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Abstract
Motivation: Accurate quantitative information about the protein abundance is crucial for understanding a biological
system and its dynamics. Protein abundance is commonly estimated using label-free, bottom-up mass spectrometry
protocols. Here, proteins are digested into peptides before quantification via mass spectrometry. However, missing peptide
abundance values, which can make up more than 50% of all abundance values, are a common issue. They result in missing
protein abundance values, which then hinder accurate and reliable downstream analyses.
Results: To impute missing abundance values, we propose PEPerMINT, a graph neural network model working directly
on the peptide level that flexibly takes both peptide-to-protein relationships in a graph format as well as amino acid
sequence information into account. We benchmark our method against eleven common imputation methods on six diverse
datasets, including cell lines, tissue, and plasma samples. We observe that PEPerMINT consistently outperforms other
imputation methods. Its prediction performance remains high for varying degrees of missingness, different evaluation
approaches and differential expression prediction. As an additional novel feature, PEPerMINT provides meaningful
uncertainty estimates and allows for tailoring imputation to the user’s needs based on the reliability of imputed values.
Availability and implementation: The code is available at https://github.com/DILiS-lab/pepermint.
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Introduction
Proteins are the main acting molecules in cells. The

characterization of their quantity in different biological contexts

plays a fundamental role in understanding cellular function

and regulation in disease [1, 2]. Methods based on label-

free mass spectrometry (MS) are commonly used for high

throughput quantification of protein abundance in biological

samples [3]. In MS-based bottom-up proteomics, proteins

are enzymatically digested into peptides before subjecting

them to a mass spectrometer. Individual peptides are then

commonly identified by matching their spectra to corresponding

databases [4]. With data-dependent acquisition (DDA), only

the top most abundant peptides within a given analysis time

window are individually fragmented and used for identification

and quantification. In contrast, data-independent acquisition

(DIA) fragments all peptides within a given time and mass

window. The higher sensitivity of DIA has increased its use

in recent years [5]. Finally, several aggregation methods exist

to infer protein abundance by computationally aggregating the

measured peptide abundance values into protein abundances

[6, 7] to allow downstream analysis on the protein level.

With label-free MS, peptide abundance measurements

exhibit a high number of missing values (e.g. 22.1% - 68.8%

for the datasets used in this paper). These might either

be due to peptides with an abundance below the detection

limit, often referred to as missing not at random (MNAR),

or due to random errors and stochastic fluctuations in the

measurement process, often referred to as missing completely

at random (MCAR) [8, 9, 10]. While performing peptide-

to-protein aggregation, these missing values can propagate

to the protein level and ultimately hamper downstream

analyses [11, 12]. Therefore, different methods for imputing

missing values following different paradigms - relying on

single (e.g., minimal) values, leveraging local similarities or

global structure - have been suggested and benchmarked

[9, 12, 13] (see overview in Table 1). Basic methods, such as

average, k-nearest neighbors (KNN), iterative singular value

decomposition (ISVD), principal component analysis (PCA)

or random forest (RF), that are applicable beyond proteomics
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have been especially widely adopted [14, 15]. More complex

extensions, mostly dedicated to protein imputation, based on

mixture models or matrix factorization, have been suggested

[13, 16]. In addition, adaptations of basic methods such as

RF or linear regression models have been proposed to include

additional features like mRNA measurements [17].

Deep learning (DL) was suggested for missing value

imputation in omics datasets. Arisdakessian et al. [18]

introduced a basic neural network of several fully connected

layers and a single dropout layer for imputing single-cell RNA

sequencing datasets. Webel et al. [19] proposed the application

of autoencoders for the imputation of MS-based proteomics

datasets. Barzine et al. [20] used a neural network and

mRNA expression values along with context information from

GO terms and UniProt keywords to predict missing protein

abundance values.

