quantitative approaches to enumerate features such as nuclear size 80 

and shape; these works revealed relationships between increased nuclear area and 81 

altered nuclear shape with poor prognosis and advanced disease in breast cancer and 82 

prostate cancer, respectively9–11. The use of computational approaches in pathology 83 

image analysis to identify and quantify nuclear changes has gained traction as modern 84 

computer vision methods have allowed for rapid, reproducible and cost-effective 85 

quantification of nuclear morphology. Using these methods, nuclear morphometric 86 
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features have been shown to correlate with relevant clinical and pathological metrics, 87 

such as oligodendroglioma component in glioblastoma12, as well as stage13, disease 88 

aggressiveness14, recurrence15–17, and outcome18 in other cancer subtypes. In addition, 89 

increased nuclear size has been correlated with whole genome duplication19,20, and 90 

nuclear morphometric features have allowed for the prediction of relevant molecular 91 

information, such as ER status21 and Oncotype DX risk scores22,23 in breast cancer. 92 

Most recently, Nimgaonkar et al. described an AI-derived histologic signature, the main 93 

component of which was variance in nuclear morphology in cancer cells, that predicted 94 

response to gemcitabine in patients with pancreatic adenocarcinoma24.  95 

Digitized whole slide images (WSIs) have enhanced the degree to which nuclear 96 

morphology can be studied in histological specimens12,13. However, the large size of 97 

WSIs - up to billions of pixels and containing thousands of nuclei - makes exhaustive 98 

manual annotation infeasible; thus studies have relied on manually-selected subregions 99 

of interest rather than entire slides20,25. Automated methods are, therefore, needed to 100 

fully quantify nuclear features in WSIs. We recently described a cell- and tissue-level 101 

computational pathology pipeline using WSIs for the automated computation of human 102 

interpretable features (HIFs), distinctive features with tangible methods for validation26. 103 

This pipeline allows the use of HIFs to predict treatment-relevant molecular phenotypes 104 

and allows for integration with current pathological methods. Given that morphological 105 

analysis of histology features is central to pathology workflows, we sought to extend this 106 

work to identify nuclear human interpretable features (nuHIFs) in multiple cancer types. 107 

In this paper, we present a multi-tissue model for the exhaustive detection, 108 

segmentation, and classification of nuclei from entire hematoxylin and eosin (H&E)-109 

stained WSIs, allowing for the exhaustive analysis of slide-level descriptors of nuclear 110 

size, shape, texture, and staining intensity. Furthermore, we demonstrate that these 111 

nuHIFs are predictive of clinically relevant information in multiple cancer types. 112 

 113 
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MATERIALS AND METHODS 115 

 116 

Study Design 117 

Manually collected annotations were used to train and validate an object detection and 118 

segmentation model to detect and segment nuclei from H&E stained tissue slides. 119 

Training data variation and number of annotations were selected to exceed previously 120 

used standards in the field27 and exhibit wide variation in tissue morphology as 121 

subjectively assessed by study pathologists (MGD and LY). This model was deployed 122 

on whole-slide H&E images from The Cancer Genome Atlas (TCGA) to extract features 123 

from each nucleus in each slide, and the resulting features were used to analyze the 124 

relationship between nuclear morphology and underlying molecular markers of cancer, 125 

and patient outcomes. Inclusion of TCGA slides was performed in accordance with 126 

literature norms (e.g. as by Saltz et al.28): TCGA slides were selected to be the DX1 127 

(primary diagnostic) slide for each case in TCGA and no outlier exclusion was 128 

performed, to conservatively reflect real-world conditions where same-case replicates 129 

may not be available. Where multiple hypotheses were tested, all reported statistics 130 

were corrected to control false discovery rate as described below. 131 

 132 

Dataset Description and Annotation Collection 133 

Over 29,000 manual annotations of cell nuclei were collected from H&E images from 21 134 

tumor types at 40x and 20x magnification from TCGA29, as well as a proprietary set of 135 

H&E-stained tissue biopsies of skin, liver non-alcoholic steatohepatitis, colon 136 

inflammatory bowel disease, and kidney lupus. Board-certified pathologists (MGD and 137 

LY) selected 1000 x 1000 pixel patches that were exemplary of varied tissue and 138 

nuclear morphology from the training slides and trained collaborators to perform 139 

exhaustive manual annotation of nuclei in the patches. Annotations were checked for 140 

quality, adjusted, and confirmed by MGD and LY. This process resulted in 67 WSI 141 

patches exhaustively annotated for nuclei. These patches were split into training, 142 

validation, and held-out test data sets to ensure distribution of tissue types (Table 1). 143 

 144 
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Following model training and initial testing, an additional two data sources were used to 145 

collect additional annotations for model testing. H&E-stained slides of ulcerative colitis 146 

were obtained from BioIVT (Westbury, NY), and H&E-stained breast cancer slides were 147 

generously provided by Cleveland Clinic Foundation (Cleveland, OH). An additional 14 148 

512 x 512 pixel patches were identified from these data sources (seven patches from 149 

each source), and an additional 2,647 manual, exhaustive nucleus annotations were 150 

collected for model evaluation (Table 2).  151 

 152 

Nuclear Segmentation Model Architecture 153 

A Mask-RCNN-style architecture was selected for nuclear segmentation. A ResNet50 154 

backbone pretrained on the ImageNet dataset was used to produce the feature pyramid 155 

network. The first two of five modules that comprise ResNet50 were frozen during 156 

training to preserve the pretrained weights of early layers. Model development was 157 

performed using the PyTorch library30. 158 

 159 

Nuclear Segmentation Model Training 160 

The manually-collected annotations were used to train the model for detecting and 161 

segmenting cellular nuclei (Figure 1A). During training, the annotated patches were 162 

augmented by crops, flips, rotations, and affine deformations.  163 

 164 

Cell Classification 165 

Following nuclear segmentation, the cell class of each nucleus was assigned using 166 

PathExploreTM (PathAI, Boston, MA)31 models specific to breast cancer (BRCA), lung 167 

adenocarcinoma (LUAD), and prostate adenocarcinoma (PRAD); PathExplore is for 168 

research use only and is not for use in diagnostic procedures. Cancer epithelial cells, 169 

fibroblasts, macrophages, lymphocytes and plasma cells were predicted for all three 170 

cancer types, while additional cell classes were predicted for LUAD (granulocytes and 171 

normal cells) and PRAD (smooth muscle cells, endothelial cells, and normal epithelial 172 

cells). Model performance for the prediction of cell types was assessed by comparing 173 

model predictions to pathologist annotations in nested pairwise fashion32.  Model 174 

performance metrics for BRCA, LUAD, and PRAD are shown in Supplementary Figures 175 
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S1-S3, respectively, and Supplementary Tables S1 and S2. Example prediction results 176 

are shown in Figure 3. The five pan-indication cell classes (cancer epithelial cells, 177 

fibroblasts, macrophages, lymphocytes, and plasma cells) were used for analyses 178 

assessing the biological implications of nuclear feature differences in BRCA, LUAD, and 179 

