
 

1 

Single-cell genomics and regulatory networks 
for 388 human brains 

Prashant S. Emani†, Jason J. Liu†, Declan Clarke†, Matthew Jensen†, Jonathan Warrell†, 
Chirag Gupta†, Ran Meng†, Che Yu Lee†, Siwei Xu†, Cagatay Dursun†, Shaoke Lou†, Yuhang 

Chen, Zhiyuan Chu, Timur Galeev, Ahyeon Hwang, Yunyang Li, Pengyu Ni, Xiao Zhou, 
PsychENCODE Consortium, Trygve E. Bakken, Jaroslav Bendl, Lucy Bicks, Tanima Chatterjee, 

Lijun Cheng, Yuyan Cheng, Yi Dai, Ziheng Duan, Mary Flaherty, John F. Fullard, Michael 
Gancz, Diego Garrido-Martín, Sophie Gaynor-Gillett, Jennifer Grundman, Natalie Hawken, Ella 

Henry, Gabriel E. Hoffman, Ao Huang, Yunzhe Jiang, Ting Jin, Nikolas L. Jorstad, Riki 
Kawaguchi, Saniya Khullar, Jianyin Liu, Junhao Liu, Shuang Liu, Shaojie Ma, Michael Margolis, 
Samantha Mazariegos, Jill Moore, Jennifer R. Moran, Eric Nguyen, Nishigandha Phalke, Milos 

Pjanic, Henry Pratt, Diana Quintero, Ananya S. Rajagopalan, Tiernon R. Riesenmy, Nicole 
Shedd, Manman Shi, Megan Spector, Rosemarie Terwilliger, Kyle J. Travaglini, Brie Wamsley, 
Gaoyuan Wang, Yan Xia, Shaohua Xiao, Andrew C. Yang, Suchen Zheng, Michael J. Gandal, 

Donghoon Lee, Ed S. Lein, Panos Roussos, Nenad Sestan, Zhiping Weng, Kevin P. White, 
Hyejung Won, Matthew J. Girgenti*, Jing Zhang*, Daifeng Wang*, Daniel Geschwind*, Mark 

Gerstein* 
 

† Co-first authors, these authors contributed equally to this work.  
* Corresponding authors. 

 
  

Correspondence to: matthew.girgenti@yale.edu, zhang.jing@uci.edu, daifeng.wang@wisc.edu,  
dhg@mednet.ucla.edu, pi@gersteinlab.org  
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.18.585576doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.18.585576
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

Abstract 
Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. 
Yet, little is understood about how genetic variants influence cell-level gene expression. 
Addressing this, we uniformly processed single-nuclei, multi-omics datasets into a resource 
comprising >2.8M nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we 
assessed population-level variation in expression and chromatin across gene families and drug 
targets. We identified >550K cell-type-specific regulatory elements and >1.4M single-cell 
expression-quantitative-trait loci, which we used to build cell-type regulatory and cell-to-cell 
communication networks. These networks manifest cellular changes in aging and 
neuropsychiatric disorders. We further constructed an integrative model accurately imputing 
single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk 
genes and drug targets with associated cell types. 
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Introduction 
Genetic variants linked to neuropsychiatric disorders affect brain functions on multiple levels, 
from gene expression in individual cells to complex brain circuits between cells (1–3). At every 
level, they manifest themselves differently depending on the cell type in question. Previously, 
groups such as GTEx (Genotype-Tissue Expression), PsychENCODE, and ROSMAP (Religious 
Orders Study/Memory and Aging Project) assembled cohorts large enough to link variants to 
their effects on gene expression in bulk tissue, generating comprehensive eQTL (expression 
quantitative trait locus) catalogs for the brain (4–6). While useful, these tissue-level results do 
not reflect the specific cell types involved; moreover, they do not provide strong evidence that 
eQTLs act in cell-type-specific fashion (7–10).  

Recently, dramatic technological advances have allowed the measurement of gene 
expression and chromatin accessibility at the single-cell level (11–13). The resulting datasets 
have shown that the brain has a particularly large number of distinct cell types; cell-type 
complexity, in fact, is one of the brain's distinguishing features (12). Many brain cell types have 
been rigorously defined, particularly by the Brain Initiative Cell Census Network (BICCN) (12, 
14, 15). Using these, we can potentially refine our understanding of how variants and gene 
regulation affect brain phenotypes, including neuropsychiatric disorders (16). However, up to 
now we have not had sufficiently large cohorts, with a wide enough range of brain phenotypes, 
to make statistically meaningful associations between variants, regulatory elements, and 
expression and to develop comprehensive models of brain gene regulation at the single-cell 
level.  

To address this gap, the PsychENCODE consortium generated single-cell sequencing 
data from adult brains with multiple neuropsychiatric disorders in the human prefrontal cortex, 
using single-nucleus (sn) assays such as snRNA-seq, snATAC-seq, and snMultiome. 
Leveraging these data and integrating them with other published studies (12, 17–19), we 
created a uniformly processed single-cell resource at the population level. This resource, which 
we call brainSCOPE (brain Single-Cell Omics for PsychENCODE), comprises >2.8 M nuclei 
from 388 individual brains, including 333 newly generated samples and 55 from external 
sources (figs. S1-S2). It enables us to assess 28 distinct brain cell types that can be registered 
against previously identified canonical cell types (12, 19). Using the resource, we identified an 
average of ~85K cis-eQTLs per cell type and ~550K cell-type-specific cis-regulatory elements, 
which were enriched for variants associated with brain-related disorders. Using our regulatory 
elements and eQTLs, we inferred cell-type-specific gene regulatory networks (which show great 
changes across cell types) as well as cell-to-cell communication networks. Moreover, we 
precisely quantified expression variation in the population, finding, for instance, that common 
neuro-related drug targets like CNR1 demonstrate a high degree of cell-type variability and low 
inter-individual variability and that the transcriptomes of specific neurons are highly predictive of 
an individual's age. Finally, we developed an integrative model to impute cell-type-specific 
functional genomic information for individuals from genotype data alone. Using this model, we 
prioritized many known and some additional disease genes, now with information about their 
specific cell type of action. We further associated this prioritization with potential drug targets 
and simulated the effects of perturbing the expression of particular genes.  
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All sequencing data, derived analysis files, and computer codes are available from the 
brainSCOPE resource portal (brainscope.psychencode.org, figs. S3-S5; (20)); these include 
gene expression matrices from snRNA-seq data, regulatory regions from snATAC-seq data, 
variability metrics for all genes, single-cell QTL callsets, regulatory and cell-to-cell 
communication networks, and the integrative model and its prioritization outputs.  