While additional information, such as mRNA measurements,

can improve imputation performance, obtaining mRNA data

requires costly additional wet-lab experiments or might even

be infeasible (e.g., for plasma samples). Furthermore, there

are multiple proteomics-specific features beyond GO terms

or UniProt keywords that can provide additional information

and context to machine learning models for learning patterns

across similar proteins or peptides that current imputation

methods fail to exploit. In particular, similarities in physical

properties of the measured molecules, such as peptide mass,

sequence length, and charge state, are helpful for peptide-to-

protein aggregation [7]. Also, amino acid sequence information

is available for missing proteins and peptides, and language

models pre-trained on amino acid sequences have shown good

performance on a variety of protein-related tasks [21]. The

embeddings derived from these pre-trained language models

encode the valuable biophysical properties of the underlying

protein or peptide but currently remain unused as features for

imputation. In addition, neither of the described DL-based

imputation methods considers the particular relationships

between proteins and peptides. Peptides originating from

the same protein are expected to have strongly correlated

abundances, a relationship that can be exploited to improve

imputation performance and that also enables leveraging

abundance information on non-unique peptides. Moreover,

while multiple contributions have focused on imputing values

in high missingness scenarios [16, 20], little attention has been

paid to the inherent uncertainty coming with such imputations.

So far, most imputation methods have not been designed

with uncertainty in mind, resulting in uncertainty estimates

for imputed values either being not available or obtained via

multiple imputation [22]. Nevertheless, uncertainty estimates

are of high value as they can enhance the trust in imputation

results, and also help users filter out uncertain imputations.

Table 1. Overview of imputation methods used for our benchmark.

We capture basic methods, more complex ones, and imputation

methods based on deep neural networks representing all three

generally considered categories of imputation methods. Further

selection criteria were their appearance in proteomics imputation

benchmark studies and their availability in terms of support in

open-source software packages.

Method Benchmarked by Supported by

Single Value

MinDet [9, 26] [26, 27, 28, 29]

MinProb [9, 12, 26, 30] [26, 27, 28, 29]

Median [19, 26] [26]

Local Similarity

KNN [9, 12, 15, 19, 26, 30] [26, 27, 28, 29, 31]

RF [32] [19, 26, 30] [26, 27, 28, 29]

MICE [33] [19, 26] [26, 31, 33]

Global Structure

ISVD [34] [9, 12, 26, 30] [26, 35]

BPCA [36] [12, 15, 26, 30, 19] [26, 27, 28, 29, 35]

DAE [19] [19] [19]

VAE [19] [19] [19]

CF [19] [19] [19]

We here address these gaps and propose a new DL-based

model for imputation in proteomics datasets that exploits

additional proteomics features in the form of amino acid

sequences and peptide-protein relationships. As graph neural

network (GNN) models have shown considerable success in

modeling complex relationships between molecules and learning

from biological and omics data [23, 24, 25], our method relies

on a GNN architecture. What is more, while most proteomics

imputation methods still impute on the protein level, our

model acts directly on the peptide level, a strategy shown to

yield improved imputation results [9]. Furthermore, our DL

architecture enables uncertainty estimates for imputed values at

low computational overhead to provide the user with a valuable

tool for imputation prediction diagnostics. We systematically

benchmark our novel method against eleven imputation

methods from different categories across six representative

datasets with different ground-truth mechanisms using three

evaluation metrics (see overview in Fig. 1). Furthermore, we

showcase its uncertainty quantification capabilities.

Methods
We introduce PEPerMINT (PEPtide Mass spectrometry

Imputation NeTwork), a method combining abundance values

and information from amino acid sequences and protein-peptide

relations to impute missing values on the peptide level. For its

implementation and systematic benchmarking, we use our novel

open-source PyProteoNet framework (see Supplement).

P E P T I D E
amino acid sequence

abundance vector (across samples)
with missing values

...