PRAD.  180 

 181 

Deployment Dataset and Feature Extraction 182 

The nuclear segmentation model was deployed on publicly available images of H&E 183 

slides from the BRCA (N=886), PRAD (N=392), and LUAD (N=426) TCGA cohorts; a 184 

summary of clinicopathologic features of each cohort is shown in Table 3. Model 185 

performance was qualitatively assessed by board-certified pathologists and determined 186 

to be consistent with performance on the held-out test dataset.  The features computed 187 

for each individual nucleus were: area, circularity, eccentricity, major and minor axis 188 

length, perimeter, solidity, and the mean and standard deviation of pixel grayscale 189 

intensity, pixel saturation, and pixel A and B channels in LAB colorspace. The mean and 190 

standard deviation of each feature from each nucleus class on the slides were used to 191 

summarize the nuclear morphology on each slide. This yielded 30 slide-level nuHIFs for 192 

each cell type, e.g. the mean area of cancer nuclei, the standard deviation of fibroblast 193 

nuclear eccentricity, or the mean pixel grayscale intensity of lymphocyte nuclei. 194 

Attributes and features described by nuHIFs are included in Figure 1B. Thus, the total 195 

number of features summarizing the morphology on each slide was 30 times the 196 

number of cell classes.  197 

 198 

Exploring Cancer Type and Nuclear Morphology 199 

To compare the nuHIFs quantifying cancer cell, fibroblast, and lymphocyte morphology, 200 

uniform manifold approximation and projection (UMAP) analysis was performed. 201 

Nuclear HIFs were z-scored across all cancer types for standardization. UMAP was 202 

parameterized with 100 neighbors, an embedding dimension of 2, and the Euclidean 203 

distance metric. Features characteristic of each cancer type were evaluated by 204 

averaging each feature across the samples of each cancer type and z-scoring for 205 
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visualization; hierarchical clustering (using Euclidean distance with average linkage) 206 

identified features that varied across cancer types. 207 

 208 

Classifying Cancer Type from Nuclear Morphology 209 

Random forest (RF) binary classification models were trained and applied to each cell-210 

type-specific nuHIF set to differentiate between pairs of cancer types. RF classification 211 

models were trained using 5-fold stratified cross-validation with balanced class 212 

weighting. The performance of each model was assessed using the area under the 213 

receiver operating characteristic curve (AUROC) on each held-out validation split. The 214 

mean AUROC on the held-out validation splits is reported. RF model training was 215 

performed in scikit-learn with default hyperparameters (100 trees)33. 216 

 217 

Classifying Breast Cancer Subtype from Nuclear Morphology 218 

Characteristics of breast cancer molecular subtypes (luminal A, N=457; luminal B, 219 

N=159; HER-2, N=66; normal-like, N=31; basal-like, N=161) were obtained from a prior 220 

study by Berger and colleagues34. Random forest (RF) binary classification models 221 

were trained and applied to each cell-type-specific nuHIF set to differentiate between 222 

subtypes in a one-vs.-all manner. RF classification models and cross-validation 223 

schemes were identical to cancer type classification. 224 

 225 

Statistical Analysis 226 

Spearman (rank-based) correlation was used to find the association between variation 227 

in cancer nuclear morphology and metrics of genomic instability. Variation in size was 228 

captured  by the nuHIF “standard deviation of cancer cell nuclear area” for each slide. 229 

For metrics of genomic instability, previously published metrics were selected: 230 

aneuploidy score35 and homologous recombination deficiency (HRD) score36. RF binary 231 

classification models were trained in scikit-learn with default hyperparameters33 using 5-232 

fold stratified cross-validation with balanced class weighting, and applied to the cancer 233 

nuHIF set from each cancer type to predict binarized whole-genome doubling (WGD; 1-234 

2 doublings = 1; no doublings = 0). The performance of each model was evaluated 235 

using AUROC on each held-out validation split, and the mean AUROC is reported. The 236 
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mean RF Gini importance (also called the mean decrease in impurity) of the top five 237 

features for each cancer type across the five splits are reported. Cox proportional 238 

hazard models were utilized to explore the relationship between BRCA fibroblast 239 

nuHIFs and overall and progression-free survival (OS and PFS, respectively). Ordinal 240 

tumor stage (1-4) and patient age were included as clinical covariates; 17 subjects 241 

missing tumor stage and the one missing survival data were excluded. Robust z-scoring 242 

(i.e. using the median and scaled interquartile range) of each nuHIF before modeling 243 

was performed for simple interpretation of the hazard ratios (HRs). The p-values 244 

associated with each nuHIF were corrected for false discovery rate (FDR) by the 245 

Benjamini-Hochberg procedure. Survival analyses were performed using the Lifelines 246 

library37. Gene expression data was acquired from the Genomic Data Commons (GDC)-247 

processed TCGA BRCA cohort (release 18.0) from the UCSC Xena data portal38. Gene 248 

expression samples were paired to case-matched slides in our dataset, yielding 868 249 

expression-nuHIF pairs. Spearman (rank-based) correlation was used to quantify the 250 

association between bulk RNAseq expression and the mean fibroblast nucleus area 251 

nuHIF for each gene and corrected for FDR via Benjamini-Hochberg procedure. Genes 252 

with corrected p < 0.05 and Spearman correlation greater than 0.15 or less than -0.15 253 

were selected to comprise the significant positively and negatively associated gene 254 

sets, respectively, for gene set enrichment analysis (GSEA). GSEA39 was performed 255 

using the Molecular Signatures Database (MSigDB)40 and the REACTOME pathway 256 

database41, and the ten most significant pathway overlaps, with FDR-corrected p < 257 

0.05, are reported. 258 

 259 
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RESULTS 261 

 262 

Model development, performance, and nuclear feature extraction 263 

We collected annotations and trained a machine learning (ML) model to detect and 264 

segment nuclei in H&E-stained WSIs as described in the Methods and shown in Figure 265 

1. The model is not limited to sampling regions of interest from tissue samples, but 266 

rather can be utilized to exhaustively annotate WSIs. Application of the model to our 267 

held-out test data, including held-out tissue and disease types, demonstrated 268 

performance (mean Dice score=0.818, aggregated Jaccard index (AJI) =0.619) 269 

comparable to models reported previously in the literature27,42. Importantly, model speed 270 

was adequate to apply to multi-gigabyte WSIs at full resolution (approximately 0.25 271 

