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Abstract

Ovarian high-grade serous carcinoma (HGSC) represents the deadliest gynecological
malignancy, with 10-15% of patients exhibiting primary resistance to first-line chemotherapy.
These primarily chemo-refractory patients have particularly poor survival outcomes,
emphasizing the urgent need for developing predictive biomarkers and novel therapeutic
approaches. Here, we show that interferon type I (IFN-I) pathway activity in cancer cells is a
crucial determinant of chemotherapy response in HGSC. Through a comprehensive
multi-omics analysis within the DECIDER observational trial (ClinicalTrials.gov identifier
NCT04846933) cohort, we identified that chemo-refractory HGSC is characterized by
diminished IFN-I and enhanced hypoxia pathway activities. Importantly, IFN-I pathway
activity was independently prognostic for patient survival, highlighting its potential as a
biomarker. Our results elucidate the heterogeneity of treatment response at the molecular
level and suggest that augmentation of IFN-I response could enhance chemosensitivity in
refractory cases. This study underscores the potential of the IFN-I pathway as a therapeutic
target and advocates for the initiation of clinical trials testing external modulators of the
IFN-I response, promising a significant stride forward in the treatment of refractory HGSC.
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Chemotherapy resistance is the leading cause of cancer-related deaths, representing the most
critical unresolved challenge in oncology. The issue of chemotherapy resistance is
particularly acute in ovarian high-grade serous carcinoma (HGSC), which is the deadliest
gynecological malignancy that accounts for over 200,000 deaths per year worldwide1,2.
HGSC is typically diagnosed at an advanced stage when dissemination from ovaries and
fallopian tubes, which are considered the site-of-origin, into the peritoneal cavity has already
occurred3–5, which hinders the effectiveness of treatments. Genomically, HGSC is a
copy-number-driven cancer6 that is characterized by an almost 100% TP53 mutation rate7 and
high patient- and tissue-specific heterogeneity8, which further make HGSC challenging to
treat, leading to < 40% five-year overall survival9.

The standard-of-care for HGSC is cytoreductive surgery followed by platinum-taxane
chemotherapy and possible maintenance therapy with anti-angiogenesis or poly (ADP-ribose)
polymerase (PARP) inhibitor10. The PARP inhibitors have significantly improved survival
rates of patients with dysfunctional BRCA1 or BRCA2 and, more generally, patients with
homologous recombination-deficient disease11. Patients who have a low likelihood for
optimal surgical cytoreduction at diagnosis (40-50% of all patients with HGSC12) are referred
to neoadjuvant therapy (NACT), which consists of 3-4 cycles of platinum-taxane
chemotherapy followed by cytoreductive surgery, adjuvant chemotherapy, and possible
maintenance therapy10. Notably, 10-15% of patients respond inconspicuously or not at all to
NACT and cannot be operated. These primarily chemo-refractory patients have the worst
prognosis of already poor prognosis HGSC and are in dire need of effective treatment
options13.

To address this unmet clinical need, we present herein a unique prospective subcohort of 31
patients with HGSC who are primarily chemo-refractory and belong to the DECIDER trial8.
We employed multi-omics data from these patients, including whole-genome sequencing
(WGS), bulk and single-cell RNA-seq, and spatial data from highly multiplexed images to
discover and validate molecular drivers of primarily chemo-refractory disease. Our results
show that the platinum response is associated with baseline interferon type I (IFN-I) pathway
activity, for the first time opening the avenue for personalized modification of the primary
chemotherapy for patients with primarily chemo-refractory HGSC.
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Results

Patient characteristics

We established a subcohort of 31 NACT-treated patients with chemo-refractory HGSC from
the prospective, longitudinal, multi-region, observational DECIDER trial (Multi-Layer Data
to Improve Diagnosis, Predict Therapy Resistance and Suggest Targeted Therapies in
HGSOC; ClinicalTrials.gov identifier NCT04846933) (Fig. 1a,b, Extended Data Fig. 1 and
Methods). The chemo-refractory disease was defined as a stable or progressive disease after
primary therapy according to the RECIST 1.1 criteria14. Patients who did not receive at least
two cycles of chemotherapy were excluded.

For comparison analyses, we selected 62 chemo-sensitive patients with similar baseline
clinical characteristics, including the same treatment strategy but at least partial response to
primary therapy and platinum-free interval (PFI), which is calculated from the last dose of
platinum to first disease progression, exceeding six months (Fig. 1a,b, Extended Data Fig. 1
and Methods). The patient characteristics are shown in Supplementary Table 1. The
refractory patients had a higher disease burden at the time of diagnosis based on higher
dissemination score15 (P = 0.026) and more frequently detected large volume of ascites (P =
0.024) (Fig. 1b, Supplementary Table 1).

Diagnostic biopsies were available for 84 patients in the discovery set (Fig. 1b). Bulk RNA
sequencing (RNA-seq) was performed on fresh frozen biopsies from 20 refractory and 38
chemo-sensitive tumors, a subset of which were selected for single-cell RNA-seq (n = 10)
(Extended Data Fig. 1). Whole-genome sequencing (WGS) data from tumor and germline
reference samples was available from 21 chemo-refractory and 41 chemo-sensitive patients.
Cyclic immunofluorescence (CycIF) was performed on four patients (Extended Data Fig. 1).

