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ABSTRACT

0.1 Motivation
Protein domains are fundamental units of protein structure and play a pivotal role in understanding folding, function, evolution,
and design. The advent of accurate structure prediction techniques has resulted in an influx of new structural data, making the
partitioning of these structures into domains essential for inferring evolutionary relationships and functional classification.

0.2 Results
This manuscript presents Chainsaw, a supervised learning approach to domain parsing that achieves accuracy that surpasses
current state-of-the-art methods. Chainsaw uses a fully convolutional neural network which is trained to predict the probability
that each pair of residues is in the same domain. Domain predictions are then derived from these pairwise predictions using
an algorithm that searches for the most likely assignment of residues to domains given the set of pairwise co-membership
probabilities. Chainsaw matches CATH domain annotations in 78% of protein domains versus 72% for the next closest method.
When predicting on AlphaFold models expert human evaluators were twice as likely to prefer Chainsaw’s predictions versus the
next best method.

0.3 Availability and Implementation
Code implementation of Chainsaw is available at github.com/JudeWells/chainsaw.

Figure 1. Chainsaw method overview

1 Introduction
Protein domains are generally defined as self-stabilizing units composed of several secondary structural elements that pack
together to form a hydrophobic core. From an evolutionary perspective, the protein domain is the level at which homology and
functional groups are understood. Structural protein domain databases such as CATH (1), SCOP (2), SCOPe (3) and ECOD
(4) are essential for advancing scientific understanding of the protein universe. In 2022 DeepMind released the AlphaFold
models for over 200 million proteins, increasing the number of available structures by multiple orders of magnitude (5). These
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databases present opportunities to discover novel domains, infer evolutionary links and generate functional hypotheses but an
essential first step towards these goals is to parse these 200 million structures into constituent domains with high accuracy.

Existing protein domain boundary prediction techniques can be broadly classified into two categories: sequence-based
approaches and structure-based approaches. As expected, approaches utilizing structural input outperform those relying solely
on sequence information (6). With the advent of high-quality predicted structures from AlphaFold2 (7), obtaining a 3D
structure is no longer a significant constraint. To integrate the 200 million AlphaFold models into protein domain databases,
it is logical to exploit the predicted structure as an input for enhancing domain boundary prediction. Historically, most
structure-based approaches have used unsupervised, heuristic algorithms applied to contact maps or pairwise residue distances.
These approaches are grounded in the physical intuition that the density of contacts is higher within domains than between
domains (8; 9; 10; 11; 12; 13). Although unsupervised methods can be effective, it is challenging to hand-design a heuristic that
encompasses all cases. Other methods (14; 15) augment the unsupervised approach with the ability to match against a library
of known domains, using sequence or structure comparisons. For example, DPAM (Domain Parser for AlphaFold Models) (15)
uses a fixed formula to assess prospective splits as a function of three inputs: inter-residue distance, AlphaFold’s Predicted
Aligned Error (PAE) and predicted domain co-membership via matching against a library of known domains. Comparison-based
methods are well suited to segmenting proteins containing only known domains but may underperform on proteins containing
domains which are not easily recognised by comparison tools or which are not included in existing databases.

The growth of protein structure databases complete with domain annotations presents an opportunity to instead recast the
domain segmentation problem as a supervised learning task. Deep learning models have the potential to capture complex
structural relationships and exploit these to achieve higher accuracy than heuristic unsupervised methods. Previously proposed
supervised domain segmentation methods have mostly relied on sequence inputs and consequently struggled to match the
performance of unsupervised methods which segment a known or predicted structure directly (6). Other supervised approaches
have relied on a per-residue boundary classification approach (6; 16; 17). Somewhat similar to our proposed approach, Eguchi et
al. train a convolutional neural network (CNN), herein EguchiCNN, to do image-segmentation on protein structures represented
by 2D distance maps (18). The EguchiCNN architecture was primarily designed for the more specific task of classifying
domain regions into one of the 38 CATH architectures. However, part of the pipeline includes a domain segmentation predictor
which uses the same CNN architecture as their architecture classification model. This approach treats the domain segmentation
problem as a multiclass classification of residues where each domain constitutes a separate class. Limitations of this approach
are that it can only handle proteins up to 512 residues in length and it can only detect a maximum of 8 domains. A recent
supervised approach called Merizo (19) uses a transformer architecture with invariant point attention to directly cluster residues
into domains based on both sequence and structure inputs. This method was shown to perform better than UniDoc (13),
SWORD (10), DeepDom (17) and EguchiCNN (18). However, Merizo was not trained on any single-domain CATH proteins,
as such we find that it tends to over-split single-domain proteins (Section 2: Results).