μm/pixel; roughly 30 minutes per slide). Examples of model performance in 272 

mesothelioma, head and neck squamous cell carcinoma, and stomach adenocarcinoma 273 

are shown in Figure 2. 274 

 275 

We selected clinical samples from two additional datasets, designated OOD-Test-1 and 276 

OOD-Test-2, characterized in Table 2. We collected additional annotations on these 277 

datasets and characterized model performance. We found performance numerically 278 

comparable or superior to our initial held-out test data despite different sample origin, 279 

and one dataset containing non-cancer tissue samples (OOD-Test-1 mean Dice = 280 

0.818, AJI = 0.628; OOD-Test-2 mean Dice = 0.826, AJI = 0.649). 281 

 282 

Having evaluated our model’s performance, we deployed the resulting model on primary 283 

diagnostic (DX1) H&E slides from the breast cancer (BRCA; N=892), prostate 284 

adenocarcinoma (PRAD; N=392), and lung adenocarcinoma (LUAD; N=426) TCGA 285 

cohorts (Figure 3); model performance was visually assessed to be consistent with test 286 

data. The distribution of pixel sizes (microns per pixel; MPP) of these three cohorts are 287 

shown in Supplementary Figure 4.  The median MPPs were 0.248, 0.252, and 0.252 for 288 

BRCA, LUAD, and PRAD datasets respectively. We extracted interpretable features 289 

describing the shape, size, staining intensity, and texture of every nucleus on each WSI 290 

(Supplementary Table S3). We performed further analysis on nuHIFs specific to cancer 291 
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cells, fibroblasts, and lymphocytes, as these three cell classes are common across all 292 

cancer types and have been implicated in clinical outcomes. 293 

 294 

nuHIFs show within- and between-cancer type variation 295 

To assess whether nuHIFs differ between cancer types, we performed UMAP to 296 

compare the nuHIFs from cancer cells (Figure 4A), fibroblasts (Figure 4B), and 297 

lymphocytes (Figure 4C) in BRCA, LUAD, and PRAD datasets. We observed notable 298 

inter- and intra-dataset variation in nuHIFs. For cancer cells, nuclear morphology was 299 

distinct between PRAD and LUAD datasets, while BRCA dataset cancer cells showed 300 

nuclear features similar to both PRAD and LUAD (Figure 4A). Unsupervised hierarchical 301 

clustering of z-scored features revealed specific nuHIFs differentially exhibited in these 302 

three cancer subtypes (Figure 4B). For example, features associated with nuclear size 303 

were higher in LUAD cancer nuclei relative to PRAD. Assessment of the distribution of 304 

three size-related features in BRCA, LUAD, and PRAD confirmed these observations – 305 

cancer nuclei in PRAD were smaller in area and major axis length than cancer nuclei in 306 

BRCA and LUAD (Supplementary Figure 5A), while fibroblast area  and major axis 307 

length is larger in BRCA than in LUAD and PRAD (Supplementary Figure 5B). Minute 308 

variation in minor axis length was observed between the three cancer types for cancer 309 

cells and fibroblasts (Supplementary Figure 5C).  In contrast, lymphocyte nucleus size 310 

parameters did not appear to differ between cancer types (Supplementary Figure 5). In 311 

addition to size features, features associated with nuclear staining were observed to 312 

differ between cancer types.  In particular, notable differences in features relating to 313 

nucleus stain intensity, color, and shape between PRAD and LUAD were observed 314 

(Figure 4). The clearest distinction between cancer subtypes was discerned through 315 

nuHIFs of fibroblasts in BRCA, LUAD, and PRAD (Figure 4B,D). Unsupervised 316 

hierarchical clustering revealed specific features enriched in fibroblasts from these 317 

cancer subtypes. Interestingly, lymphocyte nuHIFs also differed between cancer types.  318 

 319 

To ensure that the observed differences in nuclear features between cancer types were 320 

not biased by scanned image pixel size, we measured the Pearson correlation between 321 

nuclear size (using major axis length as a representative feature) and MPP for each cell 322 
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type within BRCA, LUAD, and PRAD datasets individually, to remove the potential effect 323 

of possible between-cancer-type variation in nuclear size. The within-cancer-type 324 

variation in mean nuclear major axis length between slides at the same MPP is large for 325 

cancer cells (Supplementary Figure 6A), fibroblasts (Supplementary Figure 6B), and 326 

lymphocytes (Supplementary Figure 6C). In addition, the magnitude of the within-327 

cancer-type Pearson correlations is low, although some rise to the level of significance, 328 

perhaps due to the high power of the large dataset. The within-cancer-type Pearson 329 

correlations also show an inconsistent sign, ranging from 0.206 to -0.151. Generally, 330 

these results suggest that there is an inconsistent directional effect of MPP on nuclear 331 

size, and other factors are likely driving the observed differences. 332 

 333 

Because of the apparent association between nuclear morphology and cancer type, we 334 

hypothesized that nuHIF-quantified nuclear morphology could be a distinguishing 335 

feature of cancer types. To test this, we constructed a simple random forest binary 336 

classification model for differentiating between each pair of cancer types (BRCA, PRAD, 337 

LUAD) using cancer, fibroblast, or lymphocyte nuclear HIFs. We performed five-fold 338 

cross validation to estimate the extent to which cancer types may be differentiated by 339 

nuclear morphology. We found consistently strong performance for differentiating 340 

between cancer types using nuclear morphology (Figure 4D). Although lymphocyte 341 

nuclear morphology was less distinct between cancer types when visualized with 342 

UMAP, supervised analysis indicated that lymphocyte morphology differed between 343 

cancer types. 344 

 345 

Cancer nuclear morphology is associated with metrics of genomic instability in multiple 346 

cancer types 347 

Cancer nuclear atypia is used clinically as a marker of malignancy. We therefore 348 

hypothesized that underlying levels of genomic instability may partially explain the 349 

observed heterogeneity in cancer nuclear morphology within cancer subtypes, as well 350 

as between cancer types with known differences in malignancy. We tested this 351 

hypothesis by assessing the relationship between cancer nuclear morphology and 352 

genomic instability in LUAD, BRCA, and PRAD cohorts using aneuploidy score and 353 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2024. ; https://doi.org/10.1101/2023.05.15.539600doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.15.539600
http://creativecommons.org/licenses/by-nc/4.0/


homologous recombination deficiency (HRD) score as metrics of genomic instability. 354 