Genomic landscape of chemo-refractory and chemo-sensitive tumors

We compared mutations, copy numbers, structural variants, and mutational signatures using
WGS data from treatment-naive chemo-refractory and chemo-sensitive tumors. All patients
had dysfunctional TP53, and there were no significant differences in mutations of
homologous recombination repair genes, foldback inversions, and homologous recombination
deficiency (HRD)-associated somatic mutational signatures SBS3 and ID6 (Fig. 2a,
Supplementary Table 1). Germline mutations of BRCA1/2 (n = 3) and RAD51C/D (n = 2)
were detected only in the chemo-sensitive patients, whereas a reversion mutation of BRCA1
was detected in one chemo-refractory patient.

Established oncogenic driver aberrations, such as amplification of KRAS, MYC, or CCNE1
and loss of NF1, were equally rare in both patient groups (Fig. 2a). Oncogenic BRAF class III
kinase-impaired mutations were identified in two refractory patients, while none were found
in sensitive patients. Notably, within the entire DECIDER cohort (n = 221 patients with WGS
data), there were two additional patients with BRAF class III mutations: one patient whose
primary NACT was canceled after one cycle due to lack of response and another patient with
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poor survival treated with primary debulking surgery (PDS), thus not included in the
discovery analysis. Whole genome duplications were detected in > 50% of the samples with
no marked distinction between the two groups (Fig. 2a). Additionally, the copy number
profiles for gains, losses, and allelic imbalance were strikingly similar between the groups
(Fig. 2b). The loss-of-heterozygosity (LOH) of the entire length of chromosome 17 was
observed in all cancer samples (Fig. 2c). Tumor evolutionary states describing subclonal and
site-associated heterogeneity were uniformly represented in the groups, as shown in the
interactive GenomeSpy visualization of the genomic landscape of all samples8,16

(https://csbi.ltdk.helsinki.fi/p/chemorefractory/) (Fig. 2a-c).

Low-interferon, high-hypoxia cell state is associated with chemo-refractoriness and
prognosis

To identify processes that drive chemo-refractory phenotype, we first decomposed bulk
RNA-seq data to cancer, immune, and stromal components with PRISM17 and performed a
Differential Expression Analysis (DEA) for the cancer component of chemo-refractory and
chemo-sensitive tumors (Methods, Extended Data Fig. 2a-d). Leveraging gene-level statistics
from DEA, we conducted pathway activity inference using PROGENy18, evaluating
enrichment scores for 14 pathways, and identified the perturbed transcriptional factors from
transcriptomic data using CollecTRI19 (Methods, Extended Data Fig. 2a).

The largest activity difference was observed in the JAK-STAT pathway (P < 1e-16), primarily
due to the reduced expression of more than 77% of its positive targets, such as CXCL11,
CMPK2, ISG15 (Fig. 3a,c). The most active pathway in chemo-refractory samples in
comparison to chemo-sensitive was the hypoxia pathway (P = 3.3e-6) (Fig. 3a), regulated by
HIF1A-dependent transcription (P = 1.6e-4) (Fig. 3b, Extended Data Fig. 2e). Interestingly,
we observed that low JAK-STAT activity and high hypoxia were inversely related phenotypes
(Spearman correlation coefficient ρ = -0.59, P = 6.1e-9) (Fig. 3d).

To test whether the JAK-STAT pathway has an association with patient survival, we
calculated PROGENy scores for the JAK-STAT pathway for all patients with bulk RNA-seq
data from the DECIDER cohort (n = 156) and fitted the multivariable Cox proportional
hazards model (Methods, Fig. 3e). The JAK-STAT score was prognostic for overall survival
(HR = 0.73, 95% CI = 0.58-0.92, P = 0.009). For NACT patients stratified into three groups
by JAK-STAT activity scores, Kaplan-Meier survival analysis (Extended Data Fig. 2g)
revealed a survival advantage in the high-activity group over the low-activity group (P =
0.007).

To identify the perturbed axis of the JAK-STAT pathway in chemo-refractory tumors, we
analyzed the activity of transcriptional factors, which revealed that interferon regulatory
factors IRF2, IRF9, and IRF1 had lower activity in refractory compared to the
chemo-sensitive tumors (Fig. 3b). The reduction in IRF9 activity, a pivotal component of the
interferon-stimulated gene factor-3 (ISGF3) complex alongside STAT1 and STAT2, directly
implicates suppressed IFN-I response. The attenuation of this pathway in the
chemo-refractory patients was further evidenced by decreased expression levels of the
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IRF9-regulated genes CXCL10, IFIT3, OAS1, IFIT1, and STAT1 (Extended Data Fig. 2f).
Furthermore, the Gene Set Enrichment Analysis20 (GSEA) of the Molecular Signatures
Database21 (MSigDB) Hallmark collection indicated the Interferon Alpha Response pathway
as the most enriched (Benjamini–Hochberg (BH)-adjusted P = 0.097, NES = -1.828) in the
genes ranked by the t-statistic (Fig. 3f). These analyses demonstrate that IFN-I response is
suppressed in the chemo-refractory HGSC patients at the time of diagnosis.