Constructing a single-cell genomic resource for 388 individuals 
We compiled and analyzed population-scale single-cell multiomics data from the human 
prefrontal cortex (PFC) for a cohort consisting of 388 adults. The individuals in our cohort are 
diverse in terms of biological sex, ancestry, and age, and include 182 healthy controls as well as 
individuals with schizophrenia, bipolar disorder, autism spectrum disorder (ASD), and 
Alzheimer’s disease (AD) (Fig. 1A; fig. S1; data S1-S2; table S1; (20)). We used various filters 
on the total cohort of 388 for different downstream analyses (fig. S2; data S3). In total, to build 
the resource, we uniformly processed 447 snRNA-seq, snATAC-seq, and snMultiome datasets 
from within PsychENCODE and external studies with >2.8M total nuclei (after QC and filtering 
from a raw number of nearly 4M; figs. S6, S7; table S2; (20)). Our processing required 
harmonizing datasets derived from different technologies and modalities; for instance, we 
generated uniform genotypes, including SVs, from combining whole-genome sequencing 
(WGS), SNP array, and snRNA-seq data (figs. S1, S8; (20)). We also generated custom 
datasets to bridge studies, in particular, snMultiome sequencing of controls (20). 

We developed a cell-type annotation scheme that harmonizes the BICCN reference 
atlas (12) and published analyses specifically focusing on the PFC (labeled "Ma-Sestan" here 
(19); Fig. 1B; figs. S9-S11; (20)). In particular, we leveraged the deep sampling of neurons from 
BICCN and of non-neuronal cells from Ma-Sestan. This resulted in a set of 28 cell subclasses, 
which we will hereafter refer to as "cell types," most of which are robustly represented across all 
cohorts (tables S3-S4). For select downstream analyses that require increased power, we 
grouped excitatory and inhibitory neuron types into larger “excitatory” and “inhibitory” classes to 
yield seven major cell groupings. Overall, we assessed a total of 2,557,291 high-quality 
annotated nuclei from the snRNA-seq data (table S2). We validated our annotation scheme by 
assessing the expression of key marker genes (Fig. 1C). 

Using these datasets, we first calculated cell-type fractions in each sample (figs. S12-
S14; data S4; (20)). Fractions based on raw cell counts in snRNA-seq show great consistency 
with those inferred from bulk RNA-seq using deconvolution (fig. S12; data S5-S6). We further 
found that some cell types demonstrate cell-fraction differences in neuropsychiatric traits (fig. 
S13). For example, as previously suggested, the Sst cell fraction is different in individuals with 
bipolar compared to controls (21–23) (FDR<0.05, two-sided Welch’s t-test). To more broadly 
quantify differences relevant to population-wide traits, we computed lists of cell-type-specific 
differentially expressed (DE) genes for each disorder based on established approaches (24) 
(figs. S15-S18; data S7; (20)). Fig. 1D shows a representative plot for DE genes in 
schizophrenia, highlighting many previously known risk genes in a cell-type-specific context (25, 
26). We also found that individuals with schizophrenia differ from controls with respect to the 
number of aging DE genes, which may reflect the increased expression variability in 
schizophrenia patients (Fig. 1E; fig. S19).  
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Our snRNA-seq data also recapitulates the spatial relationships among cell types in the 
PFC. Fig. 1F shows a cell-trajectory analysis (27, 28) across four subclasses of excitatory 
neurons in controls. We found smoothed patterns of gene-expression variation along the 
cortical-depth axis (specifically for L2/3, L4, L5, and L6 IT; figs. S20-S22; (20)). These findings 
expand on previous MERFISH-based results for 258 genes in the mouse motor cortex, now 
showing that cortical depth is related to gene expression variation for thousands of genes (29, 
30). Overall, we found 76 genes with significant variation (FDR<0.05, Wald test) across cortical 
layers, including several genes involved in neural development such as SEMA6A, RUNX2, 
SOX6, and PROX1 (figs. S20-S22; list in table S5; data S8).  

Determining regulatory elements for cell types from snATAC-seq 
In addition to snRNA-seq data, our resource contains 59 samples with snATAC-seq data, 
including 40 snMultiome datasets. After strict quality control, we extracted 273,502 deeply 
sequenced nuclei, allowing us to learn cell embeddings simultaneously from transcriptomic and 
epigenetic information (table S1; (20)). As a result, we recovered 28 distinct PFC cell types 
consistent with the snRNA-seq annotation and validated these with the chromatin accessibility 
of marker genes (Figs. 2A-2B; figs. S23-S24). Further, uniform snATAC-seq processing 
identifies a total of 562,098 open-chromatin regions across all datasets, representing a much 
larger number of regions than those identified in previous brain studies (Fig. 2C; (20)) (2, 31). 
Following the ENCODE (Encyclopedia of DNA Elements) convention (32), we call these 
scCREs (single-cell candidate cis-Regulatory Elements). About half of these are cell-type-
specific and located distal to genes (fig. S25). We validated the functionality of select scCREs 
using targeted STARR-seq (Fig. 2D; (20, 33)).  

Using bulk data, we also developed a reference set of >400K open-chromatin regions, 
representing brain-tissue candidate cis-Regulatory Elements (b-cCREs; (20)). The b-cCREs 
were generated in a comparable fashion to ENCODE cCREs, which are not tissue-specific (32). 
As expected, they show strong overlap with scCREs (Fig. 2C).  

To identify how our cell-type-specific regulatory elements relate to genetic associations, 
we performed a LDSC (linkage-disequilibrium score regression) analysis (20, 34). In general, 
we found stronger LDSC enrichment for brain phenotypes in b-cCREs compared to cCREs (Fig. 
2E; fig. S26; data S9-S10; table S6). Furthermore, we found additional enrichment when 
comparing cell-type-specific scCREs in excitatory neurons to b-cCREs, highlighting how 
snATAC-seq allows for better linkage between regulatory regions and brain phenotypes (Fig. 
2E) (35–38). 

Next, we explored transcription factor (TF) usage across major brain cell types (fig. S27; 
(20)). Fig. 2F shows that major brain cell types clearly use distinct TFs. For instance, CUX1, 
NEUROG1, and PAX3 are mostly active in excitatory neurons, whereas SPL1 and SPI1 are 
specific to microglia. We further observed differences between proximal and distal regulation, 
for example, in ELF1 (Fig. 2G; data S11). We were able to validate many TF activities with 
footprinting (39) (Fig. 2H; fig. S27).  
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Measuring transcriptome and epigenome variation across the 
cohort at the single-cell level 
Single-cell data across a large cohort offers a unique opportunity to study the sources of 
expression variation in the brain (Fig. 3A; figs. S28-S30; (20)) (40). We partitioned the variation 
in expression of each gene based on the relative contribution of individual and cell-type 
variability while correcting for covariates (data S12-S13). This allowed us to determine relative 
contributions to variability based on the function of each gene. For example, brain-specific 
genes, such as those associated with central nervous system (CNS) morphogenesis and 
neurotransmitter reuptake, demonstrate a high degree of cell-type variability and a lower inter-
individual variation (Figs. 3B-3C; fig. S31; data S14). Conversely, genes associated with 
common molecular or cellular processes, tend to have lower cell-type variation and higher 
individual variation (for instance, carbohydrate homeostasis and ATP generation; Fig. 3B). 
Furthermore, within families of CNS-specific genes, some neurotransmitter families manifest 
higher inter-individual variation compared to others (for example, glutamate vs serotonin, p-
value=3.7x10-6, one-sided t-test; Fig. 3C; fig. S31). We also identified a few outliers with very 
large inter-individual variation such as ARL17B, likely resulting from copy-number variation (41, 
42).  