Indeed, using the standard deviation of cancer nuclear area as a metric of nuclear 355 

atypia, we detected significant correlation between this nuHIF and both aneuploidy 356 

score (Figure 5A) and HRD score (Figure 5B). When assessed in a pan-cancer manner, 357 

the overall correlation increased, and the pattern observed in cancer nuHIF UMAP 358 

analysis persisted: PRAD displayed a lower level of genomic instability across both 359 

metrics compared to LUAD, while BRCA showed a wide range of genomic instability, 360 

with similarities to both PRAD and LUAD. These results confirm that cancer nuclear 361 

morphology, especially variability in nuclear size, is associated with the level of genomic 362 

instability. 363 

 364 

Because aneuploidy score was correlated to variation in cancer nuclear area, we 365 

posited that cancer nuclear morphology was predictive of whole genome doubling. To 366 

address this hypothesis, we trained random forest models for predicting binarized 367 

whole-genome doubling using cancer nuHIFs from each of the BRCA, LUAD, and 368 

PRAD cancer types. We found that cancer nuclear morphology was predictive of WGD 369 

for each cancer type, with strongest predictive power in BRCA, and more variation in 370 

performance expected for PRAD, where WGD occurs less frequently (Figure 5C). The 371 

mean RF importance across the five splits is reported for the top five features for each 372 

cancer type in Supplementary Table S4. Briefly, variation in cancer nuclear dimensions 373 

were most important for predicting WGD in BRCA, mean cancer nuclear dimensions 374 

were most important for predicting WGD in LUAD, and a mix of color and shape 375 

features were found to be most important for PRAD. 376 

 377 

Nuclear morphology enables prediction of breast cancer molecular subtype 378 

We hypothesized that nuclear morphology would differ in subtle but meaningful ways 379 

between molecular subtypes of breast cancer, and that these differences might enable 380 

classification of molecular subtypes of breast cancer from H&E images. To test this 381 

theory, we trained nuHIF-based classification models for predicting breast cancer 382 
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subtype in a one-vs.-all manner (Figure 6). Briefly, we found that cell-type-specific 383 

nuclear morphology enabled classification of some but not all breast cancer molecular 384 

subtypes. Interestingly, the ability to predict subtype varied by subtype as well as by cell 385 

type being used to make the inference. Cancer nuclear morphology (Figure 6A) or 386 

lymphocyte nuclear morphology (Figure 6C) enabled moderate prediction (AUROC > 387 

0.7) of luminal A and basal-like breast cancer subtypes. Cancer nuclear morphology but 388 

not lymphocyte or fibroblast nuclear morphology enabled moderate prediction of HER-2 389 

breast cancer subtype. Interestingly, fibroblast nuclear morphology alone was a poor 390 

predictor of molecular subtype (Figure 6B). When aggregating cell types (Figure 6D), 391 

luminal A and basal-like prediction AUROC increased further to ≥ 0.80. These results 392 

suggest that altered nuclear morphology is a possible histological presentation of breast 393 

cancer molecular subtypes. 394 

 395 

Fibroblast nuclear morphology is associated with survival and gene expression patterns 396 

in breast cancer 397 

The interplay between fibroblasts and cancer cells is complex and prognostically 398 

relevant, as associations between cancer-associated fibroblasts (CAFs) and cancer 399 

progression have been recently described43–46. Notably, in breast cancer, CAFs have 400 

been shown to contribute to prognosis47, while CAF subset heterogeneity correlates 401 

with metastasis48. We therefore hypothesized that fibroblast nuHIFs in BRCA would be 402 

clinically prognostic, independent of further molecular testing. We sought to identify 403 

fibroblast nuHIFs that are associated with progression-free (PFS) and/or overall survival 404 

(OS). We performed regression between each fibroblast nuHIF and PFS and OS using 405 

Cox proportional hazards models with patient age and ordinal cancer stage as 406 

regression covariates. After FDR correction, multiple fibroblast nuHIFs were significantly 407 
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prognostic of PFS (Supplementary Table S5) and OS (Supplementary Table S6). 408 

Features quantifying the same general attribute, e.g. nuclear area and nuclear axis 409 

length as measures of size, were indeed found to be correlated with one another (mean 410 

pairwise Pearson r = 0.90 for fibroblast nuclear area, major axis length, minor axis 411 

length, and perimeter). We selected the mean fibroblast nucleus area 412 

(“MEAN[FIBROBLAST_NUCLEUS_AREA]_H & E”) for further evaluation, and show 413 

Kaplan-Meier survival curves for PFS and OS for the population binarized by this 414 

feature median value. High nuclear area was prognostic of worse outcomes (Figure 7, 415 

PFS HR = 1.81, 95% CI [1.32-2.48], p = 0.0002; OS HR = 1.77, 95% CI [1.22, 2.56], p = 416 

0.002). 417 

 418 

Having identified this relationship between fibroblast nuclear size and prognosis, we 419 

sought to assess whether mean fibroblast nuclear area was associated with differences 420 

in bulk gene expression in breast cancer. We computed the rank-based (Spearman) 421 

correlation between fibroblast mean nuclear area and each gene in TCGA bulk gene 422 

expression to identify genes associated with this nuHIF (see Methods for details). 423 

Fibroblast nuclear area was significantly, albeit weakly (absolute r > 0.15), associated 424 

with expression of numerous individual genes (Supplementary Table S7). In contrast to 425 

the weak associations observed at the individual gene level, gene set enrichment 426 

analysis performed on the genes associated with morphology revealed significant 427 

relationships between fibroblast nuclear size and levels of several previously identified 428 

expression pathways. Notably, larger fibroblast nuclear size showed positive 429 

association with gene expression in pathways associated with degradation and 430 

remodeling of the extracellular matrix (Supplementary Table S8) indicating higher 431 

fibroblast activity. Meanwhile, larger fibroblast nuclear size showed negative association 432 

with the expression of genes in pathways relating to immune response to the tumor, 433 

such as B cell receptor signaling and lymphoid cell interactions with non-lymphoid cells 434 

(Supplementary Table S9). Taken together, these results suggest that fibroblast nuclear 435 

morphology is indicative of underlying patterns of gene expression and is thus 436 

biologically grounded. 437 

 438 
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DISCUSSION 440 

 441 

In this study, we have presented a pan-tissue approach for nucleus segmentation, 442 

classification, and featurization on entire whole-slide pathology images. This method 443 

enabled the construction of predictive models and the identification of features linking 444 

nuclear morphology with quantitative biomarkers across BRCA, PRAD, and LUAD. 445 

These results highlight the potential of ML-enabled quantification of nuclear 446 

morphometry as a prognostic feature of many cancer types and a potential biomarker to 447 

be used by pathologists. Furthermore, this approach enables the quantitative testing of 448 

hypotheses and numerical quantification of histological relationships proposed by 449 

pathologists (e.g., by establishing a numerical relationship between nuclear atypia and 450 

disease metrics). In addition, our approach enables the data-driven identification of sub-451 

visual changes that may be clinically meaningful.  452 

 453 

One particular strength of our approach is the ability to not only measure morphologic 454 

features associated with nuclei in a cancer specimen, but to assign a cell class to each 455 

nucleus, as well.  To our knowledge, this work provides the first characterization of 456 

nuclear morphologies of specific cell types in different cancers at scale. As such, we 457 

were not only able to assess the associations of cancer cell nuclear morphology with 458 

clinically relevant metrics, but we were also able to examine these relationships using 459 

nuclear features of fibroblasts and lymphocytes. For example, fibroblast nuHIFs 460 

provided a clear separation of cancer types in both unsupervised and supervised 461 

analyses, indicating that the nuclear morphologies of fibroblasts differ in breast, lung, 462 

and prostate cancers. Given recent observations that CAFs can be classified into 463 

multiple functional subtypes based on gene expression49, the distinctive nuclear 464 

morphologies seen in fibroblasts of breast, lung, and prostate cancers suggests that 465 

fibroblasts may contribute to cancer progression differently in these three cancer types. 466 