Genomic perturbations do not explain reduced IFN-I activity in chemo-refractory patients

To investigate whether genetic aberrations are responsible for the attenuated IFN-I signaling
in chemo-refractory patients, we conducted an in-depth analysis of somatic aberrations of the
genes implicated in the IFN-I response cascade (Extended Data Fig. 3a,c). The genomic
landscape was devoid of loss-of-function mutations, except for a deletion in the
IFN-alpha/epsilon and CDKN2A/B locus of one patient (Extended Data Fig. 3b). Our results,
or lack thereof, suggest that genomic alterations are unlikely to be the primary driver of the
diminished IFN-I response characterizing chemo-refractory patients.

Single-cell RNA-seq and spatial protein profiling of the IFN-I activity confirm its
association with chemo-refractoriness

We then characterized the IFN-I activity and heterogeneity using single-cell transcriptomic
and spatial data from highly multiplexed images. Single-cell RNA-sequencing (scRNA-seq)
data were acquired from four refractory and six chemo-sensitive patients (Fig. 4a).
Employing a tiered clustering approach22, we catalogued 16,682 high-quality cells, including
malignant (n = 4,577), stromal (n = 2,143), and immune cells (n = 10,062) (Fig. 4b,c).

To address the intra-patient variability of the IFN-I activity, we computed the IFN-I pathway
score for each single cell sample and observed distinct patterns of its activation across various
cell types. The IFN-I pathway exhibited elevated activity in malignant cells of the
chemo-sensitive patients compared to the refractory patients, corroborating the bulk RNA-seq
results (Fig. 4d). Furthermore, we found that the cancer cells from chemo-sensitive samples
encompassed a more diverse spectrum of the pathway activity, which manifested in a higher
variance of the activity scores with the presence of a subset of cells in the extended rightward
tail in the distribution (Fig. 4e).

We next performed a single-cell analysis of formalin-fixed paraffin-embedded (FFPE) tumor
samples from omental and peritoneal regions of two refractory and two sensitive patients
using multiplexed cyclic immunofluorescence (t-CycIF) imaging23. We annotated
approximately 1.4 million cells into cancer, immune, and stromal cells using TRIBUS24. We
assessed the state of IFN-I pathway activity by quantifying the expression levels of its
indicator phospho-STAT1 (pSTAT1). Spatially, the pSTAT1-positive cancer cells formed
clusters in the chemo-sensitive tumors, whereas similar colocalization was not observed in
the chemo-refractory tumors, where the great majority of cancer cells were negative for
pSTAT1 (Fig. 4f,g). In line with the results from scRNA-seq, t-CycIF analysis confirmed an
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elevated IFN-I pathway activity in the cancer compartment of chemo-sensitive tumors with
the presence of malignant cells distinguished by highly active IFN-I response (Fig. 4g).

Platinum response of ovarian cancer cell lines is associated with IFN-I signaling

We then investigated the role of IFN-I signaling in platinum resistance in Kuramochi and
COV362 cell lines (Supplementary Table 2), which are genomically similar to HGSC
tumors25. We performed scRNA-seq combined with cell hashing and determined
transcriptomic profiles of the HGSC cells exposed to different concentrations of platinum
(10%, 50%, and 200% of IC50) for different time intervals (24h/12h) (Fig. 5a). We first
calculated the effect difference between platinum-treated and control cells by extracting the
platinum gene expression signature from scRNA-seq data using Cohen's d (Methods,
Extended Data Fig. 4a). The extracted platinum signatures showed a consistent correlation
across the replicates (n = 5 for each cell line) (Extended Data Fig. 4a). A platinum sensitivity
score (CisSenScore, Methods) for each cell was calculated and based on it, the
platinum-treated cells were classified into 'more-sensitive' and 'less-sensitive' groups (Fig. 5b,
Extended Data Fig. 4b).

To identify cellular mechanisms influencing platinum response in an unbiased fashion, we
conducted principal component analysis (PCA) on scRNA-seq data from untreated cells,
followed by projection of the expression data from treated cells onto the principal component
(PC) state established by control cells' expressions. This allowed the identification of PCs
that capture the variation related to the platinum response. We selected the PCs with high
variance effect size between 'more-sensitive' and 'less-sensitive' cells (not separating cell
cycle phases; Methods) (Fig. 5c,d). The resulting 27 PCs were clustered using hierarchical
clustering, yielding three clusters (Fig. 5e). Analysis of the three clusters using GSEA20

showed that clusters 1 and 2 in the 'less-sensitive' cells had a significantly down-regulated
activity of the Interferon Alpha Response pathway, corroborating the IFN-I activity reduction
in patients with chemo-refractory HGSC (Fig. 5f, Extended Data Fig. 4c-e).

