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Abstract
In cancer treatment, the persistent challenge of unresponsiveness of certain patients to drugs or

the development of resistance post-treatment remains a significant concern. Drug combinations

that synergistically reduce tumor growth emerge as a promising avenue to address this issue.

Here, we aimed to characterize the mechanism of action of two synergistic drug combinations

that target PI3K together with MEK1 or with TAK1 and used time course measurements of

phosphoproteomics and transcriptomics in response to single inhibitors and their combinations.

Our analysis untangled those responses driven by single drugs and responses that were unique

to the combinations. We observed a high overlap between single-drug responses and their

combinations, suggesting that single-drug mechanisms dominate the mechanism of action of

the combinations of the kinase inhibitors. Despite a high overlap, both drug combinations

exhibited a synergistic modulation of several cell fate regulators found at the convergence

points of the targeted pathways, including the key regulator of intrinsic apoptosis BCL2L11.

Interestingly, the responses in both combinations were largely limited to the targeted pathways,

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.12.584561doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.12.584561
http://creativecommons.org/licenses/by/4.0/


namely PI3K/AKT and MAPKs, with very limited change of any other additional cell fate decision

pathways. In addition, we observed a strong downregulation of nucleotide metabolism and tRNA

biosynthesis uniquely in the combinations, which could be attributed to the reduced activity of

mTOR and ATF4. Our approach provides insights into the molecular mechanisms affected by

the PI3Ki-TAK1i and PI3Ki-MEKi combinations and can serve as a flexible framework for

dissecting drug combination responses based on multi-omics measurements.

Introduction
Personalized medicine and targeted drug therapies represent a paradigm shift in cancer

treatment. These approaches provide the potential to tailor treatments specifically to the patient,

resulting in improved treatment effectiveness and lowered incidence of adverse outcomes.

Targeted therapies, usually based on small molecules or monoclonal antibodies, interfere with

molecular entities that have an indispensable role in disease development. Whereas

chemotherapy and radiotherapy impact both cancerous and noncancerous cells indiscriminately

by affecting all actively growing cells, targeted therapies can be designed to specifically target

cell fate signaling that is central to cancerous cell growth 1. Most small molecule-based

therapies focus on inhibiting kinases that are abnormally active in cancers. The advent of kinase

inhibitors has dramatically changed the field of oncology treatment 2, with currently some 72

kinase inhibitors approved by the FDA 3.

Insights into the mechanism of drug action are essential to understanding how drugs can best

be used in combinations for new potential therapeutic applications 4,5. Moreover, many cancers

can develop resistance to a drug treatment, which poses an additional challenge for effective

therapies. Drug combination therapies and drug synergies can improve cancer treatment either

by increasing efficacy, reducing side effects, or preventing treatment resistance 6. One example

is T-cell acute lymphoblastic leukemia (T-ALL), where NOTCH1 is a key oncogenic driver 7. The

development of small molecule therapies to prevent NOTCH1 activation, such as γ-secretase

inhibitors (GSIs), faced significant problems due to the development of drug resistance. In-depth

analysis of the development of such resistance using Mass Spectrometry (MS)-based

(phospho)proteomics has identified other targets in T-ALL, such as protein kinase C (PKC)

delta, suggesting that the PKC inhibitor sotrastaurin can improve the anti-leukemic activity of the

GSIs when provided in combination 8. Such examples highlight that drug combinations can be

an alternative when monotherapies fail to provide a persistent therapeutic response.
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Comprehending the effects of drug combinations is a complex endeavor, as the individual drugs

can work together either in an additive, synergistic, or even antagonistic manner. Synergistic

interactions, where the combined effect surpasses the sum of individual drug effects 9, are

particularly intriguing, as they offer the potential for amplified therapeutic benefits. There are

several mechanisms through which drug synergies can occur, including but not limited to the

modulation of signaling pathways involved in the development of the disease, increasing the

sensitivity to drug responses, and potentially inhibiting drug resistance mechanisms. The

systematic characterization of the responses to synergistic drug combinations and the analysis

of their mode of action may provide insight into how synergies arise. Such knowledge could

potentially be useful to enable the rational design of efficient drug synergy screening 10.

Despite the potential advantages of potent drug combinations, their discovery and effective

application in clinical treatments pose formidable challenges. While automated high-throughput

screening platforms can uncover combinatorial effects, drug combination screens remain a

resource-intensive and time-consuming endeavor, demanding extensive dose-response data.

To streamline this process, computational simulations, and machine learning algorithms can be

used to enable the preselection of drug combinations in silico, identifying those most likely to

yield beneficial effects. Such approaches can significantly reduce the number of combinations

requiring experimental testing 11. Previously, we employed logical modeling of cancer signaling

networks for drug synergy identification in gastroenterological cancers 12–14. Among 21 pairwise

combinations of seven kinase inhibitors, we identified and experimentally validated four

synergies in the AGS cell line 12. Notably, the dual inhibition of TAK1 together with PI3K or with

AKT1, a previously unreported synergy, demonstrated its potential for reducing tumor growth in

both in vitro and in vivo experiments. Additionally, we confirmed the synergistic effects of MEK

inhibition in combination with either PI3K or AKT1, aligning with prior experimental findings 15.

The PI3K/AKT and MAPK pathways are central regulators of oncogenesis and tumor

maintenance, and the combined blockade of the two pathways has been shown to act

synergistically on a variety of tumors and to abolish resistance mechanisms 16–18. However, the

combinatorial targeting of TAK1 with either PI3K or AKT has not yet been studied in great detail

at a mechanistic level.

In this work, we aimed to characterize the mechanisms of two synergistic combinations of

kinase inhibitors, namely the inhibition of PI3K jointly with the inhibition of MEK or with the

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.12.584561doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?w8QOew
https://www.zotero.org/google-docs/?Vq5du3
https://www.zotero.org/google-docs/?HFLGzy
https://www.zotero.org/google-docs/?La1dqc
https://www.zotero.org/google-docs/?QnnyzR
https://www.zotero.org/google-docs/?xjb7pE
https://www.zotero.org/google-docs/?nTJF1W
https://doi.org/10.1101/2024.03.12.584561
http://creativecommons.org/licenses/by/4.0/


inhibition of TAK. We conducted a comprehensive analysis by measuring time-course

responses in phosphoproteomics and transcriptomics for both single inhibitors and their

combinations. Our investigation untangled the distinct responses induced by individual drugs

from those unique to the combination treatments, shedding light on how the profiles of the single

drugs interact to produce the synergistic reduction in cell growth and cell cycle arrest.

Results

A multi-omics characterization of responses to PI3K-MEK and

PI3K-TAK combined inhibition

We investigated the molecular mechanisms behind the synergistic cell growth reduction when

combining a PI3K inhibitor with either TAK1 or MEK inhibitors in AGS gastric adenocarcinoma

cells, examining temporal responses at the phosphoproteomics and transcriptomics levels

(Figure 1). AGS cells were treated with individual inhibitors: TAK1 inhibitor (TAKi, 0.50 µM),

PI3K inhibitor (PI3Ki, 0.70 µM), and MEK inhibitor (MEKi, 0.035 µM), along with the PI3Ki-MEKi

and PI3Ki-TAKi combinations (Figure 1). Each drug, at these concentrations, has been

observed to reduce growth by 50% after 48 hours compared to vehicle dimethyl sulfoxide

(DMSO) controls 12. Phosphorylation changes were monitored at 30 minutes, 2 hours, and 8

hours to detect early signaling events, with a proteome analysis at the same time points to rule

out that changes in phosphorylations were observed due to changes in total protein (Figure 1B).