An additional application of quantifying expression variability is characterizing drug-
target genes. In particular, we selected 280 common CNS-related drug-target genes and 
showed that, overall, they have high cell-type variability and low individual-level variability (Fig. 
3C; fig. S32A) (43). That said, some of the 280 exhibit much higher inter-individual variation 
than others; HSPA5 and CNR1 provide a good illustration (Figs. 3C-3E; fig. S32B). Also, two 
adrenergic receptor family genes, ADRA1A and ADRA1B, demonstrate high cell-type variation 
but distinctly different cell-type expression patterns (fig. S32C). 

Next, we found that genes with lower expression variability have higher sequence 
conservation (Fig. 3F; figs. S33-S34; (20)). However, some genes not following this trend serve 
as interesting exceptions (that is, highly conserved genes with high expression variance). The 
gene deviating most from the trend is IL1RAPL1 (Fig. 3F; fig. S34B), an interleukin-1 receptor-
family gene inhibiting neurotransmitter release (44); IL1RAPL1 is highly expressed in the brain 
and has been implicated in intellectual disability and ASD (45).  

We also leveraged our snATAC-seq profiles to deconvolve population-scale chromatin 
data (fig. S33; (20)). Similar to the transcriptome, open chromatin regions with higher sequence 
conservation have less variability in their chromatin openness (Fig. 3G; fig. S35). Furthermore, 
an increase in variability is concurrently observed with an increase in cell-type specificity. These 
patterns held when we jointly considered a gene and its linked upstream regulatory region; that 
is, a more variably expressed gene is associated with a more variable upstream chromatin 
region, and both of these are less conserved at the sequence level. (fig. S34A; (20)). Finally, we 
found that microglia scCREs exhibit the least sequence conservation, consistent with previous 
studies (Fig. 3H) (19, 46, 47).  

Determining cell-type-specific eQTLs from single-cell data 
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To evaluate cell-type expression variation in more detail, we used our processed snRNA-seq 
data to identify single-cell cis-eQTLs (hereafter referred to as “scQTLs”). We followed the same 
general procedure used by GTEx (5), including conservative filtering at the cell-type level when 
generating pseudobulk data (20). We used this set of scQTLs as our "core callset," with the 
objective of facilitating consistent comparisons with those from existing datasets (such as GTEx 
and PsychENCODE bulk data) (data S15). Note the sparsity intrinsic to snRNA-seq data 
reduces power, particularly for rarer cell types (fig. S36; table S7; (20)) (48). To ameliorate the 
low power, we developed a Bayesian linear mixed-effects model to identify more scQTLs for 
rare cell types as an additional callset (Fig. 4A; figs. S36C, S37; table S8; (20)). We also 
generated further alternative callsets and a merge of results from all approaches (figs. S38-
S39). These callsets include results based on linkage-disequilibrium pruning (table S9; (20)), 
regression across pseudo-time trajectories (below and (20)), and conditional analysis (giving 
rise to ~1 signal per eGene, where an eGene is a gene involved in an eQTL; (20)). Finally, we 
identified a limited number of cell-type-specific isoform-usage QTLs (iso-QTLs), taking into 
account limitations in isoform identification from short-read snRNA-seq data (~134K candidate 
iso-QTLs with 1389 associated "isoGenes"; figs. S40-S42; data S16; (20)). 

Overall, we identified an average of ~85K scQTLs and ~690 eGenes per cell type in our 
core set, resulting in ~1.4M scQTLs when totaled over cell types (Fig. 4A; fig. S36A, S43; table 
S7; (20)). Many of the scQTLs are uniquely cell-type-specific (i.e. not in any other cell type), but 
~47% appear in more than one cell type (Fig. 4A; fig. S36). About 30% of the scQTLs overlap 
with bulk cis-eQTLs (4). Among these "overlappers," the direction of effect is consistent (Fig. 
4B), but the magnitude of the scQTL effect size is greater than that of the matched bulk eQTL 
(Fig. 4C; fig. S44; table S10). We posit a “dilution effect” as an explanation, wherein scQTL 
effect sizes may be diluted in bulk data when they occur only in a relatively small number of cell 
types. This line of reasoning is supported by comparing scQTLs appearing in a few cell types to 
those observed in many (Fig. 4B; fig. S36A). Overall, we found cell-type-specific QTLs were 
likely difficult to detect in bulk measurements, which is borne out by the fact that more than two-
thirds of our scQTLs are not found in bulk despite much larger sample sizes available in bulk.  

Our scQTLs are strongly enriched in narrow regions around the transcription start sites 
(Fig. 4D; figs. S45-S46). We validated some of our core scQTLs by comparing them with 
functional elements identified by STARR-seq, mut-STARR-seq, and massively parallel reporter 
assays (MPRA) (Fig. 4E; figs. S47-S48; (20, 33)). As further validation, we were able to identify 
allele-specific expression (ASE) at the single-cell level in samples with WGS-based phased 
variants (Fig. 4F; fig. S49; (20)). Determination of single-cell ASE is particularly challenging due 
the sparsity of the data (49–53). Here, we compared the magnitude of the ASE effect at an SNV 
with the corresponding effect size of the scQTL involving the same SNV, finding significant 
correlation as expected (Fig. 4F; fig. S49; p< 2.0x10-16, Fisher’s exact test). 

Overall, we identified 330 scQTLs for eGenes related to brain disorders (Fig. 4G; figs. 
S50-S51; data S17). For example, we found scQTLs for SYNE1, a candidate autism and 
schizophrenia gene (54, 55), and NLGN1, a candidate gene for multiple brain disorders 
encoding a ligand for neurexin signaling (56). We also found multiple scQTLs within the 
complex 17q21.31 locus related to brain disorders, including an astrocyte-specific scQTL for the 
Tau protein gene MAPT and a multi-cell type scQTL for the neurodegenerative-disorder risk 
gene KANSL1 (Fig. 4G) (41). We further highlight an iso-QTL for LYPD6, which inhibits 
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acetylcholine-receptor activity in Pax6-type inhibitory neurons (57) (Fig. 4G). 
Finally, we developed a Poisson-regression model that incorporates a continuous 

trajectory and a pseudotime-genotype interaction term to further expand our scQTLs, allowing 
for the calculation of "dynamic scQTLs" that exhibit a changing effect size along the pseudotime 
trajectory (figs. S52-S53; data S18-S19; (20)) (58). In particular, for 1692 of the 6255 unique 
eGenes in four types of excitatory neurons, we found a corresponding dynamic scQTL (with a 
non-zero interaction term); Fig. 4H and fig. S52 show examples. Moreover, many of these 
dynamic scQTLs imply widespread QTL effects in cell types where we do not discover a scQTL 
with our core approach (fig. S52). 