Peptide

Single value Global structure Local similarity

MinDet, MinProb, Median ISVD, BPCA, Autoencoder,
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mixtures with
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Fig. 1. Overview of our PEPerMINT imputation method and our benchmarking framework. (A) Our PEPerMINT imputation model combines both

peptide sequence information and abundance values across samples into a latent representation. Structural information is included via a peptide-peptide

graph using a graph attention layer. (B) PEPerMINT is compared to eleven published imputation methods from three different categories. (C, D)

We perform a systematic evaluation on six diverse datasets with ground truth derived from three different mechanisms with respect to three different

evaluation metrics (see Methods for details).
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Table 2. Overview of benchmark datasets and their characteristics including availability via ProteomeXchange, dataset ground-truth category

(masked: removed abundance values, DDA/DIA, mixture: mixture of known ratios), number of samples, number of biological samples (BS),

technical replicates per biological sample (TR per BS), number of proteins and peptides, percentage of missing values on the peptide level.

Name, Reference Identifier Category #Samples #BS #TR per BS #Peptides #Proteins Missingness

A1: prostate cancer [37] PXD029525 masked 18 6 3 57770 6292 54.0%

A2: Crohn’s fibrosis [38] PXD022214 masked 13 13 1 37158 4481 33.7%

A3: breast cancer [39] PXD035857 masked 15 15 1 103608 13627 68.8%

B1: HEK293-E.coli [40] PXD018408 DDA/DIA 16 2 8 16400 3045 25.2%

B2: HIV blood [41] PXD047528 DDA/DIA 15 15 1 2535 435 41.8%

C: HeLa-E.coli [6] PXD000279 masked +
mixture 6 2 3 50260 6683 22.1%

PEPerMINT imputation
For our PEPerMINT imputation model, we propose a neural

network architecture combining a learnable transformation of

abundance values, a GNN operating on the peptide graph,

as well as amino acid sequence embeddings derived from a

transformer-based language model (see Fig. 1A for a visual

overview).

Input features

We assume a proteomics dataset with abundance values

for n (potentially non-unique) peptides measured across s

samples given as n × s matrix A where the elements of

A either represent logarithmized (natural logarithm) and

standardized (zero mean, unit variance) abundance values or

missing values. Missing values are ignored for logarithmization

and standardization. We address the problem of predicting

abundance values for the missing values. PEPerMINT takes

two inputs: the abundance matrix A and an n× 1024 sequence

embedding matrix S. S is precomputed from the peptide

amino acid sequences using the ProtT5 language model, which

has previously shown good performance generating protein

embeddings from sequence strings for tasks like predicting

protein secondary structure [21]. This allows PEPerMINT to

account for abundance values from non-missing samples as

well as different biophysical peptide properties encoded in the

sequence embeddings [21].

Peptide-peptide graph

The digestion of proteins into peptides for MS-based

quantification results in the characteristic protein-peptide

structure of MS-based datasets that can be described by a

bipartite graph [42] where each peptide is assigned to one or

more proteins. This structure can provide valuable information

for the imputation of missing values since peptides belonging

to the same protein are expected to show similar abundance

profiles across samples. We transform this structure into a

peptide-only graph G = (V,E) whereby peptides are nodes

∈ V that have an edge ∈ E between them if they belong to

the same protein. Therefore, in G, all peptides belonging to the

same protein are fully connected, and all peptides from proteins

with shared peptides form a connected component (see Fig. 1A

middle). We provide G as input to PEPerMINT.

Neural network architecture

Fig. 2 shows a simplified representation of PEPerMINT’s

architecture. PEPerMINT scales down the sequence embeddings

of each peptide by applying a learnable transformation

fΘSequence
: Rn×1024 → Rn×16. This aims to balance the size

of abundance and sequence-based information. Next, for each

peptide, we concatenate the sequence embedding and the vector

containing peptide abundances across samples (abundance

vector) and apply another learnable non-linear transformation

to create a latent representation fΘLatent
: Rn×(s+16) → Rn×128.

To account for the protein-peptide structure of the dataset

represented by the peptide-peptide graph G we use an

attention-based GNN consisting of a single GATv2 [43] layer

with 64 heads with each head outputting a vector of shape⌊
s
2

⌋
. To keep the peptide-specific information from our

latent representation, we add a skip connection bypassing

the GNN. We add another learnable transformation on the

concatenated output of the skip connection and the GNN

output fΘFinal
: Rn×(64⌊ s

2
⌋+128) → Rn×128.