RNA-Seq analysis at 1, 2, 4, 8, and 24 hours was performed to assess the effect of the

inhibitors on gene expression (Figure 1B). Beginning with a high-level assessment, we explored

the effects at the pathway and process levels through overrepresentation analyses.

Subsequently, we continued into the effector level, estimating kinase and transcription factor

activities to discern key regulatory elements. Finally, we narrowed our focus to identify individual

entities downstream of these effectors, aiming to elucidate their roles in governing cell fate

decisions. This systematic workflow ensures a thorough exploration, and the results will be

presented in this sequential order.
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Figure 1. Overview of the experimental design. (A) Kinase inhibitors used in the study. In the left panel, the

inhibitors are presented together with their main targets. In the right panel, the abbreviations used for each of the

inhibitors and their targets throughout the manuscript are provided. (B) The gastric adenocarcinoma cell line (AGS)

was used to investigate the effect of the combination of PI3Ki (inhibition with PI-103) with MEKi (inhibition with

PD0325901) or with TAK1i (inhibition with 5Z-7-oxozeaenol.) Phosphoproteomics were measured at 0.5 hours, 2

hours, and 8 hours post-treatment. Transcriptomics were measured at 1, 2, 4, 8, and 24 hours post-treatment.

First, to identify early regulatory events and study the possible convergence and divergence in

the signaling pathways triggered by each drug, or combination of drugs, we designed a mass

spectrometry (MS) based phosphoproteomics analysis (Figure 2A). The drug effect at each time

point was referenced to the corresponding effect of the vehicle at the same time point. Overall,

we were able to quantify 18,517 phosphorylation sites, including 152 kinase activity regulatory

sites 19 for 72 kinases. Principal Component Analysis (PCA) of the phosphoproteomes revealed

a significant difference between DMSO and untreated at time zero samples, reflecting the

importance of using DMSO-treated cells as a control in short-time phosphoproteomics signaling

experiments (Figure 2B). Because of the depth of the phosphoproteomics profiling, the

phosphorylation status of downstream targets of the inhibited kinases served as a positive

control for the treatment effect. To begin with, the inhibition of MEK by PD0325901 is reflected
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by a reduction of ERK phosphorylation levels. As others have reported, we observed upstream

MEK1/2 hyper-phosphorylation, which has been ascribed to the allosteric inhibitory nature of

PD0325901, which in turn results in an interaction between upstream MEK1/s and c-RAF that

triggers the hyperphosphorylation 20. This pattern of hyper-phosphorylation is recapitulated in

our data, both in MEKi and in MEKi-PI3Ki combined treatment, where the regulatory tyrosine in

position 187 of MAPK1 (ERK2) is rapidly down-regulated upon 30 minutes of drug treatment.

Still, serine 226 in upstream MAP2K2 (MEK2) is upregulated consistently after 8 hours of

treatment (Figure 2C). The 5Z-7-oxozeaenol inhibitor used against TAK1 has been found to

have MEK1 as a secondary target but with a lower affinity compared to TAK1 21. Interestingly,

while TAK1 alone did not affect ERK1/2 activity (based on its phosphorylation status), the

PI3Ki-TAKi combination induced the inhibition of the ERK2 activation site (Tyr-187) (Figure 2C).

On the other hand, AKT1, which is a target of PI3K, shows inhibition on its regulatory sites in all

treatments, although this effect seems to be less evident in the combined PI3Ki-MEKi treatment.

Other downstream kinases of the PI3K-mediated pathway, such as mTOR, are only

downregulated in the treatments containing PI3Ki. Finally, MAPK14 (p38), a downstream kinase

of the TAK1 pathway, shows the greatest inhibition upon 8 hours of TAKi treatment, while in the

combined PI3Ki-TAKi treatment, the effect, although smaller, appears already after 2 hours of

treatment (Figure 2C). Overall, the observed changes agree with the expected changes based

on the inhibitors’ target.

Furthermore, we assessed how responses in single drug-treated cells compared to the

responses in cells treated with their combinations. The logFC compared to DMSO for each

phosphosite was plotted between individual drugs and synergies. All phosphorylation responses

were positively correlated, with all correlation coefficients increasing with time (Figure 2D).

Specifically, PI3Ki-MEKi had a higher correlation with MEKi (Pearson coefficient = 0.6),

suggesting MEKi's predominant role at early time points, with PI3Ki having a weaker positive

correlation (0.4). Conversely, both PI3Ki and TAKi had a high contribution to PI3Ki-TAKi

phosphorylation status, with Pearson coefficients of 0.65 and 0.5, respectively (Figure 2D). This

suggests that the two combinations we have investigated arise through the mixed effect of

additive and synergistic interactions between the two single drugs. Additionally, even though the

PI3K inhibitor was common to both combinations, it appears that its contribution to the

combination profiles varies depending on its partner.
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Figure 2. Phospho-proteomics analysis reveals the specific kinase targets of each drug and the convergence
of drug synergies in kinase activation sites. (A) Experimental design for phosphoproteomics analysis. (B)

Principal Component Analysis of phosphoproteome profiles of samples treated either with DMSO or with each drug

combination and time zero (non-treated samples). (C) Most relevant kinase activation sites of the targeted pathways

of each drug. The color of the dot indicates the log fold change of the intensity of the phosphorylation site in each

drug treatment versus DMSO at the same time point. The size of the dot indicates the statistical significance of the

change (two-sided, moderated two-sample t-test, FDR corrected by Benjamini-Hochberg). * indicates q-values <

0.05. (D) Pairwise correlation between the log fold change (logFC) between the single drugs and the combinations at

0.5 hours (upper plots) and 8 hours (bottom plots). The numbers within each circle show the correlation coefficient

between logFCs.

Temporal responses in phosphoproteomics reveal few
differences in kinase activity between single drugs and
combinations.

Our data point to an overlap in the downstream signals regulated by the combined treatments,

and temporal phosphoproteomics profiling can help figure out specificities in each treatment due

to the kinetics or magnitude of the regulation. To explore the kinetics of each treatment and

differentiate between additive and synergistic effects, we performed k-means-based clustering

using the log2 fold changes at each time point of treatment compared to vehicle control (Figure

3). For each cluster of a combined treatment (separately for PI3Ki-TAKi and PI3Ki-MEKi), we

also provide the plots of the corresponding values of the phosphosites observed in the individual

treatments (Fig. 3A, left part of individual panels). Most of the temporal kinetics observed in the

combined treatments are also found in treatments with one or sometimes even both of the

single inhibitors. These results suggest that many of the effects observed in the combined

treatments likely reflect the cumulative impact of the two drugs. However, some clusters, such

as cluster #9 in PI3Ki-TAKi and PI3Ki-MEKi, show a transient effect in the combined treatments,

while with each individual drug, the effect is longer lasting (Figure 3A). Another interesting

difference between the two different combination treatments can be observed upon kinase motif

annotation analysis (Figure 2A, sequence logo plots at right side of individual panels), which

revealed that phosphorylation sites downregulated early and transiently by PI3K-TAK inhibition

(cluster #6) are enriched in acidophilic residues, while the sites having the same trend upon

PI3K-MEK inhibition do not show that enrichment. Overrepresentation analysis of known kinase
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motif sequences confirmed that cluster #6 is significantly enriched in sites located in acidophilic

motifs: the casein kinase I substrate motif (FDR p-value: 3.03 e-5), the beta-adrenergic receptor

kinase substrate motif (FDR p-value= 3.13 e-10) or the pyruvate dehydrogenase kinase

substrate motif (FDR p-value= 0.004)

To further explore these similarities and divergences, we evaluated kinase activity enrichment

by PTM-SEA 22. There, we observed a consistent down-regulation of the PI3K/AKT/mTOR

pathway in all treatments, indicated by the reduction of activity of RPS6KA1/3 (Figure 3B).