In this work, we introduce Chainsaw, a supervised learning approach to protein domain segmentation. Instead of predicting
domain boundaries directly or considering each domain as a separate class, Chainsaw relies on a 2D convolutional neural
network trained to estimate the probability that pairs of residues belong in the same domain. Domain boundaries are derived
from these pairwise co-membership probabilities using a greedy algorithm that searches for the most likely assignment
of residues to domains given the predicted probabilities (Section 4.4). Formulating the supervised learning problem as a
classification task at the level of pairs of residues rather than as a boundary prediction task at the level of individual residues has
three notable advantages. Firstly, it makes the prediction of discontinuous domains more straightforward. Second, it sets no
limit on the number of domains that can be predicted. Finally, it improves the class imbalance problems associated with residue
classification. Unlike methods such as EguchiCNN, Chainsaw can handle inputs of any size without cropping or padding. We
show that Chainsaw achieves better domain parsing accuracy when compared with supervised methods Merizo and EguchiCNN
as well as other leading unsupervised structure-based domain parsers (UniDoc, PUU and SWORD) on held-out test sets of
domain annotations from CATH and the Critical Assessment of Structure Prediction (CASP) competitions. We further evaluate
Chainsaw on a random sample of AlphaFold models and find fewer domain prediction errors than the next best method. In
a blind side-by-side human comparison of 200 AlphaFold models, we find the Chainsaw domain parsing to be preferable
to UniDoc in roughly twice as many cases. Finally, we show that Chainsaw combined with Foldseek can be used to infer
functional annotations in previously uncharacterized proteins.

2 Results
2.1 Protein domain segmentation with fully convolutional neural networks
The curated domain annotations in databases such as CATH provide a rich source of signal for training deep learning methods
to segment protein structures into their constituent domains. We therefore first considered how to exploit such annotations
as training data by formulating domain segmentation as a supervised learning problem. In particular, we sought to avoid
some of the problems with training a network to solve a residue-level binary classification task of identifying residues at the
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boundary between domains. These problems include handling of discontinuous domains, severe class imbalance of boundary
to non-boundary residues and sensitivity to small changes in the boundary. The latter is a problem given that in many cases
multiple adjacent residues could equally be considered to be the ‘correct’ boundary. In addition, for training a neural network
the domain label target representation should have some desirable properties such as being invariant to indexing or ordering
of the domains and the dimensionality of the label should not depend on the number of domains. Our solution is to define a
classification task over pairs of residues, from which domain assignments for individual residues can be recovered. To derive
this pairwise task, we start by observing that the domain assignments of a protein of length L can be uniquely represented by an
L×L matrix A, whose entries ai j are 1 if residues i and j are in the same domain and 0 otherwise. For domains with residues
that are continuous in sequence, this will result in an adjacency matrix that takes the form of a block-diagonal matrix, (see
Figure 2a). Domains which are discontinuous in sequence result in blocks occurring in the off-diagonal; (see Figure 2b). Given
the matrix A, residue-level domain assignments can be recovered by interpreting the matrix A as the adjacency matrix of a
graph and partitioning it into a set of K connected components, where K is the number of domains. Importantly, this procedure
works identically for domains that are continuous or discontinuous in sequence. Therefore, supposing we were able to produce
a perfect predictor of the matrix A of pairwise domain co-membership between residues in a given structure, we could then
unambiguously read off residue-level domain assignments for residues in either continuous or discontinuous domains. As a
training label for a neural network, this representation has the advantage of being permutation invariant with respect to domain
labels (there is no indexing suggesting an ordering of the domains) and the dimensionality is determined by the number of
residues alone rather than being dependent on the number of domains.

(a) PDB 1b23P with continuous domains and
corresponding pairwise domain label representation (b) PDB 1a8eA with a discontinuous first domain

Figure 2. Domain assignments represented with binary pairwise co-membership matrices.

Figure 3. Chainsaw network diagram

The main component of Chainsaw is a convolutional neural network (Figure 3) that is trained to predict the matrix A for a
given input structure, by predicting whether each pair of residues belongs in the same domain. The network takes as input a set
of pairwise representations derived from the protein’s 3D structure, consisting of the pairwise α-carbon residue distances and
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predicted secondary structure segments (Section 4.2), and outputs estimated probabilities that pairs of residues belong in the
same domain. The final domain assignments are then determined by a search algorithm that maximises the likelihood of the
assignments under the predicted pairwise co-membership probabilities (Section 4.4). As training data, we obtained a set of
PDB structures with associated domain annotations from CATH, which were converted into the corresponding matrices A to
serve as targets in a binary classification task for residue pairs (Methods).