Next, we investigated the effect of IFN-alpha and platinum combination treatment on cell
viability. We tested six IFN-alpha concentrations for the combination treatment and selected
the 10U/μl concentration (Extended Data Fig. 4g). The combined treatment significantly
reduced the cell viability compared with platinum-only treatment and showed additive effects
of IFN-alpha and platinum in both COV362 and Kuramochi cell lines (Fig. 5g,h). Taken
together, these results indicate that the IFN-I signaling state of HGSC cells is intrinsically
variable and that high levels of IFN-I signaling cell-autonomously increase the
chemosensitivity of the cells to platinum.
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Discussion
Molecular processes driving chemo-refractory disease remain elusive, and currently, no
biomarkers or effective therapy options exist for patients with HGSC who do not respond to
first-line chemotherapy. To address this clinically urgent but unmet problem, we established
multi-omics data from clinically curated chemo-refractory and corresponding
chemo-sensitive patients with HGSC within the prospective, observational DECIDER clinical
trial. All samples harbored TP53 mutation as expected, and an experienced gynecopathologist
verified that samples with atypical genomes were indeed serous carcinomas.

Herein, we demonstrate that the basal activity of the IFN-I in cancer cells is associated with
response to chemotherapy. Moreover, our findings indicate substantial heterogeneity in IFN-I
activity in the treatment-naïve HGSC tumors, suggesting that high variability in this pathway
activity contributes to inherent heterogeneity in treatment response. The scRNA-seq and
CycIF data, as well as the functional cell line experiments, replicated the finding of the
baseline heterogeneity in susceptibility to platinum, with cells being more sensitive to
cisplatin having elevated activity of IFN-I compared with more resistant cells. Combination
treatment experiments with cell lines also suggest that the effect of IFN-I response is
primarily cell-autonomous, appearing less dependent on the tumor microenvironment.
Importantly, we showed that IFN-I activity in cancer cells is an independent prognostic
marker of poor response to the first-line therapy in HGSC.

Recent work on molecular characterization of adaptation and acute response to PARP
inhibitors suggested that IFN signaling upregulation is an early response26. In the highly
adapted states, silenced IFN signaling is accompanied by elevated HIF1A-signaling,
contributing to the management of oxidative stress. Based on our findings, the
chemo-refractory HGSC phenotype resembles these far-adapted cell states, with low baseline
IFN-I activity and high hypoxia-related signaling.

Our results suggest that patients with chemo-refractory HGSC may benefit from inducing
IFN-I activity to enhance their responsiveness to chemotherapy. This treatment suggestion
is supported by a phase II study that combined cisplatin and alpha-2 interferon in non-small
cell lung cancer, with a 30% response rate and acceptable toxicity27. Indeed, several
approaches to increase IFN-I activity have been published recently, such as targeting
macrophages28 or IFN-epsilon29. As chemo-refractory patients currently do not have
efficient treatment options, a clinical trial to test the efficacy of IFN-I modulation and
platinum-based chemotherapy is warranted.

Despite thorough genetic analysis of our unique dataset, we did not find genetic drivers
behind chemo-refractory phenotype or lack of IFN-I activity, hinting at non-genomic
mechanisms behind chemotherapy resistance. Unlike Chowdhury and colleagues30, we did
not find the LOH of chromosome 17 to be enriched in patients with chemo-refractory
HGSC. However, we replicated their finding that BRAF-mutated tumors were exclusively
found in the refractory group. In the full DECIDER cohort, all four patients with BRAF
mutations had poor survival and Class III mutations. The Class III BRAF mutations impair
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the kinase domain but retain partially some RAS-dependent activity. Cancers with such
mutations have been demonstrated to be sensitive to MEK, ERK, or RAS inhibition31.
While the prevalence of BRAF mutations in HGSC is ~2.6%31, accumulating evidence
indicates that the patients harboring BRAF mutations do not respond to first-line
chemotherapy. As a significant benefit from targeted therapy with MAPK inhibitors has
been demonstrated for cancers with Class III BRAF mutations, patients with primary
chemo-refractory HGSC should be tested for BRAF mutations.

We recognize the limitations of this study. A mechanistic explanation for the lack of IFN-I
activity in chemo-refractory patients remains to be elucidated. While our data suggest that
driving mechanisms for IFN-I are likely non-genomic, functional experiments with
preclinical models that address tumor microenvironment are warranted. Furthermore, we
acknowledge the need for validation of the results in independent patient cohorts.