However, in this analysis, the casein kinase 2 CSNK2A1 showed a dramatic differential

regulation between individual and combined treatments. In individual treatments, only PI3Ki has

a consistent inhibitory effect on CSNK2A1. However, this effect is only maintained in the

combined treatment with TAKi, whilst the inhibitory effect is absent when combining PI3Ki with

MEKi (Figure 3C). In summary, the kinome analysis shows that no new kinases are modulated

in response to the drug combinations, with all estimated changes in kinase activity being

observed also in at least one of the individual drugs.

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.12.584561doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?ekTk2Z
https://doi.org/10.1101/2024.03.12.584561
http://creativecommons.org/licenses/by/4.0/


Figure 3. Phosphoproteomics temporal profiling of kinase inhibitor responses reveals downstream effects
upon combination of treatments. (A) Temporal profiles after treatment with each kinase inhibitor or combination of

them. Clusters were calculated using differentially regulated phosphosites for the synergy treatments (in at least one

time point), separately. Only clusters with enriched kinetic trends are plotted. Following each trend in the synergies

(k-means cluster), the temporal profile of the same phosphosite in the individual treatments is shown. Black lines

indicate the centroid of the distribution. The phosphorylation intensity of each phosphosite used for clustering is the

result of the average of biological replicates and then z-transformed across time points. On the right of each cluster

profile, the amino acid logo sequence is shown, where the color indicates whether the amino acid is acidic (red),

basic (blue), hydrophobic (black), neutral (purple), or polar (green). (B) Kinase activity inference using PTM-SEA. The

color of the points indicates the fold-change (red: activation of the kinase, blue: inhibition of the kinase). Size of the

point indicates the significance (-log10 q.value). (C) Boxplot showing regulation of CSNK2A1 known substrates (from

PTM-SEA db) in each treatment and time point. Each point corresponds to the log2 fold change of a phosphorylation

site in treatment versus its corresponding DMSO control.

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.12.584561doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.12.584561
http://creativecommons.org/licenses/by/4.0/


Drug combination response profile: Insights into overlaps and

differences between drug combinations and single drugs

Having established that phosphorylation responses showed both overlaps and differences

between conditions, we constructed the “response profile” of each synergy. The response profile

refers to the quantification of all potential combinations of responses observed for two individual

drugs and their combination. The term "response" denotes the qualitative changes in

phosphorylation levels in the treated conditions relative to the DMSO control, measured by

logFC values. From a theoretical perspective, with each phosphosite having the potential to

increase, decrease, or remain unchanged across three conditions, a total of 3^3 = 27 distinct

response patterns can be considered. These 27 response patterns were subsequently

categorized into five primary classes (Figure 4A):

- Combination-specific changes: Differentially phosphorylated phosphosites (DPPs)

that are only found in the combined inhibition or that have a response opposite to what is

seen for each of the two single drugs.

- Single drug-driven changes: DPPs that change in the combination, but the response

can be attributed to one of the single drugs.

- Concerted changes: DPPs that respond similarly across all conditions

- Counterbalanced changes: DPPs that show opposite responses between the two

single drugs and are reflected as zero-sum changes in the combination.

- Single drug-specific changes: DPPs that are exclusively observed in one of the two

individual drugs and not in any other condition.

The response profiles were defined independently for each time point, and the

combination-specific changes were further assessed for consistency over time. Here, only those

DPPs that were consistent across all time points were considered. DPPs that were categorized

differently at different time points were not included in this analysis and were instead studied by

a clustering analysis, which allows a more detailed description of more complex temporal

behaviors.
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Figure 4. Response profiles categorize changes based on their driver drug (single versus combination). (A)

Qualitative characterization of response classes in drug combinations and single drugs. Each molecular entity (i.e.,

gene or phosphosite) can have three states compared to the baseline: upregulated (blue-colored boxes with upward

arrow), downregulated (red-colored boxes with downward arrow), or unaffected (white boxes). The set of states in the

two drugs and their combination can be used to characterize each molecular entity and assign it to five main

response classes. A representative example of each class is given. (B) Quantification of each change type for the

PI3Ki-MEKi and PI3Ki-TAKi synergistic combinations.
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Combination-specific & single drug-driven effects combine to

reduce cell growth.

As depicted in Figure 4B, approximately 50% and 34% of the total DPPs for the PI3Ki-TAKi and

PI3Ki-MEKi treatments, respectively, exhibited consistent changes across all conditions. Given

the crosstalk between the targeted pathways, these coordinated changes could suggest at least

a partially overlapping response mechanism between the single drugs that is also retained in

their combination. Furthermore, as previously hinted by the correlation analysis shown in Figure

2D, many of the changes observed in the two combinations can be traced back to at least one

of the two drugs. Specifically, in the PI3Ki-TAKi combination, the dominant influence of PI3Ki is

evident at the 0.5-hour mark, primarily driving changes in synergy. Over time, this effect narrows

down to a limited set of phosphosites, with most responses being combination-specific.

Conversely, in the PI3Ki-MEKi combination, PI3Ki-driven changes are less prominent, with the

majority of single drug-induced changes attributed to MEKi. Interestingly, the PI3Ki-MEKi

combination exhibits a higher number of leveled-out responses across all time points compared

to PI3Ki-TAKi. Specifically, at 0.5, 2, and 8 hours, PI3Ki-MEKi shows 122, 44, and 46

leveled-out changes, while PI3Ki-TAKi has only 22 leveled-out changes at 0.5 and 2 hours and

28 at 8 hours. Given the common use of PI3Ki in both combinations, these findings suggest that

MEKi may counteract some of the effects of PI3Ki. When comparing the two combinations that

synergistically inhibit growth, it appears that PI3Ki-TAKi has a higher number of

combination-specific changes, with 2422 PI3Ki-TAKi-specific DPPs, compared to only 1368

combination-specific DPPs for PI3Ki-MEKi. A closer look at the overlap between the

combination-specific changes of the two synergies showed that 338 of the combination-specific

DPPs are shared between the two synergies. At the same time, the overlap between time points

was limited to only a few common phosphosites, as most phosphosites were transiently

regulated.

Next, we explored the combination-specific changes to identify whether these regulatory effects

could represent candidate mechanisms that lead to the synergistically reduced cell growth

observed for the two combinations. Both drug combinations exhibited combination-specific

changes in several proteins related to cell survival. More specifically, in the PI3Ki-TAKi

combination, RB1 exhibited a strong upregulation (logFC = 4.8, FDR p-val = 6.86E-10) at

Ser-838, a site phosphorylated by p38, and induced the inhibitory interaction between RB1 and

E2F1/2. Another interesting finding was the differential regulation of four phosphosites in the
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FOXO3 protein, two of which are known to affect its activity. Specifically, Ser-7 of FOXO3, also

regulated by p38, leads to the nuclear accumulation of FOXO3. This particular phosphosite was

uniquely upregulated by PI3Ki-TAKi treatment (logFC = 1.3, FDR p-val = 4.52E-05) at 0.5 hours.