2.2 Chainsaw performance on experimental PDB structures
We benchmarked Chainsaw against three unsupervised methods, UniDoc, PUU and SWORD and two supervised methods,
Merizo and EguchiCNN. Both Merizo and UniDoc were previously shown (19) to significantly outperform previous supervised
learning methods EguchiCNN (18) and DeepDom (17). It should be noted that EguchiCNN was trained for the more specific
task of classifying domains into superfamilies with generic segmentation as a pre-processing step and DeepDom is a structure-
free predictor. We constructed a benchmark dataset of 1365 protein chains from the PDB using CATH domain annotations as
ground truth. Our test dataset was constructed to ensure an equal balance of single and multi-domain proteins, this is motivated
by findings in our other work (20) where we find that applying structure-based domain parsers to the AFDB suggests the
following proportions: 3% zero-domain, 42% single-domain and 55% multi-domain. Using our test dataset we first compare
Chainsaw against two unsupervised methods, UniDoc and PUU and one supervised method, EguchiCNN (Figure 4a). We
note that EguchiCNN may have been trained on some proteins from our test set which could artificially inflate its performance.
We cannot present results for SWORD on this benchmark as it failed to output results on a significant proportion of the
test set. We assess domain prediction accuracy via three metrics: the intersection-over-union (IoU) (19), the proportion of
correctly parsed domains (domain-level IoU >= 0.8) and the domain boundary distance score (21). Calculation details for all
metrics are provided in Section A. Chainsaw achieves an average intersection-over-union (IoU) score of 0.88 vs 0.84 for the
next-best competitor method UniDoc (Figure 4a). If we restrict our attention to multi-domain proteins only, the performance
gap increases, with Chainsaw scoring 0.83 versus 0.76 for UniDoc. To compare against Merizo, we create a subset of the test
data for which there is no domain in a CATH superfamily that also occurs in the Merizo training data (n=208). On this subset,
Chainsaw achieves an average IoU of 0.91 vs 0.83 for Merizo (figure 4b). On this dataset, we find Merizo over-splits single
domain structures in 28% of cases versus 10% for Chainsaw, plausibly because Merizo was trained solely on multi-domain
proteins in CATH. We note that if we only compare methods on multidomain proteins the performance of Chainsaw and Merizo
is the same, though the small sample size (n=52) limits the power of our analysis. To further test whether the performance
differences between Chainsaw and Merizo can be attributed entirely to differences in the training data, we separately trained a
Chainsaw model from scratch using the Merizo training data and evaluated it on the Merizo test data (which only contains
multi-domain proteins). Following this approach we observe that Chainsaw still outperforms Merizo, suggesting that the
differences are not solely driven by the difference in training data (figure 4c). As a final test, to see how Chainsaw performs on
domain annotations which are not from CATH, we also evaluated a model on domain annotations from CASP6 (n=63) and find
that the Chainsaw model still outperforms UniDoc, PUU, SWORD2 and Merizo (Supplementary Table 3).

2.3 Chainsaw performance on AlphaFold models
We sought to evaluate Chainsaw’s performance on predicted structures in the AlphaFold database (AFDB). This is challenging
because we lack a ground-truth domain assignment on AlphaFold models. One approach is to map CATH annotations from
PDBs to AlphaFold models with matching sequences. Following this approach we observed no significant change in the
performance of Chainsaw when predicting on AlphaFold models as opposed to their corresponding PDB files (Supplementary
Table 2). However, this evaluation approach only considers AFDB structures in the PDB and are, therefore, typically well-
modelled. In general, AFDB structures are notably different from experimentally resolved structures in the PDB. The most
significant difference concerning domain parsing is the presence of long segments of residues with no apparent secondary
structure (see figures 5b and 5h for examples). To evaluate performance on AlphaFold models, a random sample of 200 human
protein structures was taken from the AlphaFold database. A naive sampling would have resulted in relatively few large proteins,
so to mitigate this, we sampled structures equally from binned protein lengths to ensure representation of all sizes. Chainsaw
and UniDoc predictions were assessed visually in a blind side-by-side comparison to look for domain segmentation faults.
Faults considered were: under-splitting (see figures 5a, 5b, 5c, 5d), over-splitting (see figures 5e, 5f, 5i), incorrect boundaries
(see figures 5g, 5c), missing domains, and falsely identifying domains (see figure 5h). UniDoc cannot predict non-domain
residues. This would result in very poor performance when run on AlphaFold models which contain many poorly modelled
segments with no predicted secondary structure. To improve UniDoc’s predictions, residues with low predicted confidence by
AlphaFold (predicted local distance difference test < 70) were removed from the domain predictions. In our evaluation protocol
evaluators compare the number and severity of segmentation faults to judge which segmentation is preferable. We also allow
the option to judge the domain parsings of equal quality. We find that the Chainsaw domain parsing was preferable in 24% of
cases, UniDoc was preferable in 11% of cases and both parsings were of equal quality in 65% of cases (Figure 4d). Figure 5
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(a) Benchmarking on the Chainsaw CATH test set. *EguchiCNN may have been trained on similar or identical proteins in this test set.

(b) Benchmarking on the subset of the Chainsaw CATH test set that is non-redundant with the Merizo training data.

(c) Performance comparison on the Merizo test data. For these results, we trained a
Chainsaw model from scratch using the Merizo training data and subsequently evaluated on
the same test data as Merizo. One chain was removed from the Merizo test data due to
ambiguous labeling in CATH. *EguchiCNN may have been trained on similar or identical
proteins in this test set.

(d) Results from visually assessing Chainsaw
and UniDoc domain parsings on 200 randomly
selected AlphaFold models from the human
proteome.

Figure 4. Assessing performance on CATH annotated PDB structures and AlphaFold models. Bar plots show 95% CI.
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Table 1. Model inference times

Mean run-time per chain (seconds)

Chainsaw Merizo EguchiCNN UniDoc SWORD SWORD2 PUU
(CPU/GPU) (CPU/GPU) (CPU) (CPU) (CPU) (CPU) (CPU)

0.6s/0.2s 0.6s/0.2s 0.1s 0.01s 3.2s 45s 0.01s

showcases a selection of these judgements. Judgements and domain parsing images for all 200 assessed AlphaFold models are
shown in the Supplementary Material.

(a) Under-splitting by UniDoc (right) in
green domain.

(b) Under-splitting by UniDoc (right) in
green domain.

(c) UniDoc (right) shows under-splitting in
the green domain and an under-trimmed
boundary in the red domain

(d) Chainsaw (right) shows under-splitting in
the blue and magenta domains.

(e) UniDoc (right) shows over-splitting of
the α/β horseshoe domain identified by
Chainsaw (left) in orange.