In conclusion, we established IFN-I pathway activity in cancer cells as a critical determinant
of the response to chemotherapy, offering a prognostic biomarker and the first therapeutic
target to combat chemo-refractoriness in HGSC. By providing a detailed examination of the
underrepresented patient population in ovarian cancer research, our results advocate for the
urgent initiation of clinical trials to evaluate IFN-I modulation strategies, potentially
transforming the treatment landscape for patients with chemo-refractory HGSC.
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Methods

Study participants

The DECIDER study (Multi-Layer Data to Improve Diagnosis, Predict Therapy Resistance
and Suggest Targeted Therapies in HGSOC; ClinicalTrials.gov identifier NCT04846933)
fosters ongoing prospective recruitment of patients diagnosed with HGSC at the Turku
University Hospital, which started in 2010. Clinical data on patient characteristics were
collected from hospital records. For these analyses, we included patients diagnosed before
2022-03-31. The primary treatment strategy of all patients adhered to the ESMO guidelines10,
including either primary debulking surgery (PDS) followed by platinum-based adjuvant
chemotherapy, or neoadjuvant chemotherapy (NACT), interval debulking surgery (IDS), and
adjuvant chemotherapy. The chemo-refractory study group included patients from the
NACT-treated arm and was defined by their outcome from primary therapy with either stable
or progressive disease, according to the RECIST version 1.1 criteria14. The platinum-free
interval (PFI) of these patients was at highest 45 days, adhering to the ESMO definition of
chemo-refractory13 HGSC with a slight concession for delayed progression detection. We
excluded eleven patients from the analyses, most of whom did not receive adequate NACT
treatment, comprising at least two cycles of chemotherapy due to pre-existing medical
conditions or severe side effects. The reference group consisted of chemo-sensitive patients
with similar baseline characteristics and treatment strategy but with either partial or complete
response to primary therapy and a PFI of more than six months. This patient selection yielded
31 chemo-refractory and 62 chemo-sensitive cases. The full DECIDER cohort, including 39
additional NACT-treated patients with intermediate follow-up and 142 patients treated with
PDS and adjuvant chemotherapy, was used to validate the findings from the discovery set
(Supplementary Table 1).

Sample preparation and selection

Tissue specimens from tumors were collected during diagnostic laparoscopy before treatment
or palliative ascites removal and were subsequently subjected to pathological examination.
Peripheral blood samples or buffy coat extracts were extracted in Auria Biobank for all
patients for DNA extraction and genomic sequencing to serve as germline reference for
identifying somatic genomic aberrations using Chemagic DNA Blood Kit Special
(PerkinElmer Inc., USA) and Chemagic 360 instrument (PerkinElmer Inc., USA). For other
samples, to extract DNA and RNA simultaneously, we utilized the Qiagen AllPrep kit
(#80204). Slides of formalin-fixed paraffin-embedded (FFPE) tissue were stained with
hematoxylin and eosin, scanned, and re-evaluated by a gynecopathologist (AVi). Tumor
samples subjected to bulk and single-cell RNA-seq analyses originated from primary
tubo-ovarian sites (ovaries and fallopian tubes) and solid metastatic sites (omentum,
mesentery, and peritoneum). As many subsequent analyses required one sample per patient,
we prioritized the samples from the solid metastatic sites. When multiple samples from solid
metastatic sites were available for a patient, we selected the one with the highest abundance
of EOC, according to PRISM17. To compare bulk RNA-seq data from chemo-refractory and
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chemo-sensitive tumors, we utilized samples from fresh frozen solid tumor biopsies listed in
Supplementary Table 3.

Whole-genome and RNA sequencing

Tissue samples were extracted from fresh frozen tissue, and those with sufficient DNA/RNA
content were sent to BGI (BGI Europe A/S, Denmark) or Novogene (Novogene Europe, UK)
for library preparation and nucleotide sequencing. Whole-genome sequencing (WGS) was
performed with either DNBSEQ (BGISEQ-500 or MGISEQ-2000, MGI Tech Co., Ltd.,
China), HiSeq X Ten (Illumina, USA), or NovaSeq 6000 (Illumina, USA) as 100bp or 150bp
paired-end sequencing with a median coverage of 47x. RNA sequencing was performed
using DNBSEQ, HiSeq X Ten, HiSeq 4000, or NovaSeq 6000 as 100bp or 150bp paired-end
sequencing.

Bulk RNA-seq analysis

RNA-seq preprocessing

Bulk RNA sequencing (RNA-seq) reads were processed using the SePIA pipeline32 within
Anduril233, as was previously described in detail17. Trimmomatic34 v0.33 was used to trim
low-quality bases. Trimmed reads were aligned to GRCh38.d1.vd1 with GENCODE v25
annotations via STAR aligner35 v2.5.2b, allowing up to 10 mismatches. Transcripts per
million (TPM) and gene-level effective counts were quantified using eXpress36

v1.5.1-linux_x86_64. We applied the POIBM method for batch-effect correction to
gene-level read counts37.

Bulk RNA-seq decomposition

We employed the latent statistical framework PRISM to extract the sample composition, scale
factors, and cell-type-specific whole-transcriptome profiles adapted to each transcriptomic
sample17. For the single-cell reference, we utilized single-cell RNA-seq data from HGSC,
annotated for EOC, Fibroblasts, Immune, and Other, encompassing data from eight patients
and various anatomical sites. Raw read counts were utilized as input for the model. This
approach enabled us to accurately generate EOC-specific gene-level read counts for each
bulk RNA sample.