Moreover, FOXO3’s activating phosphosite Thr-32 (M2) was found with strong upregulation at

0.5 (logFC = 1.6, FDR p-val = 0.02) and 8 hours (logFC = 2.9, FDR p-val = 0.02). Interestingly,

while Thr-32 upregulation at 0.5 hours can be attributed to PI3Ki, the upregulation of this site is

retained and amplified only in PI3K-TAKi at 8 hours. Taken together, the joint inhibition of PI3K

and TAK results in reduced cell growth 12, where phosphorylation changes from the PI3K and

TAK1 pathways converged at the stress kinase regulation (p38) and cell fate regulation through

the PI3Ki-driven regulation of FOXO3.

For PI3Ki-MEKi, fewer of the proteins, identified in our analyses with phosphorylation sites

regulated in a combination-specific manner, have been reported to be involved in cell fate

decisions, making it difficult to hypothesize mechanisms by which combination-specific

phosphorylation changes could affect the cell’s physiological state. Potentially, the reduced cell

growth observed with PI3Ki-MEKi could result from the cumulative effect of the two inhibitors on

the same proteins, rather than from additional proteins that were differentially regulated when

the two inhibitors were combined. Additionally, many of the PI3Ki-MEKi-specific sites were

associated with controlling the protein’s intracellular localization or its molecular interactions but

not directly with their activity. Nevertheless, some PI3Ki-MEKi-specific phosphorylation events

are interesting to consider in relation to the cellular effects of the combination of these two

inhibitors. The Ser-729 site of BRAF, which controls its enzymatic activation and is associated

with cell growth inhibition, was upregulated uniquely in PI3Ki-MEKi at 8 hours. Ser-750, which

inhibits BRAF-RAF1 interaction, was downregulated for up to 2 hours and could be attributed to

the MEKi inhibitor that exhibited the same regulation. In addition, another activating

phosphosite, Tyr-705, was upregulated at 8 hours. Additionally, two TFs were regulated in a

PI3Ki-MEKi-specific manner. The cell fate regulator STAT3 appeared to be inhibited by the

downregulation of the Ser-727 site, which activates the TF and inhibits apoptosis, at 0.5 and 2

hours. Ser-727 is regulated by several kinases in vivo, including JNK1, JNK2, and mTOR,

whose activity changed in response to PI3Ki-MEKi treatment (Figure 3B). Lastly, FOXO3

displayed a similar regulation as in the other combination, with Thr-32 upregulation starting at

0.5 (logFC = 1.2, FDR p-val = 0.02) and retained at 8 hours (logFC = 3.4, FDR p-val =

6.62E-07).
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In summary, the individual drugs and combinations negatively impacted several cell growth

activators, aligning with their observed anti-growth properties 12. Notably, the observed

synergistic growth inhibition in the combinations can be understood to arise from an aggregation

of single drug-driven effects and specific changes in the phosphorylation of cell fate regulators.

Furthermore, the effects of these combinations appear confined to their targeted pathways, with

no indications of additional pathways being disrupted. This suggests that the synergistic growth

inhibition can mostly be attributed to entities at the downstream convergence points of those

pathways affected by the individual drugs rather than the dysregulation of new pathways. Taken

together, these findings point towards growth arrest with a parallel apoptosis induction as

evidenced by the activation of FOXO3 and BAD.

Gene expression changes can be mostly attributed to

combination-specific effects.

To assess the temporal impact of kinase inhibition on gene transcription, we analyzed gene

expression profiles at five time points: 1, 2, 4, 8, and 24 hours. Similar to the

phosphoproteomics experiment, we employed DMSO and untreated samples as controls. The

analysis was conducted using the limma-voom framework 23, with DMSO as the baseline at

each time point, and declared a gene as differentially expressed (DEG) meeting an adjusted

p-value threshold of 0.05 and an absolute logFC threshold of 1.

PCA analysis reveals that during the early time points (0 and 1 hour), all experimental

conditions cluster together, an observation that was expected due to slower dynamics of

transcription compared with phosphorylation events (Figure 5A). A notable divergence occurs in

the 2-hour samples, particularly for MEKi and TAKi, which clustered closely until 8 hours,

diverging only at the 24-hour time point. At the 24-hour time point, MEKi and PI3Ki-MEKi

samples exhibited distinct clustering, separated from the rest of the samples (Figure 5A). Most

of the variation captured by the first principle component appears to be related to time, while the

second and third components capture mainly the influence of treatment. For a broader

perspective, we investigated the correlation between the effects of single drugs and their

respective combinations and found a strong positive Pearson correlation, with all correlation

coefficients > 0.88 (Supplementary Figure 4), thereby suggesting that the effects of individual

inhibitors are largely retained in the combination treatments.
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Figure 5. Transcriptomics analysis shows a high number of combination-specific changes and an altered
activity of key cell fate-regulating transcription factors. (A) Principal Component Analysis of transcriptome

profiles of samples treated either with DMSO or with each drug combination, and time zero (non-treated samples).

(B) Number of transcription factors with an estimated differential activity per drug and time point. Activities were

estimated using a univariate linear model and the CollecTRI regulon. P-adjusted threshold 0.05. (C) Activities of

transcription factors that displayed the highest and lowest estimated activities. (D) Quantification of each change

type for the PI3Ki-MEKi and PI3Ki-TAKi synergistic combinations.

To identify regulators of differentially expressed genes (DEGs) in each condition, we conducted

a transcription factor (TF) activity analysis, focusing on TFs with measured gene expression or

protein abundance in our datasets for relevance (Figure 5B and Supplementary Figure 5).

Changes in TF activities unique to combinations showed smaller magnitude and significance
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compared to changes shared with at least one single drug (Figure 5C and Supplementary

Figure 5). Additionally, consistent with phosphoproteomics observations, our transcriptome

findings indicate growth inhibition across all conditions, with reduced activity for TFs like CREB1

and MYC (Figure 5C), known for supporting proliferation and survival. Notably, both MYC and

CREB1 showed more pronounced activity reduction in combinations compared to single drugs.

The influence of PI3Ki on the PI3K/AKT/FOXO3 pathway is reflected in gene expression, with

FOXO3 showing increased activity in PI3Ki and both combinations. Furthermore, the

antagonistic interaction between PI3Ki and MEKi was evident in TF activities estimated from

gene expression, as, for example, seen in the regulation of the E2F TF family (Figure 5C).

Lastly, the PI3Ki-MEKi-specific inhibition of STAT3 activity at early time points (Supplementary

Figure 5) was mirrored by our findings concerning its phosphorylation status, where its

activating phosphorylation site was downregulated at 0.5 and 2 hours. However, no change in

its activity or phosphorylation was observed at later time points.