Importantly, we cannot distinguish between the multiple known subtypes of intratumoral 467 

fibroblasts using the approach described herein.  This caveat is particularly relevant to 468 

the associations of fibroblast nuclear morphology with gene expression in breast 469 

cancer. Increased nuclear size was positively associated with an extracellular matrix 470 
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remodeling gene expression profile and negatively associated with the expression of 471 

genes relating to anti-tumor immune response (Supplementary Tables S4, S5).  472 

Interestingly, single-cell analysis of fibroblasts in breast cancer has revealed several 473 

disparate populations, including an immunosuppressive population characterized by the 474 

expression of genes involved in collagen production and extracellular matrix remodeling 475 

and a separate class with an inflammatory gene expression profile50. While our model 476 

cannot directly predict the presence of these fibroblast sub-populations, given the 477 

prognostic associations of nuclear morphology in our dataset and sc-RNAseq 478 

expression50, it will be of interest to test whether specific nuclear features of CAFs 479 

associate with functional subtypes. 480 

 481 

Furthermore, nuclear features derived from our model were associated with PFS and 482 

OS in breast cancer.  It is worth noting that this analysis, while incorporating patient age 483 

and clinical stage as regression covariates, was conducted on a large cohort of patients 484 

across study sites for whom relevant clinical information (e.g., treatment history) was 485 

not readily available.  Therefore, while our result linking fibroblast nuclear morphology to 486 

prognosis in breast cancer is intriguing, further study in more controlled patient cohorts 487 

is needed to confirm this observation. 488 

 489 

Herein, we observed that nuclear morphology differed between cancers as assessed 490 

using nucleus segmentation models. This result was observed not only for cancer 491 

epithelial cells and fibroblasts, but also, surprisingly, for lymphocytes. However, caution 492 

is warranted in interpretation – it is plausible that batch effects between slides from 493 

different tumor groups could drive variation in nuclear presentation, especially due to 494 

differences in pre-analytic variables such as slide preparation and staining. However, it 495 

is also plausible that this finding reflects the differences in genetic and epigenetic 496 

landscapes between tumor types, levels of genomic instability, and overall differences in 497 

cancer evolution between these cancer types that may manifest as disparate nuclear 498 

morphologies.  499 

 500 
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The observed relationship between greater variation in cancer nuclear area and 501 

genomic instability was consistent across cancer types, indicating a quantitative link 502 

between nuclear pleomorphism and genomic instability pertinent to numerous cancer 503 

histologies. Prior analyses have noted an association between increased variation in 504 

nuclear size and whole genome doubling, suggesting a direct link between variation in 505 

nuclear size and genomic instability19,20. Additional work has noted a correlation 506 

between nuclear morphology and HDR in luminal and triple-negative breast cancer51. 507 

Given that nuclear size reflects DNA content, variation in nuclear size features between 508 

cells may be linked to underlying genomic instability. Similarly, recent work identified a 509 

histologic signature based on variability in nuclear morphology in pancreatic cancer 510 

cells that was associated with improved response to gemcitabine but was not 511 

associated with a previously defined gene expression-based disease subtype24. 512 

Pancreatic cancer patients with BRCA1/2 mutations, associated with increased genomic 513 

instability, are known to respond more favorably to therapy regimens involving 514 

gemcitabine 52; thus, our result that nuclear variation is associated with genomic 515 

instability may explain this recent finding. To this end, our observation that variability in 516 

nuclear size (measured here by standard deviation of cancer cell nuclear area) is 517 

consistent with these prior hypotheses and allows for them to be tested on a larger 518 

scale for each case (all cells for each cell type in the WSI). While the biological result 519 

linking nuclear morphology with genomic instability is not novel, the observation of this 520 

expected result through the analyses of our novel model-derived nuclear features 521 

indicates that our approach supports the technical robustness and biological 522 

applicability of our approach. 523 

 524 

One mitigation to potential batch effects is to analyze nuclear morphology within a 525 

single cancer type, and additionally to focus on size and shape features that are more 526 

likely to be robust to tissue preparation variabilities. For example, in breast cancer, we 527 

observed a clear relationship between fibroblast nuclear size, prognosis, and gene 528 

expression patterns. In breast cancer, increased fibroblast nuclear area was positively 529 

correlated with gene expression in extracellular matrix remodeling pathways and 530 

negatively correlated with genes in anti-tumor immune response pathways. The CAF 531 
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subtypes present in a breast cancer sample may impact the tumor immune 532 

microenvironment49. While it would be interesting to posit that fibroblast nuclear 533 

morphology could reflect these subtypes, the ability to explore this is precluded by the 534 

use of bulk RNAseq data, since fibroblast nuclear features and the bulk expression 535 

profiling reflect a summarization of a whole slide. However, because nuclear 536 

morphology is quantified at single-cell resolution, this approach could be tied directly to 537 

single-cell expression analysis. Further work is necessary to delineate the functional 538 

relevance of nuclear morphology changes in fibroblasts in cancer. 539 

 540 

As noted, batch effects have the potential to influence the interpretation of model 541 

outputs due to data that are aggregated across different sites, sources, and preparation 542 

laboratories. Pixel size variability, due to slide scanning with different MPP resolution, is 543 

one aspect of how these differences may manifest, but there are others to consider as 544 

well: differences in stain reagents, sample preparation, sample storage, or other pre-545 

analytical variables. For the analyses described herein, the median MPP values were 546 

highly similar across the three indications, with the BRCA MPP slightly lower than that 547 

of LUAD and PRAD (Supplementary Figure S4). That said, to further ensure against 548 

differences in pixel dimension contributing to bias, the size-related features of the nuclei 549 

are reported here in units of microns or square microns, which is created by multiplying 550 

the size of the mask by the appropriate MPP conversion factor. Thus, differences in the 551 

MPP should not propagate into length-features, and the slide scan characteristics 552 

should not bias the features. Furthermore, we measured the Pearson correlation 553 

between nuclear size (using major axis length as a representative feature) and MPP for 554 

each cell type within BRCA, LUAD, and PRAD datasets individually to eliminate the 555 

potential effect of possible inter-cancer-type variation in nuclear size (Supplementary 556 