(f) Chainsaw (right) shows over-splitting of
the single domain which has been split into
cyan and magenta.

(g) Under-trimmed boundary by UniDoc
(right) in the green domain

(h) UniDoc (right) identifies a domain where
there should be none.

(i) UniDoc (right) over-splits two propeller
domains identified by Chainsaw (left) in
green and cyan.

Figure 5. A selection of judgements from the blind comparison of UniDoc and Chainsaw on 200 AlphaFold human structures.
Domain segmentations and judgements for all 200 proteins can be found in the supplementary material.

2.4 Inference times

Chainsaw’s inference time is 0.6s on CPU (0.2s on GPU) (Table 1). The inference time for each model was calculated by
measuring prediction times on a set of PDBs where the mean sequence length was 164 residues and the max sequence length
was 500 residues. The CPU times were generated on an 8-core M1 MacBook Pro. The GPU times were generated on an Nvidia
RTX 4090.
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(a) PDB structure 5ta1A (b) PDB structure 5g48A (c) PDB structure 6o0aA

Figure 6. Example PDB structures where Chainsaw combined with FoldSeek can identify two additional domains which have
not yet been annotated by CATH. In each case, the single CATH-identified domain is shown on the left, Chainsaw’s domain
prediction is shown in the middle and the matched CATH domains aligned with the Chainsaw predictions are shown on the
right.

2.5 Using Chainsaw predictions for downstream tasks
We employed Chainsaw to generate domain predictions for three downstream tasks. The first is identifying domains in the PDB
that have not yet been annotated in the CATH protein domain database. The second is identifying domains in the AFDB that
can be matched to representative domains found in CATH, finally, we show that Chainsaw can be used to infer novel functional
annotations for previously uncharacterized proteins. In each of these cases, we first generate domain predictions using Chainsaw
and subsequently use the Foldseek (22) structure and sequence matching algorithm to match predicted domains against a library
of known CATH domains (clustered at 60% sequence identity). Figure 6 shows three examples where Chainsaw combined
with FoldSeek can identify domains in PDB structures which appear to be good candidates to bring into the CATH domain
database. For our second task, we generate Chainsaw domain predictions for the entire proteome of Leishmania infantum, a
parasite responsible for the neglected tropical disease infantile visceral leishmaniasis. We find that around 16% of Chainsaw
predicted domains in this proteome can be matched with high confidence (Foldseek value < 1e-10) to an existing CATH S60
domain. This amounts to 2,567 predicted domains where we can infer homology to existing domains. Following the same
procedure for UniDoc we note that the UniDoc+Foldseek pipeline matches a similar number of predicted domains (2,451),
however 28% of Chainsaw+Foldseek domain matches are not discovered using the UniDoc+Foldseek pipeline and 24% of
UniDoc+Foldseek domain matches are not discovered by the Chainsaw+Foldseek pipeline. A ‘domain match’ is defined here as
identifying the same CATH S60 representative domain in a given AlphaFold model. This suggests that Chainsaw and UniDoc
are complementary methods which can be combined to recover more correct domain parsings than either method individually.
We note, however, that the overlap between methods would likely be greater if we matched against CATH domains clustered at
35% sequence identity or considered the top-k Foldseek matches instead of only the top one. For the final analysis, we show that
the Chainsaw+Foldseek pipeline can infer functional annotations for Leishmania infantum proteins that are uncharacterized. We
start by considering the subset of the Leishmania infantum proteome where UniProt lists the protein as ‘uncharacterized’ and
there are no Gene Ontology (GO) annotations (23) associated with the protein. This amounts to 3280 out of 7924 Leishmania
infantum proteins. Of these we find 413 proteins which have a Chainsaw predicted domain which matches against a CATH S60
representative domain with a Foldseek e-value of less than 1e-5. Of these matched proteins, 396 are matched to a CATH S60
domain with a functional annotation from Pfam (24) or GO. Four of these are shown as case studies in Figure 7. We note that
this technique can detect structural homology in multi-domain proteins where the sequence identity is frequently less than 15%
and for each of the showcased examples (Figure 7) we checked that there were no Pfam, CATH FunFam or Gene3D matches
returned when running the sequences through InterPro Scan.

3 Discussion
This study presents Chainsaw, a supervised learning approach to protein domain prediction, we leverage a residual convolutional
neural network to estimate the probability that pairs of residues are in the same domain and combine this with an algorithm
for converting the pairwise probabilities into domain assignments. Our approach outperforms state-of-the-art structure-based
methods on both annotated PDB structures and AlphaFold models. Nonetheless, in our analysis of performance on AlphaFold
models we observe a significant proportion (11%) of cases where UniDoc domain parsings are preferable to Chainsaw and
a majority of cases (65%) where the two predictions are of equal quality. In cases where the parsing is of equal quality a
significant proportion of these are proteins that could be parsed in multiple ways, with alternative segmentations by each
method appearing equally valid. For these reasons, we conclude that a sensible strategy for domain identification involves
using an ensemble of domain prediction methods. This approach enables confidence measures derived from model consensus
and a diversity of possible predictions. The possibility of multiple valid domain segmentations within a single structure
motivates future work to extract multiple predictions from Chainsaw. We observe that the Chainsaw neural network confidence
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Figure 7. Uncharacterized proteins (no Pfam or Go annotations) from the Leishmania infantum proteome were parsed with
Chainsaw. The predicted domains were subsequently searched against the CATH S60 domain representative structures using
Foldseek. We show four examples where we can infer novel functional annotations via structural homology with representative
CATH domains. Sequence identity for the matches above ranges from 11 to 16 per cent, which indicates why these
homologous relationships were not detected with sequence-only methods. Figure d shows that Chainsaw correctly parses the
structure into four phytochelatin synthase domain repeats. This protein is common to multiple pathogenic organisms and has
been considered a potential drug target due to the fact it has no human homolog (25).