Building a gene regulatory network for each cell type 
By integrating multiple data modalities, including scQTLs, snATAC-seq, TF-binding sites, and 
gene co-expression, we constructed gene-regulatory networks (GRNs) for PFC cell types (Fig. 
5A; figs. S54-S58; data S20; (20)). In particular, we linked TFs to potential target genes based 
on their co-expression relationships from snRNA-seq data (59, 60), and mapped scQTLs to 
connect promoters and enhancers (data S21). We make these networks available in a variety of 
easy-to-use formats (20). For instance, we applied a network-diffusion method that provides the 
key regulators of a given target gene -- specifically, the aggregate regulatory score of each TF 
for that target (figs. S59-S60). 

We experimentally validated a subset of these linkages using CRISPR knockouts (Fig. 
5B; fig. S61; data S22; (20)). Overall, we found that TF expression in the GRNs explain an 
average of 52% of the variation in expression of target genes, with merged networks explaining 
more variance than just the promoter or enhancer connections (Fig. 5C; fig.  S62). Additionally, 
mapping loss-of-function (LOF) mutations in individuals to select TFs ("natural knock-outs") 
provided further validation by showing the expected change in expression of their target genes 
in a cell-type-specific manner (fig. S63; (20)). Overall, 77% of TFs with LOF variants, including 
TCF7L2 and STAT2, lead to the expected expression alteration within their cell-type-specific 
regulons (Fig. 5D; fig. S63). 

Our analyses of GRNs uncovered complex network rewiring across the cell types (Fig. 
5E; figs. S64-S66; data S23; (20)). In particular, the most highly connected TFs ("hubs") are 
largely shared across cell types, suggesting their involvement in common machinery used by all 
brain cells (Fig. 5F). In contrast, bottlenecks (key connector TFs) have much more cell-type-
specific activity (Fig. 5F; fig. S67A). Furthermore, the targets of bottleneck TFs are enriched for 
cell-type-specific functions, such as myelination and axon ensheathment for oligodendrocytes 
(61) (fig. S67B; data S24). Additionally, cell-type-specific GRNs greatly differ in the usage of 
network motifs, such as feed-forward loops (Fig. 5G). These particular motifs, which are thought 
of as a noise-filtering mechanism (62), are notably enriched in certain non-neuronal cell types.  

Finally, disease genes for a particular disorder tend to be co-regulated in a cell-type-
specific manner (Fig 5H; figs. S65,S68; (20)). For instance, gene sets related to schizophrenia 
form relatively dense subnetworks in neurons, whereas the AD subnetwork is actively co-
regulated just in microglia and immune cells (fig. S69) (38, 63, 64).  
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Constructing a cell-to-cell communication network 
To further understand cellular signaling and regulation, we leveraged publicly available ligand-
receptor pairs (65) in combination with our snRNA-seq data to construct a cell-to-cell 
communication network (Fig. 6A; table S11-S12, fig. S70; (20)). As expected, we observed 
three broad ligand-receptor usage patterns among excitatory, inhibitory, and glial cell types, 
indicating that these cell types use distinct signaling pathways in their communication. For 
instance, in both incoming and outgoing communication, we observed that all nine glial cell 
types are grouped together based on their ligand-receptor interactions, with growth-factor genes 
as some of the top contributing ligand-receptor pairs (66–68) (Fig. 6B).  

We next explored how cell-cell communication patterns are altered in individuals with 
neuropsychiatric disorders, finding that they are greatly changed for schizophrenia and bipolar 
disorder (Fig. 6B; figs. S71A-B, S72; data S25-S26). In fact, notable inter-mixings occur among 
the three broad patterns of ligand-receptor usage. For instance, in bipolar disorder, the 
excitatory pattern (inferred from controls) now also contains OPCs and some inhibitory neurons 
(Pvalb and Sst Chodl). In individuals with schizophrenia (compared to controls), we also found 
that excitatory neurons received less incoming signaling, while inhibitory neurons received more 
(Fig. 6C).  

To further highlight network perturbations in disease, we assessed signaling-pathway 
changes for bipolar disorder and schizophrenia (Fig. 6D). In bipolar, we observed 
downregulation of the Wnt pathway, consistent with previous findings (Fig. 6D) (69–72). 
Mechanistically, this downregulation could result in the overactivity of the lithium-targeted 
GSK3β enzyme in neurons (73, 74). In schizophrenia, the Wnt pathway is downregulated as 
expected, but we also found increased sender communication strength for L6 IT Car3 neurons, 
different from bipolar (75). We further found downregulation of PTN pathway interactions from 
glial cells to neurons, consistent with previous studies (76–78), and a decrease in signaling to 
glial cells involving various growth factors (fibroblast, epidermal and insulin) (figs. S71C-E). 
These findings support the “glial cell hypothesis,” which posits that deleterious effects on glial 
cells cascade to neurons (79).  

Lastly, we extended our extracellular cell-to-cell communication analysis by considering 
related disruptions to intracellular signaling pathways (Fig. 6E; fig. S73; (20)) (80). By utilizing 
disease-risk genes and setting support cells (non-neurons) as the senders and neurons as the 
receivers, we identified ligand-receptor links connecting known risk genes to potential upstream 
effectors. For instance, we linked FOXP1 and its ligand EBI3 in bipolar disorder and MECP2 
and its ligand PDGFB in schizophrenia (81, 82). 

Assessing cell-type-specific transcriptomic and epigenetic 
changes in aging 
We used our population-scale single-cell data to systematically highlight transcriptomic and 
epigenetic changes due to aging. First, we assessed cell-fraction changes based on 
deconvolution of bulk data using our single-cell profiles and found that Chandelier and OPC cell 
types decrease with age, as in previous reports (FDR<0.05, two-sided t-test; Fig. 7A, data S27) 
(83, 84). This result is consistent with findings from raw cell counts in the single-cell data 
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(FDR<0.05, two-sided t-test; Fig. 7A; data S27; (20)). Next, we identified a list of aging DE 
genes across cell types (Fig. 7B; fig. S74; data S28; (20)). This list shows, for instance, that 
HSPB1, which encodes a heat-shock protein and has been previously implicated in longevity, is 
upregulated in multiple cell types in older individuals (85, 86).  

To further explore the relationship between the transcriptome and aging, we constructed 
a model to predict an individual's age from their single-cell expression data (Fig. 7C; figs.  S75A-
B; (20)). The model shows that the transcriptomes of six cell types (L2/3 IT, L4 IT, L5 IT, L6 IT, 
Oligodendrocytes, and OPC) have strong predictive value (Fig. 7C; fig. S75C). It also shows 
that many individual genes contribute to the model, highlighting broad transcriptome changes in 
aging. From these, we selected two particularly predictive genes previously associated with 
aging, FKBP5 and MKRN3, and observed a clear correlation between their expression and 
aging (Fig. 7C; fig. S76) (87–89). 