Figure S6). While the within-cancer-type variation in mean nuclear major axis length 557 

between slides at the same MPP is large, the magnitude of the within-cancer-type 558 

Pearson correlations is low, although some rise to the level of significance (likely due to 559 

the high power of the large datasets). Lastly, it is worth noting that cancer-type 560 

differences in nuclear size appear to be an outlier of relatively larger magnitude than 561 

expected if MPP bias was the primary driving factor (Supplementary Figure S5).  Thus, 562 
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we are confident that the observations noted in this study regarding nuclear size 563 

features are not biased by scan-specific metrics. 564 

 565 

The approach that we undertook for nucleus segmentation and morphometry analysis in 566 

this paper has several key strengths. First, the ability to compute human-interpretable 567 

nuclear features at scale enables testing quantitative biological hypotheses, rather than 568 

relying on by-eye estimation of parameters such as variation in nuclear morphology. 569 

The ability to perform these analyses on WSIs of H&E-stained cancer tissue additionally 570 

obviates the need to hand-select regions of interest, which may contribute to biased 571 

analyses. In addition, we were able to train and deploy our model on tissues from 572 

diverse cancer types, suggesting that the model can be readily deployed on samples 573 

from varied cancer indications53.  574 

 575 

A particular strength of this approach is the interpretability of the predictions made. 576 

While HIF-based predictive clinical models are inherently less flexible than end-to-end 577 

black-box approaches (and, thus, can yield lower performance), they benefit from the 578 

lower dimensionality of features as a method of regularization, as the HIFs used herein 579 

directly map to low-dimensional representations of the tissue image. Furthermore, HIF-580 

based models allow researchers and clinicians to learn from the features and generate 581 

novel hypotheses without discarding the wealth of known biology. 582 

 583 

Although our results point to the potential of nuclear segmentation, classification, and 584 

feature analysis as a clinical screening tool, our study is limited in that our biomarker 585 

analysis was focused on academically curated datasets. These datasets were selected 586 

due to their size, completeness, and rich genomic and transcriptomic profiling data. 587 

Construction and validation of generalizable predictive machine-learning models 588 

requires the inclusion of a broad range of training and validation data, and future efforts 589 

should focus on validating these hypotheses in additional cohorts. The technical 590 

approaches we describe here have been validated by their application to other clinical 591 

data sets, showing their generalizability of this methodology and robustness of these 592 

models (data not shown). 593 
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 594 

In sum, this work highlights the power of ML-driven quantitative nuclear morphometry in 595 

multiple cancer types. The models and resulting features described herein have the 596 

potential not only to aid pathologists and research teams in discerning novel biomarkers 597 

but to provide meaningful prognostic information for cancer patients. The ability to 598 

measure these features robustly and consistently at scale may enable the development 599 

of improved clinical tools for advancing precision medicine. 600 

 601 
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GitHub prior to publication: training set, validation set, test set, OOD-2 dataset, and 633 
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inference, and feature extractions are not disclosed. Access requests for such a code 643 

will not be considered to safeguard PathAI’s intellectual property. All source code for 644 

reproducing correlational analyses and molecular predictions, will be deposited to 645 

GitHub prior to publication, and the link will be provided at that time.  646 

  647 
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FIGURE LEGENDS 648 

 649 

Figure 1. Machine learning model annotation collection, training, and application. 650 

(A) Model workflow. Briefly, pathologists trained expert annotators to perform 651 

exhaustive annotations of nuclei on H&E slide patches from diverse tissue sources. 652 

These were used to train a pan-H&E nucleus detection and segmentation model, which 653 

was subsequently evaluated on held-out patches and applied to exhaustively segment 654 

nuclei in three WSI datasets. (B) Features extracted from the model. Mean and 655 

standard deviation values were calculated for these features at the whole-slide level for 656 

cancer cells, lymphocytes, and fibroblasts. 657 

 658 

Figure 2. Example of model performance. Representative WSI patches from 659 

mesothelioma, head and neck squamous cell carcinoma (HNSCC), and stomach 660 

adenocarcinoma stained with H&E are shown in the left-most panel. Ground truth nuclei 661 

identified manually and nuclei predicted by the model are shown in the middle and right-662 

most panels, respectively. Each color represents a nucleus instance. 663 

 664 

Figure 3. Nuclear segmentation and cell type identification in multiple cancer 665 

types. Representative H&E images of (A) breast cancer (TCGA BRCA), (B) lung 666 

adenocarcinoma (TCGA LUAD), and (C) prostate adenocarcinoma (TCGA PRAD) are 667 

shown at 40X magnification. (D-F) Nuclear segmentation and cell type identification 668 

masks are overlaid onto H&E images shown in panels A-C. (H-I) High-magnification 669 

images of BRCA (G), LUAD (H), and PRAD (I). Magnified regions are indicated by 670 

dashed boxes in panels D-F. Scale bars indicate a distance of 50 μm. 671 

 672 

Figure 4. nuHIFs show variation within and between cancer types. Uniform 673 

manifold approximation and projection (UMAP) visualization of BRCA, LUAD, and 674 

PRAD defined by nuclear human interpretable feature (HIF) for (A) cancer cells, (B) 675 

fibroblasts, and (C) tumor-infiltrating lymphocytes. Clustered heatmaps of median Z-676 

scores for all 30 nuHIFs are shown for each cell type. (D) Receiver operating 677 

characteristic (ROC) curves for binary classification between paired cancer types using 678 
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nuHIFs from each of cancer, fibroblast, or lymphocyte nuclei. ROCs are shown for the 679 

five held-out validation splits and mean area under ROC (AUROC) is shown for each 680 

classification problem. In particular, fibroblast and lymphocyte nuclear features are 681 

highly able to differentiate between cancer types. Mean AUROC is shown for each class 682 

of nuclear HIF. 683 

 684 

Figure 5. Variation in cancer nuclear size correlates with metrics of genomic 685 

instability. Standard deviation of cancer cell nuclear area was compared to (A) 686 

aneuploidy score and (B) homologous recombination deficiency (HRD) score for BRCA, 687 

LUAD, and PRAD. (C) Receiver operating characteristic (ROC) curves for prediction of 688 

whole-genome doublings in BRCA, LUAD, and PRAD. ROCs are shown for the five 689 

held-out validation splits; mean AUROC is shown for each cancer type. 690 

 691 

Figure 6. Cell-type-specific nuclear morphology enables classification of breast 692 

cancer molecular subtypes. One-vs-all binary classification of breast cancer 693 

molecular subtypes (luminal A, luminal B, HER2-like, basal-like, and normal-like)34 was 694 

performed using random forest classification on nuHIFs derived from A) cancer cells, B) 695 

fibroblasts, C) lymphocytes, and D) aggregated cell types. Five-fold stratified cross-696 

validation was used, and mean AUROC for each of the iteratively held-out test sets is 697 

reported here.  698 

 699 

Figure 7. Association between fibroblast  nuclear area and survival in breast 700 

cancer. Increased fibroblast  nuclear area (≥ 50th percentile) corresponds to poor PFS 701 