For transcriptomics, we performed separate clustering for each drug by an unsupervised

k-means approach. For each cluster, we conducted a Gene Ontology (GO) term

overrepresentation analysis. Notably, GO terms linked to cell cycle progression and phase

transitions were significantly overrepresented in late downregulated clusters (peaking at 8

and/or 24 hours) across all drugs. Interestingly, the median temporal trends of most cell

cycle-related clusters aligned with those of the DMSO control at 24 hours. This suggests that

cell cultures, even in the absence of kinase inhibitors, may exhibit reduced cell cycle activity,

potentially influenced by DMSO or reduced proliferation due to contact inhibition. GO terms

related to RNA processing (GO:0006396), ribosome biogenesis (GO:0042254), and rRNA

processing (GO:0016072) were overrepresented in temporal clusters that displayed an early

onset of downregulation up to 8 hours for PI3K-TAKi and 24 hours for PI3K-MEK. The same

terms were the only GO terms overrepresented among the combination-specific DEGs at 8

hours (Supplementary Tables 1 and 2), with all genes annotated to these GO terms being

downregulated. Among genes annotated to ribosome biogenesis, we observed the

downregulation of several subunits of RNA Pol II and III. The expression of these genes is

known to be influenced by mTOR and MYC 24, which aligns with the reduced activity estimated

for these two factors. Furthermore, genes annotated to macroautophagy and terms related to its

positive regulation were overrepresented in early onset clusters of PI3Ki and the two

combinations (Supplementary Figure 7). Although the phosphorylation and expression levels of

autophagy regulators and effectors point to a PI3K-driven induction of autophagy from early time
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points up to 8 hours, the expression landscape at 24 hours suggests that autophagy is not

maintained at later time points (Supplementary Figure 7). Alternatively, the time point when the

autophagy manifests may both be later and last longer than the time points when transcripts

encoding protein effectors of the cellular response are observed with changed levels.

The intrinsic apoptotic signaling pathway term (GO:0097193) was overrepresented only in the

two combinations at 24 hours. The only single drug that had apoptosis-related terms

overrepresented was TAKi, where the positive regulation of extrinsic apoptotic signaling

pathway (GO:1902043) was overrepresented at 2 hours and the negative regulation of the

same pathway (GO:2001237) was overrepresented at 24 hours. In line with our

phosphoproteomic data indicating the induction of apoptosis via the activation of FOXO3, we

observed that the apoptosis and anoikis regulator BCL2L11 (Bim) was uniquely upregulated in

both combinations. In PI3Ki-TAKi, its expression was upregulated at 4h. In PI3Ki-MEKi,

BCL2L11 displayed a more consistent upregulation at both earlier and later time points (2, 4,

and 24 hours). FOXO3 is known to cooperate with RUNX3 to induce BCL2L11 expression in

gastric adenocarcinoma 25. Such FOXO3-RUNX3 cooperativity could potentially play a role in

increased BCL2L11 expression in both combinations, with both TFs having a predicted

increased activity (Figure 5C). The activation of FOXO family members plays a diverse role in

gastric cancer, acting through the induction of both apoptosis and cell cycle arrest 26. More

specifically, FOXO4, uniquely activated by the two combinations, has been reported to lead to

the induction of cell cycle arrest 26. Additionally, the anti-apoptotic BCL2L12 was downregulated

at 24h solely in PI3Ki-MEKi. Altogether, gene expression suggests the parallel induction of cell

cycle arrest and apoptosis as also indicated by the phosphoproteomics data, in both drug

combinations. The reduced growth appears to be mediated through the reduced activity of

proliferation-promoting TFs (MYC, CREB1), increased activity of apoptosis-promoting TFs

(FOXO3, FOXO4, and RUNX3), and the altered activity and/or expression of cell cycle arrest

regulators (CDKN1A, BCL2L11, CEBPA, SIRT4).
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Effect of drug combination on metabolism: Nucleotide metabolism

and tRNA biosynthesis are downregulated only in the

combinations.

Among the combination-specific DEGs of both combinations, several were associated with key

components of gastric cancer-promoting metabolic processes. Using gene-metabolic pathway

associations from the genome-wide metabolic model (Human-GEM v 1.12.0) 27, the

combination-specific DEGs could be mapped to two main metabolic processes: nucleotide

metabolism and aminoacyl-tRNA biosynthesis. GO terms related to the same processes were

also enriched in late downregulated clusters in the two combinations (Figure 6A).

The downregulation of nucleotide metabolism by the PI3Ki-TAKi combination was also

supported by phosphorylation changes and these were not observed with the single inhibitors.

CAD, a ‘fusion’ gene that encodes key enzymes involved in the pyrimidine metabolic pathway,

displayed downregulation of its activating phosphosite Ser-1859 at 2 and 8 hours uniquely in

PI3Ki-TAKi. Ser-1859 is a target of p70S6K; therefore, its downregulation could be a

downstream effect of mTOR inhibition. Additionally, TAKi-driven CAD Ser-1406 phosphorylation,

which is known to block the phosphorylation of another activating site of CAD, was consistently

upregulated. PDHA1, involved in pyruvate metabolism, exhibited upregulation of inhibiting sites

Ser-232 and Tyr-289 in PI3Ki-TAKi. Similarly, genes associated with nucleotide metabolism

were mostly downregulated in the two combinations, a behavior that could not be attributed to

any of the single drugs (Figure 6A and Supplementary Figure 6). For tRNA biosynthesis, we

observed a significant downregulation of most aminoacyl tRNA synthetase enzymes (Figure

6B). In the context of senescence, mTOR has been found to regulate tRNA biogenesis and

specific aminoacyl-tRNA synthetases, namely LARS and YARS 28, both of which were among

the most strongly downregulated aminoacyl-tRNA synthetases. In a colorectal cancer cell line,

the downregulation of LARS is reported to be associated with the downregulation of

E2F1-modulated proliferation genes and cell cycle arrest 28, both of which are observed in our

results as well. An additional potential mechanism for the downregulation of aminoacyl tRNA

synthetases could be attributed to the stress-induced ATF4 transcription factor, which activates

the expression of the majority (16 out of 20) of these enzymes 29. Multiple mechanisms,

including ubiquitination, phosphorylation, and transcription, regulate the activity of ATF4. When
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assessing the phosphorylation status of ATF4, it appears that the protein is stabilized via the

downregulation of its Ser-248 site, which contributes to protein destabilization and degradation.

For the combinations, Ser-248 is strongly downregulated at 2 hours (PI3Ki-TAKi: logFC = -3.8

and FDR p-val = 8.7*10-9 and PI3Ki-MEKi: logFC = -3.5 and FDR p-val = 4.6*10-9) and 8 hours

(PI3Ki-TAKi: logFC = -3.5 and FDR p-val = 8.1*10-7 and PI3Ki-MEKi: logFC = -3.4 and FDR

p-val = 1.2*10-5). For the single treatments, Ser-248 is upregulated at 0.5 hours post-treatment

with MEKi (logFC= 1.6 and FDR p-val = 4.6*10-5) and TAKi (logFC= 1.5 and FDR p-val = 0.004)

, and downregulated at PI3Ki but only at 2 hours (logFC= 2.8 and FDR p-val = 7.5*10-6). At the

transcriptome level, ATF4 expression levels are downregulated in all conditions at 8 hours, but

this downregulation is retained only by the two drug combinations at 24 hours when also its

activity is predicted to be reduced. Inhibiting ATF4 activity has been an attractive treatment

option as high ATF4 activity has been associated with poor prognosis in gastric cancer 30 and its

increased expression provides tumors the ability to adapt to microenvironment-related stress 31.

Among the strategies for its downregulation is the targeting of upstream eukaryotic translation

initiation factors (eIFs) kinases, which reduces its translation 31. In our dataset, we observed a

combination-specific downregulation of the expression levels of multiple eukaryotic translation

initiation factors (eIFs), which play a critical role in regulating the initiation stage of protein

synthesis. Notably, the activity of eIFs is governed by both the PI3K/AKT and MAPK pathways
30. This could explain why only the drug combinations inhibiting both these pathways

downregulate eIF, while such downregulation was not observed with the single drugs.