We also investigated the effects of age on the epigenome using our scCREs to 
deconvolve bulk chromatin accessibility for 628 individuals into those for specific cell types (Fig. 
7D; fig. S77). The resulting scCRE activity patterns in certain cell types, particularly microglia, 
cluster individuals into distinct age groups (Fig. 7D; fig. S77; (20)). We further expanded our 
analysis to highlight how patterns of enriched TF motifs in active scCREs change with age in a 
cell-type-specific fashion (Fig. 7E; fig. S78; (20)). Some TFs demonstrate consistent patterns 
across cell types (FOXO4 and RXRA), while others exhibit more cell-type-specific patterns 
(NEUROG1). 

Finally, we extended our analysis to identify cell-type-specific changes in 
neurodegenerative disease. We obtain cell-type fractions by using our single-cell expression 
profiles to deconvolve 638 bulk RNA-seq samples, containing AD cases and controls (fig. S79A; 
(20)) (90). Certain glial fractions show a significant increase in AD (p<0.005, t-test), while 
several neuronal fractions decrease, especially Sst, Pvalb, and L2/3 IT, in line with previous 
studies (91) (Fig. 7F). We compared this result with that from directly comparing cell-type-
specific gene-expression and methylation signatures to determine case-control status (92), 
finding that the fractions and signatures capture independent information (fig. S79B; data S29; 
(20)).  

Imputing gene expression and prioritizing disease genes across 
cell types with an integrative model  
We incorporated many of the preceding single-cell datasets and derived networks into an 
integrative framework to model and interpret the connections between genotype and phenotype. 
We term our modeling framework a Linear Network of Cell Type Phenotypes (LNCTP; Fig. 8A; 
(20)). This framework serves four tasks: (1) to impute cell-type-specific and bulk tissue gene 
expression from genotype; (2) to predict the risk of disorders based on input genotypes; (3) to 
highlight genes and pathways contributing to particular phenotypes in their specific cell type of 
action; and (4) to simulate perturbations of select genes and quantify their impact on overall 
gene expression or trait propensity. The LNCTP has several visible layers associated with 
components of the resource described above, including genotypes at scQTL and bulk eQTL 
sites, cell-type-specific and bulk tissue-based GRNs, cell-type fractions, cell-to-cell 
communication networks, gene co-expression modules, and sample covariates (20). 
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The LNCTP was trained as a conditional energy-based model that represents the joint 
distribution of the above "visible" variables conditioned on genotype, with additional latent layers 
(Fig. 8A; (20)). It imputes cell-type-specific gene expression from genotype with high cross-
validated accuracy: the mean correlation between the imputed and experimentally observed 
expression profiles is 69% across major cell types and ~78% in excitatory and inhibitory 
neurons (Fig. 8B). This corresponds to explaining 38% of the variance in cell-type gene 
expression (or, equivalently, estimating the heritability of cell-type gene expression h2), 
compared to a 34% baseline achieved by combining prior methods for bulk-imputation and cell-
type deconvolution (20, 93, 94). The baseline does not include our derived GRNs and cell-to-
cell networks, so the improvement represents the additional predictive performance possible 
with these networks (Fig. 8C). Moreover, the inclusion of imputed single-cell gene expression 
data also improves the overall prediction accuracy of disorders (discussed below) and accounts 
for a larger fraction of common-SNP heritability of these disorders beyond predictions based 
solely on bulk expression or polygenic risk scores (95) (table S13).  

We exploited the ability of the LNCTP to impute missing data for discovery of cell-type-
specific molecular phenotypes important for neuropsychiatric disorders. Doing so allowed us to 
link variants with their "intermediate" functional genomic activities, such as cell-type-specific 
gene expression, pathway activity, and cell-cell communication. We used a hierarchical linear 
architecture for the trait-prediction portion of the LNCTP, which performed comparably to or 
better than non-linear architectures (table S14-S15; (20)). Moreover, the LNCTP generates a 
model that is directly interpretable at multiple scales, avoiding many of the difficulties arising in 
the interpretation of deep neural networks, while maintaining a hierarchical structure. Our linear 
architecture allowed us to prioritize intermediate phenotypes by both gradient-based saliency, a 
metric directly derived from weights in the model, and co-heritability, which directly compares 
the genetic components of two traits. For instance, we can use the LNCTP to calculate the co-
heritability of the genetic component of a particular gene's cell-type-specific expression with 
respect to schizophrenia or other disorders (fig. S80; (20)).  

Fig. 8D and fig. S81 provide an overview of key prioritized genes, cell types, and cell-to-
cell interactions in various disorders (full lists in data S30-S32). We found 64, 51, 108, and 34 
gene/cell-type pairs for schizophrenia, bipolar disorder, ASD, and AD, respectively (20). In 
particular, TCF4, the first identified cross-psychiatric disorder locus (96), is important for 
neurons in schizophrenia (97), LINGO2 is important for excitatory neurons in bipolar disorder, 
and ANKHD1 is highly weighted in ASD, supporting current hypotheses (98, 99). Fig. 8E shows 
the associated cell types for the most highly prioritized genes. For example, RORA is important 
in many cell types for schizophrenia (but is, nevertheless, not prioritized in the bulk data; (20)). It 
is associated with retinoic-acid signaling, which has been proposed to be an important 
determinant of schizophrenia and bipolar risk (100). Further, we note the retinoic-acid signaling-
associated gene ESRRG is prioritized in oligodendrocytes (Fig. 8D).  

Overall, prioritized genes associated with bulk expression exhibit only a modest overlap 
with the prioritized cell-type-specific genes, indicating that integration of single-cell data in the 
LNCTP permits the prioritization of distinct genes compared to those found with bulk data alone 
(Fig. 8E). Moreover, as expected, the prioritized genes are enriched for cell-type-specific 
scQTLs, disease DE genes, and brain-related functional categories (figs. S82-S83). They are 
also enriched for prior GWAS and literature support as well as bottleneck locations in the 
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regulatory network (figs. S84-S85; data S33). However, several genes specifically prioritized by 
the LNCTP are not differentially expressed for their respective disorders, including MEF2A and 
ID1, perhaps highlighting that they act through network effects (figs. S83, S85) (23).  

In terms of cell types, excitatory neurons and microglia are prioritized in schizophrenia 
and bipolar disorder, supporting their importance for conferring genetic risk (101), with 
oligodendrocytes also prioritized in bipolar disorder. Moreover, in schizophrenia, we observed 
an increase in cell-to-cell interactions between excitatory neurons and microglia as well as a 
decrease between microglia and oligodendrocytes, consistent with the known glial dysregulation 
in the disease (Fig. 8D) (79). 