score is correlated with prediction accuracy (Section 4.5) and we see some hints that uncertainty in the output is indicative
of alternative valid assignments. This insight opens up the potential for adapting the domain assignment algorithm to yield
multiple assignments from a single network prediction. An advantage of Chainsaw when compared with models such as DPAM
(15) is the lack of dependencies on databases of known domains. We demonstrate a proof-of-concept showing that domain
prediction methods can be combined with structure and sequence matching algorithms to systematically identify domains
and homology relationships in large databases of predicted structures such as AFDB. We further show that this approach
can detect homologs where sequence-based methods cannot (Figure 7). A natural extension of this work is to apply these
techniques at scale and develop approaches for detecting novel domains. It is important to note that while we have trained
Chainsaw solely using domain annotations from the CATH database, there are several other widely used domain classification
resources available, including SCOP (26) Pfam (24) and ECOD (4). The benchmarking we conducted primarily focuses on
CATH annotated domains however, we are encouraged to see that Chainsaw has good performance on domain annotations from
CASP, as well as on un-annotated structures in the AlphaFold database.
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4 Methods
4.1 Datasets
Following a similar approach to Merizo (19), we generated a train-validation-test split on CATH annotated PDB files ensuring
that no CATH superfamily is represented in more than one of the splits. We only include PDBs composed of domains belonging
to CATH classes 1, 2 and 3. We note that the CATH superfamily is one level stricter than the S35 (35% sequence identity)
clusters within the CATH hierarchy (27). We opted not to use the same splits as Merizo, as these splits only contained
multi-domain chains and we know that approximately 45% of chains in the AlphaFold Database have one or zero domains
(20). After splitting the CATH superfamily codes into train, test and validation we represent each PDB chain by a tuple which
contains all of the CATH S35 codes of its constituent domains. For each unique tuple of CATH S35 codes we take one PDB
chain to represent that cluster in the validation and test sets. PDB chains which contained irregular amino acids or were missing
α-carbon atoms were removed, two additional chains 2v495 and 3vkgB were removed from the test set due to incorrect and
incomplete CATH annotations. For the training data we take one representative PDB file for each tuple of CATH S95 (95%
sequence identity) clusters. To account for the additional training data redundancy introduced by this choice, during training
we sample chains to train on in a redundancy-aware manner, by making use of CATH’s sequence-identity-based clustering
of domains. As such, one epoch is defined as one pass through all of the S60 sequence clusters (clustered at 60% sequence
identity). We additionally experiment with varying the relative frequency with which single and multi-domain chains are
sampled as training datapoints. Our final approach sampled multi-domain proteins with probability 0.65 and single domain
with probability 0.35. Hyper-parameter selection was based on performance on the validation set, final performance is reported
on the non-redundant test set. To show that our method is not overfitting to CATH assignments and to test that the approach
generalizes to alternative domain assignments we evaluate an additional test set using the domain assignments from CASP 6
(28) (Supplementary Table 3).

4.2 Input features
The Chainsaw neural network takes a 3D structural representation of a protein, such as a PDB file. From the 3D structure,
we generate five feature channels comprised of a residue pairwise distance matrix and four channels representing predicted
secondary structure using STRIDE (29). The pairwise residue distance matrix is an L×L matrix D where element di j is the
distance, in angstroms, between the α-carbon atoms of residues i and j. The predicted secondary structure is represented
in two formats. The first is a co-membership matrix C where element ci j is 1 if residues i, j are in the same secondary
structure component, 0 otherwise. The second format indicates which residues occur at the start and end of secondary structure
components with the first residue of a secondary structure component indicated with 1 and the last residue -1. Each of the
secondary structure representations is instantiated independently for helices and strands resulting in four secondary structure
feature channels in total.

Figure 8. Input features for the Chainsaw neural network.

4.3 Network architecture and training objective
We formulate the supervised learning problem as a 2D to 2D task: transforming the 2D input features into a pairwise probability
matrix which expresses the probability that pairs of residues are in the same domain. As such, a fully convolutional architecture
with skip connections is a natural choice. We use a modified version of the trRosetta architecture (30), a model originally
developed for protein structure prediction. trRosetta is a residual network, whose blocks employ convolutional layers with
progressively increasing dilation rates to achieve a wide receptive field (figure 3). We enforce a symmetric-output constraint by
adding the transpose of the final layer to itself to give the final symmetrised Â. We truncate the trRosetta architecture to 31
blocks and reduce the number of filters from 64 to 32 but otherwise follow the original model in all details (30). The learning
objective is to minimize the binary-cross entropy of the predicted residue pairwise domain co-membership matrix (which we
call the soft adjacency matrix) and the true adjacency matrix. One advantage of this pairwise representation in both inputs and
outputs lies in its SE(3) invariance, signifying that the representation remains unaltered under rigid transformations of the 3D
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structure, which consist of rotations, translations and reflections within the original coordinate space. An important theoretical
motivation for using this representation is that a unique configuration of points in 3D space, up to rigid transformation, is fully
specified by the 2D pairwise distance representation, (see theorem 1). To put this another way, the 2D representation captures
all relevant spatial geometry while ignoring nuisance factors such as the arbitrary selection of the coordinate system that is used
to represent the 3D structure.