Downstream propagation of eIFs is likely to result in downregulation of ATF4, thereby impairing

amino acid biosynthesis at 24 hours post-treatment, both events having been reported to

subsequently result in increased oxidative stress, cell cycle arrest, induction of apoptosis, and

delayed tumor growth 31.
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Figure 6. Nucleotide metabolism and aminoacyl-tRNA biosynthesis are downregulated in response to the
drug combinations. (A) Gene expression temporal clusters with a significant enrichment (FDR p-value < 0.01) of

nucleotide metabolism-related Gene Ontology terms. Black lines indicate the centroid of the distribution and red dash

lines indicate the centroid of the distribution for the same genes in untreated conditions (DMSO). Gene expression

levels used for clustering is the result of the average of the biological replicates and then z-transformed across time

points. (B) Heatmap of the logarithmic fold change (logFC) of the differentially expressed aminoacyl synthase

enzymes at 8 and 24 hours. Earlier time points are not shown as none of the enzymes were differentially expressed.

Discussion
We have employed a multi-omics approach combining phosphoproteomics and transcriptomics

to evaluate the temporal effects up to 24 hours of combining kinase inhibitor treatments of a

gastric adenocarcinoma cell line. Previously, in silico model-based simulations 12 revealed the

potential synergy between PI3K and MEK or TAK inhibition for this type of cancer with

subsequent experimental validation of these drug synergies 12. However, models, such as the

one used in our previous work 12, do not provide precise insights into molecular processes

underlying the regulatory mechanism of synergy or how this may result in an improved

therapeutic effect. Phosphoproteomics offers insights into the first line of action of kinase

inhibitors since their effects, are exerted at the protein level. Protein phosphorylation events are

central to the modulation of signaling pathway kinase cascades and are commonly very fast.

Our data validate the expected targets of each treatment but also inform about the connectivity

between them. While previous studies have examined the synergistic effect of targeting PI3K

and MAPK pathways 33–38, these studies are mostly limited to the targeted measurement of

(phospho)proteins or gene expression, without exploring the mechanism of action of the drug
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combination in a systemic way or in multiple biological levels. This integrated, multi-omics

analysis allowed us to track the responses upon drug combination treatment, from the fast

inactivation of the targeted kinases to the downstream effect on the targeted pathways and the

subsequent effect on the transcriptional changes (summarized in Figure 7).

Figure 7. Proposed mechanisms of action of drug combinations up to 24 hours post-treatment. (A) PI3Ki-TAKi

mechanism, and (B) PI3Ki-MEKi mechanism The proposed models show changes in phosphorylation and/or gene

expression in response to the drug combinations, including combination-specific changes and those driven by the

individual drugs. Green rectangles represent biological processes in which the dysregulated entities are involved.

Overall, the various analyses indicate that the synergistic effect of the combinations is driven by

changes at the points of convergence of the two pathways, but not at the kinase level. This is

particularly evident from the phosphoproteomics where there are no changes in the regulation

or the activity of kinases that cannot be attributed to either or both single drugs. The pathways

targeted by the chosen inhibitors have a considerable degree of cross-talk and constitute some

of the main tumorigenic pathways that regulate critical cancer-promoting processes and cell fate

decisions 36. Consequently, even in the absence of modulation of additional kinases, when the

two drugs are combined, we observe changes in entities regulated by both pathways at

downstream regulatory levels, namely phosphosites, transcription factors, and genes. This

suggests that the synergistic growth reduction is a consequence of the blockade of alternative

ways that would otherwise be employed to counteract the effects of the single drugs. An

example of such effects is the combination-specific regulation of the apoptosis-promoting
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BCL2L11, where FOXO3 and RUNX3 are known to cooperatively induce BCL2L11 expression

in gastric adenocarcinoma 25. In our dataset, we observe the PI3Ki-driven activation of the

FOXO TF family and the MEKi and TAKi-driven RUNX3 activation that combine to induce the

gene expression of BCL2L11. This can also be seen in combination-specific DEGs that are

intricately linked to pivotal components of processes known to fuel gastric cancer progression.

Notably, nucleotide metabolism and aminoacyl-tRNA biosynthesis pathways stood out as

particularly affected with many of the main genes involved in the two processes being

downregulated. Aminoacyl-tRNA biosynthesis is directly involved in the progression of gastric

cancer, and its targeting has been proposed as a viable treatment strategy 29,39. Similarly,

sustained and aberrant nucleotide metabolism is a critical component in cancer development as

it constitutes a cancer dependency independently of cancer type, tissue of origin, or driving

molecular alteration 40. The regulation of those processes is under the influence of both

PI3K/AKT and MAPK pathways. As a result, we observe responses unique to the two

combinations that start from the downregulation of eIF factors, to the reduced activity of ATF4

and the halted aminoacid biosynthesis at 24 hours after combination treatment. Combination

therapies have been proposed as an option for targeting nucleotide metabolism in cancer 40,41,

and the combinatorial targeting of PI3K-MAPK pathways presented in this study could be further

explored as a potential treatment against those processes.

In addition to the synergistic changes, we also shed light on the additive or antagonistic

interactions between the single drugs. As mentioned above, we observe a high overlap between

the single drugs and their combinations, through our response profile analysis. We observed

that almost half of the phosphorylation changes at any given time were the same, both for the

combinations and their single drugs, which could suggest a shared basic layer of drug response

mechanism for all drugs and their combinations. It was also previously shown that drugs

modulating cell fate decisions and inducing cell death do so by a similar mechanism resulting in

a distinct cell death signature that could inflate the levels of similarity between the mechanism of

actions of different drugs 37. However, since this work compares single drugs and their

combinations, it is assumed that the cell death signature only partially explains the high

correlation observed. Interestingly, we also found several instances where MEK inhibition can

counteract the effect of PI3K inhibitors both in phosphorylation status and gene expression.

CSNK2A1 activity is one instance where we observed such an antagonistic interaction, as our

data reveals that upon PI-103 treatment on its own, or in combination with 5-z-7-oxozeaenol,

CK2A is rapidly inhibited at 30 minutes of treatment. However, when PI-103 is combined with
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the MEK inhibitor, such inhibition is abrogated. CSNK2A1 inhibition has been previously

identified as a complementary target to enhance the effectiveness of PI3K inhibition in colorectal

cancer 39. Interestingly, it has been also described that CSNK2A1 blockade can potentiate the

antiproliferative effects of BRAF and MEK inhibition in BRAF-mutated cancers 40. Altogether,

our findings are in line with the work of Olsen et al. on glioblastoma cells that connects

CSNK2A1 activity with the mTOR/AKT/PI3K axis, and a negative feedback between CSNK2A1

with MEK/ERK regulation 41. This would suggest that MEKi could counteract the inhibitory effect

of PI3Ki on CSNK2A1. On the other hand, this suggests that it should be interesting to

investigate a potential synergistic effect of inhibiting CSNK2A1 in combination with MEK

inhibition.

Lastly, it was interesting to observe that for both of the combinations, their molecular response

hallmarks are indicative of cytostatic as well as cytotoxic effects at the cellular level. While many

studies often concentrate on differentiating between cytotoxic and cytostatic drugs, there is no

well-defined molecular distinction between the two, with many of the drugs exhibiting properties

of both, depending on the context 42. In both experimental and clinical scenarios, cytotoxic

substances can also induce cell stasis when administered in low doses or when cells are

resistant to apoptosis. Conversely, cytostatic compounds can trigger apoptosis in cancer cells

that are in states other than quiescence 42. Additionally, prolonged cell stasis in response to

cytostatic compounds can lead to cell death 42. In our study, however, it seems unlikely that we

could observe this effect due to the short time frame of our investigation. In our experimental

design, we used unsynchronized cell populations as this scenario resembles real-life conditions.