Differential expression analysis

Prior to differential expression analysis (DEA), we refined the matrix of raw read counts by
filtering out genes that were not adequately profiled. The criteria for retaining genes in the
analysis were as follows: (1) the gene must have a minimum of 15 total reads across samples
within each comparison group, and (2) the gene must have at least 10 counts in at least some
samples within each group. This filtering process resulted in an input matrix comprising
15,730 genes across 58 samples. For the DEA, we utilized the Python implementation of the
DESeq2 framework pydeseq238 v0.3.4. This analysis aimed to identify genes differentially
expressed between the chemo-refractory and chemo-sensitive tumors, with SBS3 and
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refractory/sensitive status as design factors in our model. We incorporated a unique approach
for determining size factors, as follows: we utilized scale factors derived for each RNA
sample through the PRISM framework multiplied by the EOC abundance and normalized by
the geometric mean across all samples (https://github.com/XXX).

TF and pathway activity inference

To assess the pathway activity, we employed the Python implementation of the DecoupleR39

framework v1.5.0 and retrieved the PROGENy18 model weights with
decoupler.get_progeny(top=500). The multivariate linear model method decoupler.run_mlm()
was used to infer the pathways enrichment scores. In addition to pathway activity scores, we
also evaluated the activity scores of transcriptional factors (TF). For this purpose, we
retrieved the CollecTRI19 gene regulatory network with decoupler.get_collectri(). For the
inference of enrichment scores of TF, we utilized the univariate linear model method
executed via decoupler.run_ulm(). We used the gene-level statistic incorporated in the
stat-value of the DESeq2 output as input for this analysis.

GSEA

To infer functional enrichment scores, Gene Set Enrichment Analysis (GSEA) was conducted
on the Trimmed Mean of M-values (TMM) normalized EOC expression profiles obtained
using the Python package conorm v1.2.0. We utilized the hallmark gene sets from the
Molecular Signatures Database21 (MSigDB) collection for this analysis. The GSEA was
performed using the gseapy Python library v1.0.3, applying the following parameters:
ranking method set to 't_test,' a total of 1000 permutations for robust statistical assessment,
and the inclusion criteria for gene sets were defined with a minimum of 15 genes and a
maximum of 500 genes per set. We considered a pathway significantly enriched if
Benjamini–Hochberg (BH)-adjusted P < 0.1.

Cell type abundance estimation

The Kassandra40 algorithm (tumor model) was used to evaluate the proportions of different
cell types in the TME for each bulk RNA sample. TPM values obtained during the expression
quantification phase served as the input data. When gene annotations were absent, zeroes
were inputted to meet the algorithm's input criteria.

Single-cell RNA-seq analysis

Tumor samples were collected at the time of laparoscopy, dissociated into single-cell
suspensions, and frozen for later scRNA-seq processing. The scRNA-seq libraries were
prepared using the Chromium Single-Cell 3′ Reagent Kit v2.0 (10x Genomics) and were
subsequently sequenced using the Illumina HiSeq 4000 at the Jussi Taipale Lab at the
Karolinska Institutet, Sweden, as well as the HiSeq 2500 and NovaSeq 6000 at the
Sequencing Unit of the Institute for Molecular Medicine Finland. Preprocessing of the data,
comprising sample demultiplexing, alignment, barcode processing, UMI quantification, and
cell type annotation, was performed as previously described22. To assess the IFN-I pathway
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activity, we employed the Python implementation of the DecoupleR39 framework v1.5.0 and
retrieved the hallmark gene sets from MSigDB21 with decoupler.get_resource(“MSigDB”).
For the inference of enrichment scores of the IFN-I response pathway, we ran the Over
Representation Analysis (ORA) executed via decoupler.run_ora().

WGS data analysis

WGS data preprocessing

The genomic DNA data processing was performed with the Anduril2 workflow platform33

and included quality control, alignment to the reference human genome, deduplication,
cross-sample contamination estimation, and variant discovery. We used FastQC41 v0.11.4 and
Trimmomatic34 v0.32 for sequenced DNA read quality control and trimming steps.
Subsequently, the high-quality reads underwent alignment to the reference human genome
GRCh38.d1.vd1 using BWA-MEM42 v0.7.12-r1039 with default parameters, subjected to
deduplication with Picard v2.6 (https://broadinstitute.github.io/picard/) and base quality
recalibration using the Genome Analysis Toolkit43 (GATK) v4.1.9.0. Additionally,
cross-sample contamination estimation was conducted with GATK, setting the contamination
estimation threshold at 3% for tumors, 5% for normals in Panel of Normals (PoN), and 10%
for normals in germline variant calling.