4.4 Domain assignment algorithm
The output of the neural network is an L×L matrix Â, with entries âi j representing the probability that residue i and residue j
belong to the same domain. A further processing step is required to resolve the uncertainty in the neural network’s prediction to
derive a final domain assignment. Let AD be the binary matrix associated with a given domain assignment D . To identify
the most likely domain assignment D∗ given a predicted set of co-membership probabilities Â, we seek to find the D with
maximum probability under Â,

D∗ = argmax
D

pÂ(AD ). (1)

The probability of a domain assignment given the predicted values Â is given by the product of the entries

pÂ(A) = ∏
i< j

pâi j(ai j) = ∏
i< j

â
ai j
i j (1− âi j)

(1−ai j) (2)

where each âi j represents the probability ai j = 1. The representation AD has useful properties as a label for supervising the
neural network (Section 2.1), however, at the stage where we search for the optimal assignment it is preferable to work with a
low-rank factorization of AD , where each residue’s domain assignment is represented as a one-hot encoded vector. To perform
the maximisation, we use a greedy algorithm, which exploits the fact that AD has a low-rank structure induced by the domain
assignment D . Let v1, ...,vK be a sequence of binary indicator vectors for each of the K (predicted) domains, let VD be the
matrix whose columns are the vi, hence VD is a binary matrix with dimensions L×K. The requirement that no residue can be
assigned to more than one domain ensures that the rows of this matrix are K-dimensional one-hot vectors indicating domain
assignments for each residue. Given this matrix of domain assignments, VD , the elements ai j of the adjacency matrix AD are
generated as

AD =
K

∑
k=1

vkvT
k = VDVT

D . (3)

Thus our maximisation problem becomes to find a set of K vectors, such that the probability of domain assignment induced by
the vectors is maximised

V∗D = argmax
VD

pÂ(VDVT
D ) (4)

where the optimal number K of domains is itself unknown a priori and is therefore determined jointly with the domain
assignments. The overall DomainAssigner(Â) procedure is defined in Algorithm 1. Note that the overall computation time is
kept low by maximizing the log probability

L (V, Â) = log pÂ(VDVT
D ) = ∑

i< j
log pâi j(v

⊤
i v j), (5)

which decomposes into a sum of log probabilities over individual entries in the adjacency matrix. This means that the change in
probability by changing a single residue j to be assigned to domain k,

L j→k(V, Â) = L (V′, Â)−L (V, Â) (6)

where V′ has been modified only in row j, can be computed in runtime which is linear with the number of residues.
Our domain assignment algorithm proceeds as follows. First VD is initialised as an L×Kinit matrix of zeros, where Kinit

is an initialisation for the number of domains (Kinit = 4). For each residue in turn, we score each of the K possible domain
assignments using the score pÂ(VDVD

T ), and assign the residue to the domain which produces the maximal score, as long as
the maximal score is greater than the score under the current assignment. In case of ties, the first domain is selected. After a
complete pass through the sequence, the process is iterated a number of times to allow for corrections in initial assignments. As
soon as some residue is assigned to the Kth domain, we add an extra column of zeros, corresponding to an ‘overflow’ domain
which can be subsequently assigned to. This allows the algorithm to predict an arbitrary number of domains. The procedure
is summarised in Algorithm 1. We note that the algorithm is incentivised to predict the correct number of domains: given a
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Algorithm 1 DomainAssigner(Â)

K = Kinit ▷ Set the initial number of domains (4 in our case)
V = zeros(L,K) ▷ Initialise domain assignments matrix with zeros
for i < Niter do

for j < L do
k∗ = argmaxkL j→k(V, Â) ▷ Get highest scoring domain assignment for residue j.
v j← 0 ▷ Remove any previous assignment for residue j
if L j→k∗(V, Â)> L j→∅(V, Â) then ▷ Compare proposed assignment k⋆ to assigning to no domain, ∅

v jk∗ ← 1 ▷ Assign residue j to domain k∗

end if
if k∗ = K then ▷ If the best domain is the last one . . .

K← K +1 ▷ . . . increase total number of domains
V← concat(V, zeros(L, 1)) ▷ Extend assignment matrix with zeros

end if
end for

end for

perfect predictor of A, then for any ground truth adjacency matrix AD , all assignments other than the correct assignment are
guaranteed to receive lower scores, including assignments which over- or under-predict the number of domains. Indeed for a
perfect predictor, our algorithm is guaranteed to recover the correct domain assignment. Not all residues have to be assigned to
a domain. The algorithm only makes an assignment if the score of the best possible domain assignment is greater than the
score under a null assignment, in which the residue is not assigned to any domain. Since each residue is initialised with a
null assignment (corresponding to a row of zeros in V), residues for which no better assignment is found will maintain a null
assignment throughout the procedure.