Uncertainty prediction of imputed values

To allow the estimation of uncertainty for imputed values,

abundance values are predicted in a Bayesian setting. At

the same time, this allows our model to better adapt

to differing amounts of measurement noise for individual

peptides (heteroscedastic noise) [44, 45]. Therefore, instead

of single abundance values, mean and variance values

of Gaussian abundance distributions are predicted [46] by

two separate output heads [47] (fΘµ
: Rn×128 → Rn×s and

fΘσ2 : Rn×128 → Rn×s).

Training scheme and self-supervised learning

We create a test set for each dataset by masking 10% of

its abundance values uniformly at random (setting them to

missing). However, for DDA/DIA datasets, the test set is given

by all missing DDA abundance values that have a corresponding

non-missing DIA value. From the remainder of the peptides

(after picking the test set), we pick 10% of non-missing values

uniformly at random as the validation set and mask them. On

the resulting dataset, training is performed in a self-supervised

manner. Similar to the training of denoising autoencoders as,

e.g., done by Webel et al. [19], for each training step, we

mask a fraction γ of non-missing values and compute the loss

over them. The fraction γ is sampled randomly with samples

uniformly distributed over the [5%, 15%) interval to improve

model generalization.

To improve the training performance in the Bayesian setting,

the model is trained in two rounds. First, we only train the fΘµ

head (see Fig. 2) with mean squared error (MSE) loss before

tuning the mean µ and variance σ2 together within a second

training run using both output heads (fΘµ
, fΘσ2 ) and Gaussian

negative log-likelihood loss [48]. For both training rounds, we

employ early stopping with respect to the MSE computed on

the holdout validation set after each epoch. We define one epoch

as consisting of 500 randomly masked datasets.

concat concatrandom
masking

Fig. 2. Simplified representation of the architecture of PEPerMINT with

input feature representations (grey) and learnable (multilayer) trans-

formations (blue). See Supplement Fig. S1 for a detailed visualization.
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Imputation methods used for comparison
To evaluate PEPerMINT, we compare it against a broad,

representative selection of eleven methods from the literature

that are commonly used for imputation and have appeared

frequently in other proteomics benchmarks (see Table 1 and

Supplement for details).

(i) Single-value methods: These methods either impute

missing abundance values with the same single value or, for each

missing value, randomly draw a value from a predetermined

distribution. We evaluated MinDet (using the 0.01 quantile

of non-missing values within each sample), MinProb (drawing

from a normal distribution around the 0.01 quantile within

each sample), and Median (peptide-wise across samples) as

commonly used methods of this class.

(ii) Local similarity methods: These methods assume

that missing values of a peptide can be predicted from the

abundance values of similar peptides. We selected k nearest

neighbor (KNN) imputation as it is simple and widely used [9,

26, 15]. We also included imputation based on a Bayesian ridge

regression model as suggested by the MICE [33] imputation

framework and an RF-based imputation [32] as a commonly

used method with good performance reported previously [30].

(iii) Global structure methods: These methods assume that

proteomics datasets contain redundant information and can,

thus, be well described by a low dimensional representation,

which is leveraged for inferring missing values. We use Bayesian

principal component analysis (BPCA) [14] and iterative

singular value decomposition (ISVD) [34] as the most frequently

used representatives. To include DL methods, two autoencoder

(AE) based methods (variational AE and denoising AE) and

a method based on collaborative filtering (CF), all recently

proposed in [19], were considered.

Datasets
We use six benchmark datasets with the goal of spanning a

variety of biological backgrounds, varying degrees of complexity

(blood plasma, cell lines, tumor tissue) with diverse dataset

sizes (between <500 to >13000 proteins and <2600 to >100000

peptides) and differing percentages of missingness on the

peptide level (22.8-68.1%) for evaluation with respect to three

different types of ground truth (see overview in Table 2, and

further details in the Supplement).