We further used the LNCTP to perform in silico perturbation analysis, where we 
perturbed a specific gene's expression and observed the induced expression changes in other 
genes (and the ensuing changes in trait propensity). Perturbations of our prioritized genes, as 
well as known drug targets (retrieved via DrugBank (102)) both induce overall expression 
changes strongly characteristic of case status (figs. S86A-B). As expected, the induced changes 
more strongly impact genes in close proximity to the perturbed gene in the GRNs (fig. S87; table 
S16). We synthesized the perturbations into a workflow to suggest potential drugs for 
repurposing with CLUE (43) by matching a perturbation's effects to drugs inducing changes 
potentially complementary to those found in a particular disorder (fig. S86C; table S17; (20)).  

Finally, to independently validate the results of our simulated perturbation analysis, we 
used data from CRISPR perturbations (CRISPRi and CRISPRa) applied to specific genes in 
glutamatergic neurons (103). Induced gene-expression changes resulting from the CRISPR 
perturbations are more highly correlated with those resulting from LNCTP perturbations when 
the direction of the perturbation is matched (versus not matched; Fig. 8F; figs. S88-S89; table 
S18; (20)). Furthermore, they are more aligned with the direction of case-control DE for LNCTP-
prioritized genes than for non-prioritized ones (fig. S90). While more comprehensive validation 
is essential, these results offer promising indications that LNCTP can find verifiable 
prioritizations of gene/cell-type pairs. 
 

Discussion 

Here, we used population-scale multi-omic data to build a comprehensive single-cell functional 
genomics resource (brainSCOPE) for investigating brain disorders in adults (Figs. S3-S5; (20)). 
The resource can be summarized at multiple levels: (1) raw data and metadata with a 
harmonized identifier system for each of the individuals; (2) quantifications of single-cell gene 
expression (count matrices) with a BICCN-compatible cell-typing system for the PFC; (3) lists of 
DE genes and differential cell-fractions for various phenotypes; (4) snATAC-seq signal tracks for 
various cell types and ENCODE-compatible regulatory elements (b-cCREs and scCREs), 
including lists of validated ones; (5) the variability for each gene and functional category (by 
individual, cell type, and brain region) and the associated sequence conservation of genes and 
regulatory elements; (6) a core set of GTEx-compatible scQTLs and other additional sets of 
QTLs (such as dynamic eQTLs); (7) full GRNs for each cell type, including enhancer-to-gene 
and TF-to-regulatory element links, and associated files relating each downstream gene to its 
most significant upstream regulators; (8) cell-to-cell communication networks (expressed as 
ligand-receptor-by-cell-type matrices); (9) integrative models with code for imputation, 
perturbation and prioritization of cell-type-specific functional genomics in brain disease; and (10) 
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the resulting prioritized genes, cell types, and cell-to-cell linkages. The brainSCOPE portal also 
includes visualizer tools for many of the data types (fig. S4). 

The resource allows for several important observations. These include the robustness of 
cell typing to population variation in 388 individuals and the identification, via shared scQTLs 
and dynamic scQTLs, of common regulatory programs between cell types. Moreover, by 
partitioning the observed expression variation, we identified certain drug targets demonstrating 
high variability between cell types but low variation across individuals (e.g., CNR1), a fact that is 
perhaps key to their therapeutic efficacy. We also found that gene-expression changes in 
certain neurons and glial cells can accurately predict the age of an individual. 

Finally, a key outcome of our work is providing a set of promising targets for 
experimental validation. We see these falling into three classes. Class 1 comprises genes that 
are prioritized by the LNCTP model but not found by traditional DE analysis. This class is ideal 
for CRISPR assays seeking to test predicted cell-type and phenotypic effects. Other intriguing 
candidates are genes that have impacts on cell-to-cell communication spanning multiple cell 
types (class 2), and genes prioritized in disorders by the LNCTP with further support from DE 
analysis but lacking prior literature support (class 3). Overall, the LNCTP prioritized gene targets 
consistent with previous findings, and also suggested new avenues for investigation. We further 
used the LNCTP to simulate perturbations and make predictions regarding the effects of known 
drug-gene interactions on resulting phenotypes -- for instance, by perturbing drug-target 
expression levels. This application will potentially allow for assessing combinations of drugs for 
targeting multiple genes. 

A few limitations should be noted regarding the data used in this study. Firstly, a number 
of recent works have demonstrated that RNA expression does not completely correlate with 
protein abundance, and this observation can be even more pronounced in the context of sub-
regions within the brain (104–106). Another related complication is the uncertainty in the extent 
to which expression in postmortem tissues accurately reflects the expression patterns in live 
ones (107). 

Future efforts could potentially address these limitations. They can also expand our 
analyses beyond the PFC and integrate functional genomic data from other connecting brain 
regions (such as the anterior cingulate cortex) to create a comprehensive brain-wide functional 
genomic atlas. This work could include the incorporation of developmental data as well as 
experimentally tractable models (such as those from cortical organoids); regulatory network 
changes over time can then be imputed across developmental axes toward fully mature brain 
GRNs. We could also incorporate imaging into our integrative model to improve our predictions 
of brain-associated phenotypes. Finally, more extensive validation of our results would be 
valuable, such as via targeted CRISPR assays.  

Overall, the brainSCOPE resource has the potential to facilitate precision medicine by 
linking variants to specific cell types and their cell-type-specific impacts -- for example, to help 
identify the cell type of action for potential therapies. Through our integrative analyses, we 
provide an extensive collection of inferences and predictions for neuroscientists to verify in new 
cohorts, populations, assays, and experimental conditions.  
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Materials and Methods Summary 
The Materials and Methods for each section of the Main Text are available in the 
Supplementary Materials (20), which is organized using the same section headings as in the 
main text. These include a detailed description of the individuals and datasets assessed in the 
integrative analysis, protocols used for generating additional sequencing data and replication 
experiments for the analysis, and all computational and statistical analysis performed for each 
part of the integrative analysis.  
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Figure legends 
Figure 1. Constructing a single-cell genomic resource for 388 individuals. (A) Overview of 
the integrative single-cell analysis performed on 388 adult prefrontal cortex samples. (Top) 
Schematic for 28 cell types grouped by excitatory (Exc), inhibitory (Inh), and non-neuronal cell 
types (table S3); color labels for each subclass are used consistently throughout all figures 
(table S4). Dashed box indicates cell types defined with Ma-Sestan marker genes (19), with Δ 
indicating cell types unique to Ma-Sestan (Bottom) Schematic showing all samples labeled by 
disease, biological sex, ancestry, age, and available data modalities, including a distribution plot 
for sample ages (gray indicates pediatric samples excluded from most analyses). (B) UMAP plot 
for clustering of 28 harmonized cell types from snRNA-seq data derived from 72 samples in the 
SZBDMulti-seq cohort (using this study as an example of pan-cohort cell typing; see fig. S10 for 
UMAPs of other studies). (C) UMAP plots highlighting expression of key marker genes in four 
broad cell types (excitatory: SLC17A7; inhibitory: GAD2; oligodendrocytes: MOG; and 
astrocytes: AQP4). (D) Differential expression (log2-fold change) of four schizophrenia-related 
genes across cell types in samples from individuals with schizophrenia (blue for upregulation, 
red for downregulation). (E) Numbers of DE genes upregulated (blue) and downregulated (red) 
in older (>70 years) control (left) and schizophrenia (right) individuals per cell type when 
compared with younger individuals in each group (<70 years). “X” indicates no DE genes were 
observed for a particular cell type. (F) UMAP plot showing predicted trajectory for excitatory IT 
neurons in adult control samples from the SZBDMulti-seq cohort. The predicted trajectory 
proceeds along the cortical layer dimension from L2/3 to L6 in the prefrontal cortex. Inset 
highlights log-normalized gene expression in cells along the pseudotime axis for three genes. 
 