4.5 Uncertainty quantification
A natural approach to uncertainty quantification is to consider the output of the neural network Â as an L×L multivariate
Bernoulli distribution. Then we can consider the output of the final assignment A′ as an observation from the Â distribution
and calculate the likelihood (normalised by the number of residues). Figure 9 compares instances where the model has high
confidence (figure 9a) with other cases where the model confidence is lower suggesting that alternative domain assignments
may be valid (figure 9b).

(a) High confidence model prediction where Â is very close to A′. (b) Low confidence prediction implies alternative assignments.

Figure 9. Chainsaw generates a confidence score which is the residue-averaged likelihood of A′ under Â we find that this
confidence measure has a good correlation with ground-truth accuracy.

We observe that Chainsaw’s confidence score has a good correlation with the ground truth accuracy. The confidence score
achieves a Spearman’s correlation score of 0.68 with the IoU score when measured on the Chainsaw CATH test set. On this test
set the confidence score ranged from 0.51 to 1.0. Using a confidence score cutoff of 0.85 will increase the probability that a
domain is predicted correctly (IoU score > 0.8) from 0.78 to 0.9 at the expense of introducing a 5% chance that a correctly
predicted domain is discarded.
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7 Supplementary material

A Assessment metrics
A.1 Intersection over union
Following the approach of Merizo (19), for a given protein chain we compute the average intersection over union (IoU) between
paired sets of predicted and ground-truth residues assigned to each domain. As a first step, each ground-truth domain is
paired with a predicted domain such that the sum of all intersections over unions is maximised while respecting the following
constraints: Each ground-truth domain (represented as a set of residue indices) Ti can have, at most, one paired predicted
domain Pi. Second, each predicted domain can be assigned at most once. No IoU is computed for the sets of residues that are
labelled as, or predicted to be non-domain residues. To generate a final score for the whole chain each domain-level IoU is
weighted by the number of residues in the ground-truth domain:

IoUchain =
ndom

∑
i=1

|Ti∩Pi|
|Ti∪Pi|

· |Ti|
∑

ndom
j=1 |Tj|

. (7)

We additionally calculate the proportion of correctly parsed domains as the proportion of ground-truth domains where the
domain-level IoU is 0.8 or greater.

A.2 Domain boundary distance score
The domain boundary distance score was introduced to assess domain boundary predictions in CASP 7. A detailed description
of how the score is calculated is provided in (21). At a high level: each boundary is scored independently. Predicting within 1
residue of the true boundary scores 8 points, within 2 residues scores 7 and so on until the distance is 9 residues or more, at
which point the score is 0. Each boundary score is divided by 8 so that scores per boundary are between 0 and 1. The final
boundary distance score for the entire chain is then calculated as the sum of individual predicted boundary scores divided by
the total number of domain boundaries. In order to ensure that over-prediction is penalized, the number of domain boundaries
comes from the maximum number of domains in the target or the number of domains in the prediction (21).
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B Proof that pairwise 2D distances specifies 3D points up to isometry
Theorem 1. Let x0, . . . ,xn and y0, . . . ,yn be tuples representing points in the Euclidean space E3. Assume that for every pair of
indices i, j ∈ {0, . . . ,n}, we have

D(xi,x j) = D(yi,y j), (8)

where D denotes the distance function on E3:

D(xi,x j) =
√
⟨xi−x j,xi−x j⟩. (9)

and ⟨·, ·⟩ denotes the inner-product of two vectors. Then, there exists a unique bijective isometry g : E3 → E3 such that
g(xi) = yi for each i.

Proof. Step 1: Translation to Origin. First, choose x0 and y0 and translate all points x0, . . . ,xn and y0, . . . ,yn in E3 such that
x0 = y0 = 0. These translations preserve distances, so

D(xi,x0) = D(yi,y0), (10)

and therefore:
||xi||= ||yi|| (11)

where || · || denotes the L2-norm of a vector.

Step 2: Equality of Distance Implies Equality of Inner Product.
From the definition of the distance function, we have

D(xi,x j)
2 = ∥xi∥2−2⟨xi,x j⟩+∥x j∥2. (12)

Using Equations (8) and (11), we deduce

||xi||2−2⟨xi,x j⟩+ ||x j||2 = ||yi||2−2⟨yi,y j⟩+ ||y j||2

2⟨yi,y j⟩−2⟨xi,x j⟩= ||yi||2−||xi||2 + ||y j||2−||x j||2 = 0

⟨yi,y j⟩= ⟨xi,x j⟩. (13)

Step 3: Identifying Basis Vectors.
Without loss of generality, choose vectors x1, x2, and x3 that form a basis for E3.

Lemma 1. The Gram matrix of a set of vectors is non-singular if and only if the set of vectors are linearly independent.

Let G be the 3×3 Gram matrix of x1, x2, x3, defined by

Gi, j = ⟨xi,x j⟩, i, j = 1,2,3. (14)

Since y1, y2, y3 share the same Gram matrix G (due to eq. 13), they also form a basis for E3.

Lemma 2. If two sets of basis vectors have the same Gram matrix, there exists an isometry that maps one set to the other.

Let T be a (3×3) matrix which applies the orthogonal transformation g, mapping x1, x2, x3 to y1, y2, y3.