(HR = 1.8163, 95% CI [1.3119-2.4823], p = 0.0002) and OS (HR = 1.7753, 95% CI 702 

[1.2206, 2.5620], p = 0.0022).  703 
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SUPPLEMENTARY FIGURE LEGENDS 704 

Supplementary Figure S1. Performance of cell classification model in breast 705 

cancer.  A) Comparison of model-predicted cell types to average pathologist 706 

annotations. The bar graph at the top left depicts the breakdown of average pathologist 707 

annotations for each class of model prediction (precision). The bar graph at the bottom 708 

right shows the breakdown of model predictions for each class of average pathologist 709 

annotation (recall). “Other Than Specified” refers to predictions of classes other than 710 

those listed, or background class. B) Agreement between model-derived cell counts and 711 

pathologist consensus counts . C) Precision, Recall, and F1 scores of model predictions 712 

compared to pathologists’ annotations in nested pairwise fashion32. D) Difference in the 713 

nested pairwise metric comparing mean difference between model and individual 714 

pathologist performance. Positive values indicate that the model out-performed 715 

pathologists when evaluated against held-out pathologists, while negative values 716 

indicate the model under-performed pathologists. Confidence intervals were obtained by 717 

bootstrapping. 718 

 719 

Supplementary Figure S2. Performance of cell classification model in NSCLC.  A) 720 

Comparison of model-predicted cell types to average pathologist annotations. The bar 721 

graph at the top left depicts the breakdown of average pathologist annotations for each 722 

class of model prediction (precision). The bar graph at the bottom right shows the 723 

breakdown of model predictions for each class of average pathologist annotation 724 

(recall). “Other Than Specified” refers to predictions of classes other than those listed, 725 

or background class. B) Agreement between model-derived cell counts and pathologist 726 

consensus counts . C) Precision, Recall, and F1 scores of model predictions compared 727 

to pathologists’ annotations in nested pairwise fashion32. D) Difference in the nested 728 

pairwise metric comparing mean difference between model and individual pathologist 729 

performance. Positive values indicate that the model out-performed pathologists when 730 

evaluated against held-out pathologists, while negative values indicate the model under-731 

performed pathologists. Confidence intervals were obtained by bootstrapping. 732 

 733 

Supplementary Figure S3. Performance of cell classification model in prostate 734 
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cancer.  A) Comparison of model-predicted cell types to average pathologist 735 

annotations. The bar graph at the top left depicts the breakdown of average pathologist 736 

annotations for each class of model prediction (precision). The bar graph at the bottom 737 

right shows the breakdown of model predictions for each class of average pathologist 738 

annotation (recall). “Other Than Specified” refers to predictions of classes other than 739 

those listed, or background class. B) Agreement between model-derived cell counts and 740 

pathologist consensus counts . C) Precision, Recall, and F1 scores of model predictions 741 

compared to pathologists’ annotations in nested pairwise fashion32. D) Difference in the 742 

nested pairwise metric comparing mean difference between model and individual 743 

pathologist performance. Positive values indicate that the model out-performed 744 

pathologists when evaluated against held-out pathologists, while negative values 745 

indicate the model under-performed pathologists. Confidence intervals were obtained by 746 

bootstrapping.  747 
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 748 

Supplementary Figure S4. Distribution of pixel sizes (in MPP) across the three 749 

TCGA datasets (BRCA, LUAD, PRAD) used in this study. 750 

 751 

Supplementary Figure S5. Distributions of nuclear size features in BRCA, LUAD, 752 

and PRAD datasets. A) Distribution of area.  B) Distribution of major axis length. C) 753 

Distribution of minor axis length. 754 

 755 

Supplementary Figure S6. Pearson correlation between nuclear size (using major 756 

axis length as a representative feature) and MPP for each cell type within BRCA, 757 

LUAD, and PRAD datasets. A) Correlation between major axis length and MPP in 758 

cancer epithelial cells.  B) Correlation between major axis length and MPP in fibroblasts. 759 

C) Correlation between major axis length and MPP in lymphocytes.  760 
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TABLES 900 

 901 

Table 1. Samples used for training and evaluating the segmentation model. 902 

Source # 

Frames 

Magnificati

on 

Microns 

Per Pixel 

(MPP) 

Indication Dataset 

TCGA-

A2-

A3XS-

01Z-00-

DX1 

3 40X  

0.2456 

Breast, Infiltrating Ductal 

Carcinoma 

Train 

TCGA-

XF-

AAMJ-

01Z-00-

DX1 

2 40X 0.2527 Bladder, Urothelial 

Carcinoma 

Train 

TCGA-

UW-

A72Q-

01Z-00-

DX1 

3 40X 0.2472 Liver, Hepatocellular 

Carcinoma 

Train 

TCGA-

G3-

A7M6-

01Z-00-

DX1 

2 40X 0.2527 Liver, Hepatocellular 

Carcinoma 

Train 

TCGA-

KM-

1 40X 0.2525 Kidney, Renal Cell 

Carcinoma 

Train 
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A7QL-

01Z-00-

DX1 

TCGA-

CV-

A6JD-

01Z-00-

DX1 

1 40X 0.2527 Head and Neck Squamous 

Cell Carcinoma 

Train 

TCGA-

02-

0009-

01Z-00-

DX1 

1 20X 0.5015 Brain, Glioblastoma Train 

TCGA-

LB-

A8F3-

01Z-00-

DX1 

3 40X 0.2527 Pancreas, Pancreatic 

Adenocarcinoma 

Train 

TCGA-

36-

2547-

01A-01-

TS1 

1 20X 0.5015 Ovary, Ovarian Serous 

Cystadenocarcinoma 

Train 

TCGA-

W5-

AA30-

01Z-00-

DX1 

3 40X 0.2529 Bile Duct, 

Cholangiocarcinoma 

Train 
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TCGA-

86-

7701-

01Z-00-

DX1 

2 40X 0.252 Lung, Lung 

Adenocarcinoma 

Train 

TCGA-

B0-

4823-

01Z-00-

DX1 

3 40X 0.252 Kidney, Renal Clear Cell 

Carcinoma 

Train 

TCGA-

02-

0009-

01Z-00-

DX1 

1 20X 0.5015 Brain, Glioblastoma 

multiforme  

Train 

TCGA-

2G-

AAKO-

05Z-00-

DX1 

1 40X 0.2277 Testicle, Acute Myeloid 

Leukemia 

Train 

PathAI 3 40X 0.2511 Liver, Hepatitis B Train 

PathAI 3 40X 0.2522 Liver, Non-alcoholic 

steatohepatitis 

Train 

PathAI 3 40X 0.2522 Kidney, Lupus Train 

PathAI 1 40X 0.2522 Colon, Inflammatory Bowel 

Disease 

Train 
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PathAI 2 20X 0.5023 Small Intestine, Carcinoid Train 