This decision could explain why we find evidence that supports both a stasis of cell growth and

induction of cell death in response to both of the combinations, as cells in different cell cycle

states could be responding differently. In PI3K-MAPK co-targeting in thyroid cancer cell lines

others have observed that the cells exhibited cell cycle arrest that led to apoptotic cell death but

only after 24 hours 38 . However, our main aim remains to describe the molecular events that

lead to the synergistic reduction of cell growth and other types of experiments should be

employed to characterize a compound or a combination as either or as both. Additionally, it was

previously shown that responses in PI3K-MAPK double inhibition were dependent on the

mutational status of the tested cell lines 43,44, and therefore follow-up experiments might be

required to explore the effect of mutations to combination responses either in a panel of cell

lines or in more complex experimental models, such as organoids.
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In conclusion, our study provides a comprehensive view of the molecular events occurring in

AGS cells when exposed to PI3K, TAK1, and MEK inhibitors both individually and in

combination. The observed changes in phosphorylation, transcription factor activity, and gene

expression collectively support altered cell fate decisions and metabolic dysregulation as central

mechanisms underlying the synergistic effects of these combinations.

Materials and Methods

Experimental setup

AGS (human gastric adenocarcinoma, ATCC, Rockville, MD) were grown in Ham’s F12 medium

(Invitrogen, Carlsbad, CA) supplemented with 5% fetal calf serum (FCS; Euroclone, Devon,

UK), and 10 U/ml penicillin-streptomycin (Invitrogen). Chemical inhibitors PI-103, 5Z:

(5Z)-7-oxozeaenol, and PD: PD0325901 (all Merck) were solved in DMSO at stock

concentrations of 20 mM.

Raw data production & analysis

Transcriptomics

Sample preparation

Cells (0.5 *106) were seeded in 6-well plates, reaching 80-90 % confluency after 24 hrs. Then

inhibitors PI (0.70 µM), 5Z (0.50 µM), and PD (0.035 µM) were added (single or in combination),

and cells were further incubated for 1, 2, 4, 8, and 24 hrs. One 6-well plate was prepared for

each time point including 0 hour untreated control plate. Subsequently, media was removed,

and cells were washed once with PBS (37 oC) and 350 µl RNA lysis buffer (Qiagen, Buffer RLT

Plus, Cat. No. 1053393) added. Cell lysates were further transferred to liquid N2/ -80 oC freezer

before RNA purification according to Qiagen protocol (www.Qiagen.com; AllPrep

DNA/RNA/miRNA Universal Kit, Cat. No. / ID:80224).

Library construction and sequencing

RNA concentration was measured using Qubit® RNA HS Assay Kit on a Qubit® 3.0

Fluorometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). Integrity was assessed using

Agilent RNA 6000 Pico Kit on a 2100 Bioanalyzer instrument (Agilent Technologies, Santa
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Clara, CA, USA). RNA sequencing libraries were prepared using the Illumina Stranded mRNA

prep ligation kit (Illumina, San Diego, CA, USA) according to the manufacturer's instructions.

The final libraries were purified using the AMPure XP (Beckman Coulter, Inc., Indianapolis, IN,

USA), quantitated by qPCR using KAPA Library Quantification Kit (Kapa Biosystems, Inc.,

Wilmington, MA, USA), and validated using Agilent High Sensitivity DNA Kit on a Bioanalyzer

(Agilent Technologies, Santa Clara, CA, USA). The size range of the DNA fragments was

measured to be in the range of app. 200-1000 bp and peaked at around 300 bp. Before

sequencing, the libraries were quantified (KAPA Library Quantification Kit (Illumina/ABI Prism),

normalized, and pooled. Quantitated libraries were further diluted to 2.5 nM and subject to

clustering by a cBot Cluster Generation System on four HiSeq4000 flow cells (Illumina Inc. San

Diego, CA, USA), according to the manufacturer's instructions. Finally, single-end read

sequencing was performed for 64 cycles on an Illumina HiSeq4000 instrument, following the

manufacturer’s instructions (Illumina, Inc., San Diego, CA, USA). FASTQ files were created with

bcl2fastq V2.20 (Illumina, Inc., San Diego, CA, USA).

Raw data processing

The quality of the produced FASTQ files was controlled with fastqc (version 0.11.9) and then

filtered and trimmed by fastp (version 0.20.0). Trimmed sequences were aligned to the genome

reference using STAR (version 2.7.3) and quality metrics were extracted with picard

CollectRNASeqMetrics (version 2.21.5). Transcript counts were generated using quasi

alignment with Salmon (version 1.3.0) to the GRCh38 transcriptome reference sequences.

Transcript counts were imported into the R statistical software and aggregated to gene counts

using the tximport (v1.14.0) Bioconductor package for downstream statistical analysis.

Phosphoproteomics

Sample preparation

Cells (4 *106 ) were seeded in TC175 flasks in a total volume of 10 ml medium with 5% FCS.

One TC75 flask was prepared for each time point, plus one additional flask for DMSO for 8 hrs.

After leaving cells in the incubator overnight for 20 hrs, inhibitors PI-103 (0.70 µM),

5-z-7-oxozeaenol (0.50 µM), and PD0325901 (0.035 µM) (single or combinations) were added

to each TC75-flask except flasks to be harvested at 0 hrs. Cells were then incubated for 0.5, 2,

and 8 hours. Subsequently, media was removed, cells washed once with PBS and trypsinized
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using 3 ml trypsin/EDTA, left until detachment, typically around 3-5 minutes. 7 ml media with

10% FCS was added, cells collected, pellet (1500 RPM for 5 minutes, 4 oC) and washed with 5

ml PBS (4 oC) supplemented with phosphatase inhibitors (1mM NaF, 1mM beta-glycerol

phosphate and 5mM Sodium Orthovanadate) and additional pellet (1500 RPM for 5 minutes, 4
oC). The supernatant was removed and the pellet resuspended in 1 ml cold PBS. Cells were

transferred to a 1.5ml Eppendorf tube, pellet (1500 RPM, 5 min, 4 oC), PBS removed and the

cells were immediately frozen in liquid nitrogen before being transferred to a -80 oC freezer.

Sample preparation for MS analysis

Snap-frozen cell pellets were lysed in 300 µl of boiling lysis buffer containing 5% SDS, 100 mM

TrisHCl pH 8.5, 5 mM TCEP, and 10 mM CAA for 10 minutes at 95ᵒC. Samples were further

homogenized by sonication with a probe for 45 seconds (1 sec ON, 1 sec OFF, 30% amplitude).

Protein concentration was measured by BCA. Afterward, samples were digested overnight

using the PAC protocol 45 implemented for the KingFisher robot as described previously 46.

Samples were acidified after digestion to a final concentration of 1% trifluoroacetic acid (TFA)

and peptides were loaded onto Sep-Pak cartridges (C18 1 cc Vac Cartridge, 50 mg - Waters).