The first three benchmark datasets (A1-A3) do not contain

explicit ground truth values. Therefore, we mask abundances,

as commonly done in the literature [9, 30], using the measured

abundance of masked values as ground truth.

In addition, we use two datasets (B1-B2) acquired in DDA

mode with orthogonal ground truth acquired in DIA mode. The

more accurate DIA measurements contain fewer missing values,

which allows the evaluation of imputation methods on genuinely

missing values in the DDA data. To make the DIA and DDA

data comparable, all DIA abundance values are scaled to have

the same mean as the corresponding DDA abundance values.

For the evaluation of differential expression (DE), we use a

dataset (labeled C) of protein mixtures with known (spiked-in)

ratios from different organisms serving as ground truth. Similar

datasets have been used in the literature to evaluate methods

for peptide-to-protein aggregation [6] and imputation [15, 30].

Evaluation metrics
For abundance-based evaluation, we use the root mean squared

error (RMSE) on all missing values that have non-missing

ground truth values (masked values or values with orthogonal

DIA measurements) similar to earlier evaluations of imputation

methods [15, 20, 30]. To allow variance estimation, we

compute the RMSE sample-wise. As an additional abundance-

based evaluation, we compare imputation methods with

pairwise significance tests using a Bonferroni-corrected one-

sided (paired) Wilcoxon signed-rank test. For every pair of

imputation methods, the test compares the two absolute errors

of imputed values for each peptide and dataset sample.

In addition, we evaluate imputation methods for the correct

identification of differentially expressed peptides. For each

peptide, the corresponding sample abundance values between

groups of replicates of biological samples with different spike-

in ratios are compared using a Benjamini-Hochberg corrected

Welch’s t-test. Depending on the significance threshold,

different peptides are detected as differentially expressed.

Those are compared to a known ground truth of differentially

expressed peptides (all spiked-in peptides in our mixture

dataset C) to compute true positives and false positives. We

assess the performance over varying significance thresholds via

a ROC curve (see more details in Supplement section D).

Results
We evaluated the performance of our PEPerMINT peptide

imputation methods on six proteomics datasets with various

biological backgrounds and missingness characteristics. Then,

we also compared it against a broad, representative selection of
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Fig. 3. A: Sample-wise RMSE of all evaluated imputation methods on all six benchmark datasets with 95% confidence interval error bars (bootstrapped).

B: Results for the prostate cancer (A1) dataset stratified by their fraction of missing values over the samples (see supplement for stratified results of

other datasets). Our newly proposed PEPerMINT imputation outperforms other methods on all datasets, irrespective of the missingness fraction.
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Fig. 4. Pairwise comparison of different imputation methods by statistical

significance test results (see Methods). Colors encode how many of the

six evaluated datasets the imputation method given in the row performs

significantly better (5% significance level) than the imputation method

given in the column (insignificant test results increase the count by

0.5). Blue cells indicate the method given in the row outperforms the

imputation method given by the column in the majority of cases.

eleven widely used imputation methods. A comparison of the

runtime of all presented imputation methods can be found in

Fig. S8 of the Supplement.

Abundance-based evaluation
We first performed an abundance-based evaluation via the

sample-wise RMSE for four datasets with artificially introduced

missing values and two DDA/DIA datasets with ground truth

values acquired using the DIA (Fig. 3A). Particularly, we

find that our PEPerMINT imputation method gives the best

performance across all evaluated datasets, outperforming the

second best-performing method (BPCA) by up to 20% on the

breast cancer dataset. Out of the other evaluated methods, RF,

BPCA, MICE, and CF also show good results. Interestingly,

imputing missing values with the peptide-wise median gives

better results than the more complex KNN imputation and

methods based on autoencoders (DAE, VAE). ISVD, MinDET,

and MinProb imputation were found to be generally worse,

except for the good performance of MinDet and MinProb on the

HIV blood dataset. We obtain similar results for dataset-wise

mean absolute error as an alternative metric (see Supplement).