Mutation calling

Somatic short variants were identified by collectively analyzing multiple tumor samples
against a single-matched normal sample for each patient. This analysis was performed using
GATK v4.1.9.0 Mutect244, following established best practices45. The Finnish gnomAD46 v3.0
allele frequencies served as the germline resource for variant calling. We used a PoN
generated with 181 normal samples from the DECIDER study and 99 TCGA normals8.
Afterward, the GATK FilterMutectCalls tool was employed for variant filtration, retaining
only those variants that successfully passed all applied filters. Variant allele frequencies
(VAF) were computed by considering the read depths for both reference and alternate alleles
as indicated in the AD field. We annotated the variants using the GATK VariantAnnotator,
adding dbSNP47 155 IDs. Additionally, an offline version of Combined Annotation
Dependent Depletion48 (CADD) v1.6, complemented by an in-house solution, was employed
to annotate variant call format files. The annotation process was further enriched using
ANNOVAR49 20191024, adding refGene50 data dated 2020-08-16, together with other
annotations adapted for ANNOVAR, including ClinVar51 20220816, customized annotations
for COSMIC52 v96, and gnomAD v3.0 genomes. Germline variants were called as previously
described8. The allele depths of variants at exons, untranslated regions, and splice sites were
estimated by forced calling using GATK 4.1.9.0 Mutect2 in joint calling mode, as in somatic
variant calling.

Tumor fraction estimation

Tumor fraction was estimated using a modified ASCAT53 algorithm that inputs copy-number
segmentation from GATK45, as previously described16.
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Copy number and breakpoint calling

Breakpoint and copy-number segmentation were determined by employing a combination of
GRIDSS54 and the Hartwig Medical Foundation (HMF) toolkit. The pipeline was constructed
on the Nextflow55 platform, utilizing default settings for the incorporated tools. Breakpoint
calling was executed using GRIDSS54 v2.13.2, with the exclusion of regions found in both
the ENCODE56 and in-house built DECIDER blacklists8. Subsequently, breakpoint filtering
was accomplished through GRIPSS57 v2.0 , leveraging a PoN originating from blood samples
collected from DECIDER patients and a Dutch population. B allele frequency (BAF)
calculation was conducted using the Amber tool v3.8, while heterozygous biallelic loci were
identified as described in the preceding section. Cobalt v1.12 was employed to assess read
depth normalized for GC content. The combined results from all these tools, in addition to
somatic single nucleotide variants (SNVs), were then used to input data into PURPLE57,58

v3.7.2 . PURPLE estimated copy-number segmentation profiles and conducted estimations for
tumor purity and ploidy of the samples. Breakpoints derived from GRIDSS-PURPLE
analysis were used for structural variants annotation with Linx59 v1.22. Among all events,
simple and chained foldback inversion were extracted and used for the analysis.

Mutational signatures and signature events

Mutational signatures were fitted, and SBS3- and ID6-based homologous recombination
deficiency (HRD) statuses were computed as previously described60 using COSMIC61 v3.3.1
reference signatures. A cancer was classified as positive for foldback inversions if at least one
tissue sample was positive. A sample sequenced with NovaSeq was called positive if at least
five foldback inversion events were detected, and a sample sequenced with BGISEQ or
HiSeq was called positive if at least three foldback inversion events were detected to
accommodate the platform-specific differences in detection sensitivity.

Curation of somatic aberrations

To define the genomic status of genes involved in the IFN-I signaling cascade, we curated
function-affecting mutations and the dosage of intact gene copies and summarized the dosage
perturbation over the whole signaling cascade. First, we collected short somatic mutations
and annotated, weighing a mutation a loss-of-function if its consequence was protein
truncation or if it was a missense predicted deleterious unanimously by polyphen262 and
SIFT63. Then, we retrieved all genomic breaks from the PURPLE-processed data and
assessed their effect on the coding sequence. With locus copy number and tumor fraction in
the sample from the processed data and with read counts supporting the aberration, we
estimated the number of gene copies affected by the short or structural aberrations and the
number of intact gene copies. Using the most common copy number across the cancer
genome as a reference copy number, we calculated the dosage of intact gene copies as a ratio
of the number of intact gene copies and the reference copy number. Gene dosage below or
equal to 0.5 or above or equal to 2.0 was considered perturbed. Adapting the molecular
distance introduced earlier64, a pathway perturbation score of cancer was calculated as a
log2-scale sum of absolute perturbed gene dosages.
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Tissue cyclic multiplex immunofluorescence (t-CycIF)

Whole-slide HGSC FFPE samples were stained and scanned iteratively with validated
antibodies (DAPI, E-Cadherin (CST, CAT 3199), CK7 (Abcam, CAT ab209601), Vimentin
(CST, CAT 9855), pSTAT1 (CST, CAT 8183S)) using RareCyte CyteFinder scanner
following the t-CycIF workflow65 as described23. BaSiC tool and the Ashlar algorithm were
used for image correcting, stitching, and registration66. Single-cell nuclei segmentation was
performed using probability maps created by UNET67, and these were dilated by 2px to
obtain whole-cell segmentation masks. The mean fluorescence intensity for each cell was
computed using in-house scripts and Python's scikit-library to obtain a single-cell data table.
SOM-based TRIBUS24 algorithm was used for cell type calling, and pSTAT1 expression was
gated and rescaled (pl.gate_finder and pp.rescale using the scimap package in Python) to a
value between 0 and 1 separately for each image so that values above 0.5 identify cells
expressing the marker as described23.