Step 4: Extension to All Vectors.
Any vector x in E3 can be expressed as a linear combination of our basis vectors:

xi = c(i)1x1 + c(i)2x2 + c(i)3x3, (15)
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for some c(i)1,c(i)2,c(i)3 ∈ R.
A unique solution for the values c(i)1,c(i)2,c(i)3 can be obtained using only the inner products of x1,x2,x3 with xi We can write
this as a system of linear equations in matrix form Gc(i) = b, where

G =

⟨x1,x1⟩ ⟨x1,x2⟩ ⟨x1,x3⟩
⟨x2,x1⟩ ⟨x2,x2⟩ ⟨x2,x3⟩
⟨x3,x1⟩ ⟨x3,x2⟩ ⟨x3,x3⟩



c(i) =

c(i)1
c(i)2
c(i)3


b =

⟨xi,x1⟩
⟨xi,x2⟩
⟨xi,x3⟩


Since x1,x2,x3 form a basis, the matrix G is invertible. Therefore, the system of equations has a unique solution for c(i). Given
that ⟨yi,y j⟩= ⟨xi,x j⟩ we see that matrix G and vector b will give rise to the same solutions for c(i)1,c(i)2,c(i)3 satisfying the
equation

yi = c(i)1y1 + c(i)2y2 + c(i)3y3 (16)

Finally, we note that the orthogonal transformation T maps every vector xi to yi

Txi = T(c(i)1x1 + c(i)2x2 + c(i)3x3) = c(i)1y1 + c(i)2y2 + c(i)3y3 = yi (17)

which completes the proof.

C NDO score
The NDO score is a score with a maximum of 1 which represents the proportion of residues that have been assigned to the
correct domain. To understand the calculation, the score can be decomposed into scores for each predicted domain and scores
for each true domain. Each predicted domain Dpi gets an un-normalised score Spi which is the number of residues in the
maximum intersection over all intersections with the ground-truth domains Dt j minus the sum of the size of all its other
intersections with ground-truth domains (all those that do not include the maximum intersection):

Spi = max
j
(|Dpi ∩Dt j |)−∑

k ̸= j
(|Dpi ∩Dtk |)

Similarly, each ground-truth domain, Dti , gets an un-normalised score, Sti , which is the number of residues in the maximum
intersection over all intersections with the predicted domains minus the sum of all its other intersections with predicted domains:

Sti = max
j
(|Dti ∩Dp j |)−∑

k ̸= j
(|Dti ∩Dpk |)

The individual unnormalised predicted domain scores and ground truth domain scores are summed together, divided by two
(to account for counting residues in both the true domain scores and predicted domain scores), before being divided by the
maximum unnormalised score Nrest which equals the number of residues assigned to domains in the ground-truth assignment:

SNDO =
1

2 ·Nrest

Dpred

∑
i=1

Spi +
Dtrue

∑
j=1

St j

D Additional results
D.1 Predicting CATH domain annotations mapped to AlphaFold models
When predicting domain boundaries on AlphaFold models as opposed to PDB structures we do not have a ground-truth set of
labels. To overcome this problem we use SIFTS (31) to map PDB structures to their corresponding predicted structures in the
AFDB. This enables us to map a subset of the CATH test set domain annotations onto AlphaFold models. Using this approach
we compare Chainsaw’s performance on 1039 samples from the CATH test set. Table 2 shows that we do not see any significant
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decrease in performance when predicting on AlphaFold models as opposed to PDB structures. However, it is important to note
that this subset of AlphaFold models is not representative of the AFDB as a whole because it only contains sequences that have
experimental PDB structures and have been annotated by CATH. In contrast with the AFDB overall we observe that this subset
of AlphaFold models has better modelled structure and contains few proteins with long regions of non-secondary structure
residues.

Table 2. Comparing Chainsaw performance on AlphaFold models versus experimental structures from the PDB

Dataset Chainsaw NDO Score

on AlphaFold on PDB

CATH n. dom. ≥ 1 0.93 0.94
CATH n. dom. ≥ 2 0.91 0.90
CATH n. dom ≥ 3 0.94 0.95

D.2 Performance on CASP 6 domain annotations

To evaluate Chainsaw on CASP 6, we trained a separate model from scratch to ensure no homologous domains were in the
training data.

Table 3. Comparison of methods CASP 6 dataset

Chainsaw UniDoc PUU SWORD2 Merizo

Intersection over union 0.89 0.87 0.88 0.88 0.84
Proportion correct domains 0.78 0.74 0.72 0.77 0.69
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D.3 Ablation analysis: secondary structure features

Figure 10. Results from training six Chainsaw models, three with secondary structure features included and three without
(distance matrix only). We show the grouped mean IoU score on the validation data. The shaded range covers the minimum
and maximum values at each epoch.
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D.4 Ablation analysis: alpha distances versus beta distances

Figure 11. Results from training six Chainsaw models, three with α-carbon distances and three with β -carbon distances. The
shaded range covers the minimum and maximum values at each epoch.
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D.5 Model confidence and accuracy

Figure 12. The Chainsaw confidence score reflects the likelihood of A′ (final assignment) under Â (output of neural network).
We find that this is correlated with the accuracy of the predictions and can therefore be used as a filter to increase the precision
of Chainsaw domain predictions albeit at the expense of recall.
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Figure 13. We calculate the proportion of residues that are predicted to be in a domain for each binned pLDDT score. Results
were generated for 200 random AFDB models from the human proteome.
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