Further, as predicting the missing abundance of a peptide

could be hampered if measured only in a few samples, we

investigated whether imputation performance depends on the

degree of missingness per peptide. Therefore, we stratified the

evaluated peptides by their fraction of missing values across

samples (Fig. 3B for the prostate cancer dataset; similar results

for other datasets, see Supplement). Again, PEPerMINT

outperforms other imputation methods for any fraction of

missing values. The biggest advantage over competitor methods

is observed on peptides with high fractions of missing values.

It can also be noted that PEPerMINT, RF, BPCA, CF, DAE,

and especially ISVD imputation show improved performance

when the fraction of missing values decreases. In contrast,

MinProb and MinDet perform better with high fractions of

missing values.

Fig. 4 shows the results for statistically comparing impu-

tation methods using a Wilcoxon signed-rank test (see

Methods). Our PEPerMINT method performs significantly

better than all other evaluated methods on the majority of

benchmark datasets. It should be noted that in contrast to the

sample-wise RMSE results shown in Fig. 3, the Wilcoxon test

compares individual imputed values without averaging the error

per dataset sample. The good performance of PEPerMINT also

holds when stratifying peptides for missingness across samples

(see Supplement Fig. S4).

Evaluation of differential expression prediction
DE analysis is a common downstream analysis task performed

on MS-based proteomics datasets. Therefore, we compared

our proposed method with the other imputation methods with

respect to the performance of DE analysis on the imputed

dataset. For evaluation, we used the ground truth protein ratios

that can be inferred from the species-specific mixture rates.

We restricted the evaluation to peptides that can uniquely be

assigned to one species. The receiver operating characteristics

(ROC) curve in Fig. 5 shows that our method is performing

better than the other methods, with the highest area under the

ROC curve (AUC). The precision-recall curve (Supplement Fig.

S5) supports this result.

Predicted uncertainty of imputed values
Our PEPerMINT approach allows the out-of-the-box prediction

of uncertainty for imputed values, helping users obtain a

quantitative estimate of their trustworthiness. To evaluate

the usefulness of this computed uncertainty, we compared

the imputed values against their ground truth colored by

their predicted uncertainty (Fig. 6A). The imputed values

with the lowest uncertainty (dark blue) tend to show better

predictions (low error) and high abundances. The latter fits

with the characteristics of data acquired via MS because high

abundance values commonly are proportionally less influenced

by measurement noise and are, therefore, assumed to be more

reliable [49]. In addition, we find that removing imputed

values with high predicted uncertainty from the evaluation

generally improves imputation quality (Fig. 6B). Furthermore,

we observe that filtering out imputations with substantial

uncertainty but keeping those with low uncertainty, can again

massively increase the accuracy of downstream analysis. Re-

using the experimental setup of the DE analysis in Fig. 5, we

find that by filtering at a predicted uncertainty threshold of 0.2

in Fig. 6C, we can obtain an AUC of 0.84, compared to an AUC

of 0.78 for the PEPerMINT imputation alone (vs. 0.68 without

imputation, see Supplement). This further validates the quality

and benefit of the uncertainty predictions given by our method.

Discussion and conclusion
Overall, PEPerMINT results in superior performance compared

to other benchmarked methods across datasets, missingness

levels of the peptides, and evaluation metrics. In addition,

PEPerMINT provides a handle to the problem of imputation

quality by predicting uncertainties for imputed values, with

evident improvement potential for downstream analyses. This

also distinguishes PEPerMINT from most other imputation

methods, which commonly cannot result in confidence
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VAE (AUC: 0.686)
MinDet (AUC: 0.658)
MinProb (AUC: 0.654)