Eluted peptides from the Sep-Pak were concentrated in a Speed-Vac, and 150 µg of peptides

(measured by A280 Nanodrop) were used for phospho-enrichment. Phosphoenrichment was

performed as described previously 46 using 20 µl of TiIMAC-HP beads (MagResyn). Eluted

phosphopeptides were acidified with 10% TFA to pH <3, filtered through MultiScreenHTS HV

Filter Plate (0.45 µm, clear, non-sterile) for 1 minute at 500 g and loaded into Evotips for further

MS analysis.

LC-MSMS analysis

Samples were analyzed on the Evosep One system using an in-house packed 15 cm, 150 μm

i.d. capillary column with 1.9 μm Reprosil-Pur C18 beads (Dr. Maisch, Ammerbuch, Germany)

using the pre-programmed gradients for 60 samples per day (SPD) for phospho-proteome

samples. The column temperature was maintained at 60°C using an integrated column oven

(PRSO-V1, Sonation, Biberach, Germany) and interfaced online with the Orbitrap Exploris 480

MS. Spray voltage was set to 2.0 kV, funnel RF level at 40, and heated capillary temperature at

275°C. Full MS resolutions were set to 120,000 at m/z 200 and full MS AGC target was 300%

with an IT of 45 ms. Mass range was set to 350−1400. A full MS scan was followed by a DIA

scan comprising 49 windows of 13.7 Da with an overlap of 1 Da, scanning from 472 to 1143 Da

for phospho-proteome and 361 to 1033 Da for total proteome. Resolution was set to 15,000 and
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IT to 22 ms. The normalized collision energy was set at 27%. AGC target value for fragment

spectra was set at 1000%. All data were acquired in profile mode using positive polarity and

peptide match was set to off, and isotope exclusion was on.

Raw data processing

Raw files were searched in Spectronaut (v16) using a library-free approach (directDIA).

Carbamidomethylation of cysteines was set as a fixed modification, whereas oxidation of

methionine, acetylation of protein N-termini, and, in phospho-proteomics samples

phosphorylation of serine, threonine, and tyrosine, were set as variable modifications. Homo

sapiens FASTA database (UniProtKB/Swiss-prot 21,088 entries) and a common contaminants

database were used for directDIA search. For phospho-proteomics samples, the PTM

localization cutoff was set to 0.75. Cross-run normalization was off and Data Filtering was set to

Qvalue. Phospho-peptide quantification data was exported and collapsed to site information

using the Perseus plugin described in Bekker-Jensen et al 47. Phosphosite data sets were

processed using R (v3.6.2). Data was log2 transformed and three valid values in at least one

experimental group were required to preserve the phosphosite for further analysis. Data was

normalized to remove experimental bias due to sample handling using the Loess method.

Imputation of missing values was performed using the data analysis pipeline of Prostar (v

1.18.4) 48. Imputation of missing values was performed in two steps: first partially observed

values (i.e., values missing within a condition in which there are valid quantitative values) were

imputed using the function slsa from the DAPAR package, and second, values missing in an

entire condition were imputed using the detQuant function (quantile=1, factor=1) also from

DAPAR package.

Computational and statistical analysis

Unless stated otherwise, the analyses were performed in RStudio (version 2022.02.2) with R

version 4.2.3 (2023-03-15). Principal component analysis (PCA) was performed using the

PCAtools package (version 2.8.0) 49 and visualized using Plotly (version 4.10.1) 50. Heatmaps

were created using the ComplexHeatmap R package (version 2.12.0)51. The rest of the

visualizations were created using ggplot2 (version 3.4.1)52 unless stated otherwise.
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Differential expression analysis
For phosphoproteomics, differential site regulation was calculated when at least 75% of the

values were valid (not imputed) in one condition of each pairwise comparison. Significantly

regulated sites were calculated using a moderated two-sided t-test (in limma R package) setting

the method of the lmFit function to “robust” and using Benjamini-Hochberg FDR correction. For

transcriptomics, a differential expression analysis was performed using the limma R package

(version 3.52.0) 23,53. Gene counts were transformed using the limma-voom workflow. Genes

with zero or very low (i.e. CPM < 3) counts were omitted from the analysis. For each

comparison, a linear model was fitted for each gene with each condition (i.e. treatment and

time) as a variable. DMSO was used as a baseline for all contrasts. Differentially expressed

genes were defined using a logarithmic fold change (logFC) threshold of 1 and an adjusted

p-value threshold of 0.05.

Response profiles
To gain a deeper understanding of how the two single drugs contribute to the changes (i.e.

Differentially phosphorylated phosphosites and Differentially expressed genes) found in the

synergies, we developed a decision tree that classifies each DPP and DEG into one of

predefined categories. This categorization was qualitative and was based on whether a

phosphosite or gene was upregulated, downregulated, or unaffected compared to DMSO,

without taking into account the intensity of changes. As each phosphosite/gene can have three

types of changes (i.e. upregulated, downregulated, unaffected) in three conditions (Drug A, Drug

B, and Combo A+B), a total of 27 possible categories can arise. These categories were further

grouped to main categories denoting whether a change was:

- specific to one condition (i.e. combination-specific, DrugA-specific, DrugB-specific

changes),

- driven by one of the two single drugs (i.e DrugA-driven, DrugB-driven changes),

- same in all conditions (i.e. Concerted changes)

- antagonistic between the two drugs (i.e. Counterbalanced changes).

To validate the ability of the decision tree to correctly classify each phosphosite and gene, a toy

dataset with all possible change types was created.
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Phosphoproteomics Temporal Clustering
Temporal profiles were obtained for each synergy (PI3K+TAK inhibition and PI3K+MEK

inhibition). Only phosphorylation sites that were significantly regulated (q-value <0.05) in one

time point were used for further analysis. Temporal profiles were obtained by z-scoring the log2

fold change at each time point of treatment versus DMSO and setting the time zero value as 0.

Clustering was performed using the cluster_analysis function from multiclust package (v1.24.0)

in R, setting a fixed number of 10 clusters, with k-means as the clustering algorithm and

Pearson as distance measure.

Kinase activity signatures enrichment analysis
Kinase activity inference was calculated using single sample Gene Set Enrichment Analysis

approach with PTMSigDB, also known as PTMSignature Enrichment Analysis (PTM-SEA)) 22 .

Log2 fold change at each time point for each treatment versus DMSO was used as input for

PTM-SEA analysis. A minimum of five phosphosite per signature is required to calculate the

enrichment score. Kinase signatures with a q-value < 0.01 were considered significant..

Phosphoproteomics motif analysis
Motif logos for each phosphoproteomics temporal cluster were plotted using ggseqlogo (v0.1).

Motif overrepresentation analysis was performed in Perseus (v1.6.5.0) using a two-sided

overrepresentation test (Fisher exact t-test) and using the overall measured phosphoproteome

as a background.

Transcription factor activity inference & Overrepresentation analysis
The metasource CollecTRI was used as a Prior Knowledge Network (PKN) for the estimation of

transcription factor activity 54. Bioactivity estimations were performed using the decoupleR

package (version 2.2.0)55 and the univariate linear model (ulm) method was used. Only

transcription factors with minimum 5 annotated target genes in the PKN were included in the

analysis. Overrepresentation analysis for Gene Ontology terms was performed with the

clusterProfiler package (version 4.4.1) 56. The total of measured genes in our transcriptomics

dataset was used as a background for the analysis, and with an adjusted p-value threshold of

0.05.
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Data and code availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository 57 with the dataset identifier XX. Raw
transcriptomics data are available at XX. The code for all the presented analyses is available in
https://github.com/Eirinits/AGS_synergies.git.
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