PathAI 1 40X 0.2522 Prostate, Prostate 

Adenocarcinoma  

Train 

TCGA-

EJ-

5495-

01Z-00-

DX1 

2 40X 0.252 Prostate, Prostate 

Adenocarcinoma 

Validati

on 

TCGA-

IG-

A3YA-

01Z-00-

DX1 

2 40X 0.2465 Esophagus, Esophageal 

Carcinoma 

Validati

on 

TCGA-

GS-

A9U3-

01Z-00-

DX1 

2 40X 0.2525 Lymph, Diffuse Large B Cell 

Lymphoma 

Validati

on 

TCGA-

LL-

A5YM-

01Z-00-

DX1 

2 40X 0.2456 Breast, Invasive Ductal 

Carcinoma 

Validati

on 

TCGA-

P4-

AAVO-

01Z-00-

3 40X 0.2526 Kidney, Renal Papillary Cell 

Carcinoma 

Validati

on 
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DX1 

PathAI 2 40X 0.2522 Liver, Non-alcoholic 

steatohepatitis 

Validati

on 

PathAI 1 20X 0.5023 Colon, Human 

Papillomavirus 

Validati

on 

PathAI 2 40X 0.2511 Brain, Glioma Validati

on 

PathAI 2 40X 0.2522 Skin, Normal Validati

on 

TCGA-

VQ-

A8DV-

01Z-00-

DX1 

1 40X 0.2525 Stomach, Stomach 

Adenocarcinoma 

Test 

TCGA-

CV-

6934-

01Z-00-

DX1 

2 40X 0.2525 Head and Neck Squamous 

Cell Carcinoma 

Test 

TCGA-

MQ-

A6BR-

01Z-00-

DX1 

1 40X 0.2465 Lung, Mesothelioma Test 

TCGA-

OR-

1 40X 0.2527 Adrenal, Adrenal Cortical 

Carcinoma 

Test 
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A5J8-

01Z-00-

DX1 

PathAI 1 40X 0.2522 Colon, Inflammatory Bowel 

Disease 

Test 

PathAI 1 20X 0.5023 Breast, Invasive Ductal 

Carcinoma 

Test 

PathAI 2 40X 0.2522 Prostate, Prostate 

Adenocarcinoma 

Test 

 903 
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Table 2: Samples used for out-of-distribution (OOD) evaluation of model 905 

performance.  906 

Slide 

Identifier 

# 

Frames 

Magnification Microns 

Per Pixel 

(MPP) 

Indication Dataset 

581805 

 

1 40X 0.2518 Colon, Ulcerative 

Colitis 

OOD-

Test 1 

581720 1 40X 0.2518 Colon, Ulcerative 

Colitis 

OOD-

Test-1 

581810 1 40X 0.2518 Colon, Ulcerative 

Colitis 

OOD-

Test-1 

581875 1 40X 0.2518 Colon, Ulcerative 

Colitis 

OOD-

Test-1 

591979 1 40X 0.2518 Colon, Ulcerative 

Colitis 

OOD-

Test-1 

581916 1 40X 0.2518 Colon, Ulcerative 

Colitis 

OOD-

Test-1 

581956 1 40X 0.2518 Colon, Ulcerative 

Colitis 

OOD-

Test-1 

591275 

 

1 40X 0.2521 Breast, Breast Cancer OOD-

Test-2 

591351 1 40X 0.262385 Breast, Breast Cancer OOD-

Test-2 

591347 1 40X 0.262385 Breast, Breast Cancer OOD-

Test-2 
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592506 1 40X 0.2521 Breast, Breast Cancer OOD-

Test-2 

592559 1 40X 0.262125 Breast, Breast Cancer OOD-

Test-2 

597204 1 40X 0.262125 Breast, Breast Cancer OOD-

Test-2 

597271 1 40X 0.262125 Breast, Breast Cancer OOD-

Test-2 

  907 
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Table 3. Characteristics of patients in TCGA cohorts. 908 

 TCGA BRCA 

N=886 

TCGA LUAD 

N=426 

TCGA PRAD  

N=392 

Age at initial 

pathologic 

diagnosis (median, 

range) 

58 (26-90) 66 (33-88) 61 (41-77) 

Sex (male), n (%) 10 (1.1%) 191 (44.8%) 392 (100%) 

American Joint 

Committee on 

Cancer (AJCC) 

Tumor Stage (n) 

Stage I: 77 

Stage IA: 76 

Stage IB: 5 

Stage II: 6 

Stage IIA: 286 

Stage IIB: 207 

Stage III: 2 

Stage IIIA: 128 

Stage IIIB: 18 

Stage IIIC: 51 

Stage IV: 13 

Unknown: 17 

 

Stage I: 5 

Stage IA: 122 

Stage IB: 108 

Stage II: 1 

Stage IIA: 47 

Stage IIB: 58 

Stage IIIA: 50 

Stage IIIB: 5 

Stage IV: 22 

Unknown: 8 

 

Unknown: 392 

(100%) 

Whole genome 

doublings (WGD) 

 

0: 435, 56.8% 

1: 298, 38.5% 

2: 37, 4.8% 

Unknown: 116 

 

 

 

0: 168, 41.9% 

1: 193, 48.1% 

2: 40, 10.0% 

Unknown: 25 

 

 

0: 337, 92.1% 

1: 29, 7.9% 

Unknown: 26 
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Progression-free 

survival (PFS, 

median) 

122.3 mo  29.3 mo 116.7 mo 

Overall survival 

(OS, median) 

131.4 mo  48.5 mo Not Reached 

 909 
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Figure 1

Attribute Feature

Size

Area
Major Axis Length
Minor Axis Length
Perimeter Length

Shape Circularity
Eccentricity

Texture

Solidity
Standard deviation of the grayscale intensity
Standard deviation of the saturation value in HSV color space
Standard deviation of the A value in LAB color space
Standard deviation of the B value in LAB color space

Stain Intensity

Mean greyscale intensity
Mean saturation value in HSV color space
Mean A value in LAB color space
Mean B value in LAB color space

A

B
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Figure 2
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Figure 3
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Figure 4
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Figure 5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2024. ; https://doi.org/10.1101/2023.05.15.539600doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.15.539600
http://creativecommons.org/licenses/by-nc/4.0/


Figure 6
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Figure 7
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