Fig. 5. ROC curve for the performance of DE analysis of peptides on

the HeLa-E.coli dataset imputed with different imputation methods with

5% FDR thresholds marked (dots). Our PEPerMINT imputation method

(yellow) outperforms other methods, having the largest area under the

curve (AUC).
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Fig. 6. PEPerMINT’s predicted uncertainty for the imputed values for

the HeLa-E.coli dataset (see Supplement for other datasets). A: Imputed

abundance values vs. ground truth colored by predicted uncertainty (low:

dark blue, high: yellow). B: Imputed values ordered by their predicted

uncertainty with RMSE computed over different uncertainty quantiles

[50]. C: ROC curve zoomed in at low FDR values for the performance

of DE analysis for imputing values only up to a predicted uncertainty

threshold (see Supplement for details). The yellow ROC curve (≤ 1.0

uncertainty) is identical to the yellow PEPerMINT ROC curve from

Fig. 5. Filtering out imputed values with high predicted uncertainties

decisively improves DE analysis performance after imputation.

statements. We showed that PEPerMINT’s uncertainty

estimates are highly correlated with imputation error, thereby

aptly guiding users on when to rely on or filter out the imputed

values. Further, filtering out imputed peptide abundance values

with high predicted uncertainty eventually decisively improved

the performance of the DE prediction task.

From the diverse characteristics of our benchmark datasets,

it can be derived that PEPerMINT’s high performance is not

limited to a specific dataset size or fraction of missing values.

Further, our benchmark comprises datasets with and without

technical replicates, i.e., samples with very high similarity.

Thus, imputation could be considered easier when relying

on technical replicates. However, PEPerMINT’s performance

seems unaffected by this factor and even outperforms other

methods by the largest margin on the breast cancer dataset,

which is devoid of technical replicates. This further hints at

PEPerMINT actually learning biologically relevant patterns

instead of merely averaging across technical replicates.

Comparing our different categories of datasets, PEPerMINT

performs best on our masked benchmark datasets that, by

design, only exhibit MCAR missing values. This can be

explained by our self-supervised training scheme, which also

masks uniformly at random and aligns well with MCAR missing

values. Nevertheless, PEPerMINT still shows very good results

on DDA benchmark datasets with DIA ground truth values

that can be assumed to contain both MCAR and MNAR

missing values. Further, PEPerMINT also performs well on

the HIV blood dataset, in which a high fraction of missing

values is due to lowly abundant peptides (MNAR) as the blood

plasma proteome is well studied with missing values rarely

occurring. Its increased percentage of MNAR compared to the

other datasets could be the cause for the different ranking of

imputation method performances on this dataset, e.g., very

good performance of MinDet and MinProb imputation that

replace missing values with low abundance values.

For peptides with a high percentage of missing values,

PEPerMINT compares especially well against other well-

performing methods such as BPCA or RF imputation. This

can be explained by PEPerMINT’s ability to exploit additional

information (amino acid sequence, abundance of peptides

belonging to the same protein) to obtain context about a

peptide’s properties, even if little abundance information is

available for the peptide itself. Indeed, using ablation studies,

we find both additional information layers to provide at least

some performance benefit to PEPerMINT (see Supplement Fig.

S9). As our method also allows the flexible integration of other

information layers both in tabular as well as graph form, it

could be readily extended to improve proteomics imputation

even further.

A limitation of our method when compared with other

imputation methods is its higher runtime (see Supplement

Fig. S8). However, the fastest-running methods like Median or

MinProb also perform worse than more complex methods with

longer runtimes like BPCA or RF. When executed on a GPU,

PEPerMINT shows a runtime similar to or faster than that of

BPCA imputation. Of note, all considered imputation methods

finish within minutes, which is well acceptable for MS-based

proteomics analysis workflows.

Further benchmarking criteria [51] and methods for

proteomic imputation relying on DL and ensembling [52] or

statistical models that take the protein-peptide structure into

account [53] are emerging. They are exciting avenues for future

exploration and for potential extensions of PEPerMINT, our

GNN-based method working directly on the peptide level that

flexibly takes both peptide-to-protein relationships as well

as amino acid sequence information into account to improve

prediction of missing abundance values.

Data and Code Availability
All datasets, with the exception of the HIV blood dataset,

were downloaded from the links provided in their original

publications. The repository containing the code used for

all experiments can be found under https://github.com/

DILiS-lab/pepermint. The repository also contains links to

relevant dataset files extracted from the original datasets (also

including the HIV blood dataset).
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