Figure 2. Determining regulatory elements for cell types from snATAC-seq. (A) UMAP plot 
for clustering of 28 harmonized cell types from snMultiome data derived from 40 individuals. (B) 
UMAP plots highlighting chromatin accessibility of key marker genes for four broad cell types 
(see Fig. 1C). (C) (Top) Counts of open chromatin regions from combined snATAC-seq and 
snMultiome peaks across cohorts by gene context (promoter, intronic, exonic, or distal). 
(Bottom) Percentage of unique ATAC peaks found in each cell type. Blue line indicates the 
percentage of ATAC peaks that overlap with b-cCREs derived from bulk data. (D) Change in 
enhancer activity among open chromatin regions using STARR-seq assays of predicted 
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enhancers, comparing the log2-fold expression change of validated regions to non-validated 
regions (n.s.). (E) (Top) LDSC enrichment across GWAS summary statistics for UK BioBank 
traits and diseases, including brain-related traits (gray bars), cCREs (white circles), b-cCREs 
(gray circles), and snATAC-seq peaks in excitatory neurons (scCREs, green circles). (Bottom) 
LDSC enrichment (log-scaled p-values for LDSC analysis as explained in (20)) for select brain 
traits and disorders. Trait names are listed in table S6. (F) Enrichment (log-scaled FDR) of TF 
binding motifs among cell-type-specific snATAC-seq peaks. (G) Differential activity of ELF1 in 
proximal and distal regions across cell types. (H) Cell-type-specific location of TF binding for 
NEUROD1 (left) and ELF1 (right) across cell types (colors defined in Fig. 1A), based on 
snATAC-seq footprinting analysis.  
 
Figure 3. Measuring transcriptome and epigenome variation across the cohort at the 
single-cell level. (A) Schematic for the calculation of overall gene-level variance partition by 
integrating individual, brain region, and cell-type-specific variation. Variation analysis using 
different brain regions (denoted with a dashed gray box) was performed on a subset of 
individuals, shown in fig. S28. (B) Percent expression variation attributed to individuals (green) 
and cell types (blue) for GO categories, with select GO categories highlighted. (C) Percent inter-
individual and cell type variation for specific genes and gene sets, including neurotransmitter 
families and drug targets. (D) Distribution of individual variation and cell type variation in drug 
target genes versus all genes. (E) UMAP plot of example drug target, CNR1, demonstrating 
cell-type-specific expression patterns that contribute to high cell type variability. We also 
assessed other genes such as serotonin receptor genes in fig. S31C. (F) Comparison of 
observed expression variation of individual genes with predicted conservation scores 
(phastCons). Red dots indicate outlier genes. Black line shows a trend of decreasing 
conservation as expression variation increases. (G) Increased cell-type specificity (dashed blue 
line) and decreased conservation (black line) observed as the population variability of scCREs 
increases. (H) (Left) Conservation of protein-coding regions, b-cCREs, and scCREs. (Right) 
Conservation of scCREs by cell type. 
 
Figure 4. Determining cell-type-specific eQTLs from single-cell data. (A) Partial UpSet plot 
with identified scQTLs (from the core analysis) that are unique to individual cell types (red) or 
present across all cell types (blue). Left histogram summarizes the log-scaled total number of 
core scQTLs per cell type. Right histogram summarizes the log-scaled total number of Bayesian 
scQTLs per cell type. More complete plots are presented in figs. S36C and S42. (B) Scatter 
plots comparing absolute eQTL effect sizes between single-cell and bulk RNA datasets, 
highlighting QTLs shared across >14 cell types (blue) and unique to one cell type (red). (C) 
Density plot comparing eQTL effect sizes between single-cell and bulk RNA datasets. (D) 
Histogram with the distribution of scQTLs by distance from eGene transcription start site, with 
normalized distributions highlighted for the union of scQTLs across excitatory, inhibitory, and 
non-neuronal cell types. (E) Boxplot showing a significantly higher enrichment of eSNPs in 
active STARR-seq peaks compared to the control group (p<1.0x10-4, Mann-Whitney U Test). 
Two replicates are shown. (F) Scatter plot comparing scQTL effect sizes with allelic ratios of 
ASE eGenes, or the fraction of ASE gene reads originating from the haplotype with the scQTL 
alternative allele. ASE genes were identified in 21 MultiomeBrain cohort samples; cell types are 
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represented with the color scheme used in (A). (G) (Top) Chromosome ideogram for the 
location of eGenes in all cell types related to four brain disorders. (Bottom) Schematics for 
specific instances of scQTLs for disease-related eGenes. Left schematic shows astrocyte-
specific eSNP for SYNE1 along with chromatin accessibility (snATAC-seq) tracks for eight cell 
types. Top-right schematic shows the isoQTL for LYPD6 in Pax6 inhibitory neurons, leading to 
altered expression of isoforms with different start codons. Middle and bottom-right schematics 
show SNP-gene pairs for scQTLs associated with NLGN1 in L4 IT neurons and MAPT in 
astrocytes, respectively. (H) UMAP plot for predicted trajectory of excitatory neurons in samples 
from the SZBDMulti-seq cohort. Box plots highlight the expression of EFCAB13, stratified by 
eSNP genotype in each sample, for cell types in each cortical layer; effect size (�) values for 
the eSNP increase over pseudotime. Additional information is shown in fig. S53. 
 
Figure 5. Building a gene regulatory network for each cell type. (A) Schematic for the 
construction of cell-type-specific GRNs based on snRNA-seq, snATAC-seq, and scQTL 
datasets. (B) Change in expression of four genes after CRISPR-mediated knockout of 
enhancers identified in cell-type-specific GRNs (blue bars) compared with control samples (gray 
bars). (C) Percent variance in target gene expression explained by the networks. Orange 
squares, blue triangles, and gray diamonds indicate variance explained by promoter, enhancer, 
and merged GRNs, respectively. (D) Changes in expression (average Z-score) of target genes 
in cell-type-specific regulons among samples with loss-of-function variants that disrupt the TFs 
TCF7L2 and STAT2. (E) Network graphs depicting a subset of the excitatory (L4 IT) and 
inhibitory (Chandelier) GRNs that show differential usage of enhancers and promoters. Nodes 
(TFs) are colored in pink, blue, or gray to represent out-hubs, bottlenecks, and in-hubs, 
respectively. Nodes without blue fill represent TFs that are absent as bottlenecks in that cell 
type. Solid orange lines indicate proximal links; distal links are indicated by dashed blue lines. 
(F) Panel representing the full set of TFs (y-axis) that act as hubs or bottlenecks in different cell 
types (x-axis). Cells are colored if the TF is found to be a pure hub (magenta) or bottleneck 
(cyan) in the corresponding cell type. (Note hubs here are out-hubs.) The right panel zooms in 
to highlight hubs (top) and bottlenecks (bottom). (G) Motif enrichment analysis bar plots showing 
a stronger enrichment of transcriptional feed-forward loops (illustrated inset) in inhibitory 
neurons (left) and most non-neuronal cell types (right) compared with excitatory neurons 
(center). (H) Co-regulatory network changes of disease gene sets across cell types. The white-
to-black gradient shows low to high probability (log p-value obtained by random sampling, 
N=10,000)) of a disease gene set or housekeeping genes (H.keep, y-axis) forming a dense 
subnetwork in the corresponding cell type (x-axis) (20). Cell types on the x-axis in panels C, D, 
and F are colored uniquely according to names in panel G. 
 
Figure 6. Constructing a cell-to-cell communication network. (A) Schematic for the 
construction of cell-to-cell communication networks, based on a matrix of co-expressed ligand-
receptor gene pairs in signaling pathways between sender and receiver cell types. Circos plot 
on the right shows the strength of all identified cell-to-cell interactions, highlighting L5 IT to OPC 
cell types as an example. Note that this model does not consider the synaptic connectivity 
between neurons. (B) Sankey plots for differential clustering of incoming interactions in receiver 
cells across cell types and ligand-receptor signaling pathways for control (left) and bipolar 
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disorder (right) samples. For example, inhibitory Sst and Sst Chodl cell types were assigned to 
Pattern 2 in controls, along with the SST-SSTR signaling pathway. This makes sense, as these 
cell types are predominantly characterized by the SST gene. However, in BPD samples, Sst 
Chodl cells switched from Pattern 2 to 3, along with the SST-SSTR signaling pathway. (C) 
Circos plot showing differential strength of all cell-to-cell interactions between individuals with 
schizophrenia and control individuals. Red edges indicate increased interaction strength in 
schizophrenia samples, while blue edges indicate weaker interaction strength. (D) Circos plots 
showing changes in cell-to-cell interaction strengths for ligand-receptor genes in the Wnt 
signaling pathway between individuals with bipolar disorder (left) and schizophrenia (right) 
compared with control individuals. (E) Predicted likelihoods that ligand genes in non-neuronal 
cells (y-axis) regulate schizophrenia-associated risk genes (x-axis) in neuronal cell types, with 
the neurological risk gene MECP2 highlighted in red. 
 
Figure 7. Assessing cell-type-specific transcriptomic and epigenetic changes in aging. 
(A) Normalized changes in the fraction of OPC (gray) and Chandelier cells (blue) by age, based 
on bulk RNA-seq deconvolution (top) and single-cell annotation (bottom), with best-fitted lines. 
(B) Log2-fold changes and p-values from DESeq2 (20) for differentially expressed genes in older 
vs. younger individuals (±70 years) among excitatory, inhibitory, and non-neuronal cell types. 
Values with -log(p)>8 are shown as crosses. (C) (Left) Pearson correlation values between 
model prediction of age and observed age for each cell type and baseline model (covariates). 
(Top right) Predicted and observed age for oligodendrocytes and L2/3 IT neurons along the age 
spectrum. (Middle right) Transcriptomic profiles along the age spectrum of two key genes 
(MKRN3 and FKBP5) related to aging. (Bottom right) Genes demonstrate an increase (light 
gray) or decrease (dark gray) in expression along the age spectrum. (D) tSNE plot of chromatin 
peaks showing how chromatin patterns in microglia stratify younger and older individuals into 
three distinct clusters. (E) Examples of TF binding motifs that display distinct enrichment 
patterns across cell types and age. (F) (Left) Predictive accuracy (AUPRC) of cell-type-specific 
expression (bars) and methylation signatures (gray line) towards AD status. (Right) Enrichment 
of cell fraction changes among individuals with AD. L2/3 IT, Pvalb, and Sst (colored bars) are 
significantly associated with a decreased cell fraction in AD (log-p value, t-test). Gray line shows 
the overall median cell fraction of each cell type in AD individuals.  
 
Figure 8. Imputing gene expression and prioritizing disease genes across cell types with 
an integrative model. (A) LNCTP schematic. Bulk and cell-type gene expression levels were 
imputed from genotype using a conditional energy-based model incorporating GRNs and cell-to-
cell networks. Cell-type-specific nodes with dense connectivity were then incorporated into a 
deep linear model to predict phenotypes in each sample and prioritize cell types and genes for 
each trait. (B) (Left) Imputed single-cell expression values from LNCTP compared with 
observed snRNA-seq expression values, with best-fit lines for all cells and individual cell types. 
(Right) Correlations among imputed expression values for genes in excitatory and inhibitory 
neurons with best-fit lines. (C) Comparison of explained variance in gene expression from the 
LNCTP model with a baseline model using deconvolved, imputed bulk expression data and a 
model that includes only bulk expression data. Colored lines indicate the performance of 
individual cell types in each model (**p<0.01, two-tailed paired t-test over gene:cell-type pairs). 
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(D) Schematic for LNCTP model interpretation, showing relationships between prioritized 
intermediate phenotypes for schizophrenia (SCZ, pink), bipolar disorder (BPD, orange) and 
ASD (light orange). Gene:cell-type:disease triplets are associated with salience (Sal) and 
coheritability (Co-h) values (*p<0.05, **p<0.01, two-tailed t-test; data S30). Significant cell type, 
GRN, and cell-to-cell associations are shown at the latent-embedding layers (p<0.05, two-tailed 
t-test; data S31-S32). Tree structures connect representative subgraphs (feature combinations) 
in each model (figs. S80-S81). The schematic also highlights QTL variants linked to the 
prioritized genes: (I) eQTL (bulk) chr15:60578052, (II) scQTL (Oligo) chr1:216891970, (III) eQTL 
(bulk) chr9:27902874, (IV) scQTL (Oligo) chr11:66017740, (V) eQTL (bulk) chr15:61553688, 
and (VI) scQTL (Astro) chr3:158668177. (Note, we shorten the readthrough transcript ANKHD1-
EIF4EBP3 to ANKHD1 in ASD.) (E) UpSet plot for SCZ showing overlap between genes with 
the highest saliency per cell type or bulk expression, including four genes highlighted in panel D 
(colored circles). (F) Pearson correlations of LNCTP (excitatory neurons in SCZ) and CRISPR 
perturbation vectors for three example genes, when perturbation directions are matched vs. 
unmatched, and correlations are calculated across imputed genes (*p<0.05, one-tailed t-test; 
fig. S88). 
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