Statistical analyses

Statistical tests for patient and cancer characteristics were performed with the Fisher exact
test for categorical variables and the Mann-Whitney U-test for ordinal variables. Statistical
tests for transcriptional factors and pathway activities were performed using the Student's
t-test. All P values were two-sided. The BH procedure was used to adjust the two-sided P
values for multiple hypothesis testing when appropriate. The strength of correlations was
measured using the Spearman (ρ) correlation coefficient and the probability of observing a
correlation with the corresponding P values. The threshold for significance was set up as less
or equal to P = 0.05 in all analyses unless specified otherwise.

Patient survival was analyzed using R library survival, with a diagnosis of HGSC as a starting
point of time at risk and death from HGSC as an endpoint. The follow-up was cut at
2023-01-31 and patients were censored at that time, if alive. One patient was censored at a
time of non-HGSC-related death. Hazard ratios were estimated for the PROGENy JAK-STAT
z-score in the solid metastatic or intra-abdominal sample with the lowest JAK-STAT score at
diagnosis with a multivariable Cox model adjusted for HRD status from SBS3 mutational
signature, presence of pathogenic mutations in homologous recombination (HR) genes, high
volume (> 1000 ml) of ascites at diagnosis and presence of macroscopic residual tumor after
cytoreductive surgery as dichotomous variables, and, cancer dissemination score15 as a linear
variable. For visualization with Kaplan-Meier survival estimator curves, the JAK-STAT
z-scores were classified into 0-0.25, 0.25-0.75, and 0.75-1.00 quantiles in the subcohort of
NACT-treated patients (n = 82 patients with bulk RNA-seq data). The separation of the
curves was measured with a log-rank test.
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Functional cell lines experiments

Cell lines and reagents

Ovarian cancer cell line COV362 (Sigma-Aldrich) was cultured in Dulbecco's Modified
Eagle's Medium (Gibco) supplemented with 10% (vol/vol) fetal bovine serum (FBS, Thermo
Fisher Scientific) and 1% Penicillin-Streptomycin antibiotics (Thermo Fisher Scientific).
Ovarian cancer cell line Kuramochi (JCRB Cell Bank) was cultured in RPMI 1640 (Gibco)
supplemented with 10% FBS and 1% Penicillin-Streptomycin antibiotics. All cells were
cultured at 37°C under 5% CO2 and were Mycoplasma-free. Recombinant Human Interferon
alpha 2a (IFN-alpha) was purchased from R&D systems. Cisplatin was purchased from
Sigma-Aldrich.

Cell viability assay

To assess the relative 50% inhibitory concentration (IC50) of COV362 or Kuramochi cells to
cisplatin and IFN-alpha, cell viability assays were performed. Briefly, cells (5,000 cells/well)
were seeded in 96-well plates and cultured overnight, then treated with either vehicle or
different concentrations of cisplatin (0.5, 1, 2.5, 5, 10, 20, 30, 50μM) or IFN-alpha (0.01, 0.1,
1, 10, 100, 1000U/μl) for 72 h. For combination treatment, cells were treated with vehicle or
10U/μl of IFN-alpha combined with increasing concentration of cisplatin (0.5, 1, 2.5, 5, 10,
20, 30, 50μM) for 72h. Cell viability was assessed by measuring luminescence using
CellTiter-Glo 2.0 Cell Viability Assay (Promega) in 2014 Envision multilabel reader (Perkin
Elmer). Dose-response curves and relative IC50 were generated by GraphPad Prism 10. The
IC50 curves of cisplatin for COV362 and Kuramochi cells are shown in Extended Data Fig.
3, and the IC50 curves of IFN-alpha for COV362 and Kuramochi cells are shown in
Extended Data Fig. 3g.

Antibody-oligo conjugation

Oligonucleotides were conjugated to two antibodies against HGSOC cell surface proteins
β2-Microglobulin (β2M) and CD298 (BioLegend) by iEDDA-click chemistry according to
CITE-seq antibody-oligo conjugation protocol (https://cite-seq.com). Briefly,
oligonucleotides were derivatized with TCO-PEG4-NHS (Click chemistry tools) in 10x
borate buffered saline (BBS), and the TCO-labeled oligo was verified by Bioanalyzer Small
RNA chip (Agilent). Antibodies were conjugated to mTz-PEG4-NHS (Click chemistry tools)
at first in 1x BBS, then a 300μl reaction containing 300μg of mTz-PEG4-antibodies and
3nmol of TCO-PEG4-Oligo in 1x BBS was reacted at 4°C overnight. Excess mTz was
quenched with 30μl of 10mM TCO-PEG4-glycine at room temperature for 10 min. Excess
oligos were washed by Amicon Ultra-0.5 centrifugal filter unit with 50kDa MWCO
membrane (Millipore) with 1x PBS. The conjugation efficiency was assessed by size shift of
the conjugated antibodies on a 4-12% PAGE-gel (Thermo Fisher Scientific).

Single-cell RNA seq combined with cell hashing
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This experiment was performed using Chromium Next GEM Single Cell 3' Reagent Kits v3.1
(Dual Index) (10x Genomics, CG000317 Rev C). COV362 or Kuramochi cells were seeded
in the 96-well plate, cultured overnight, and treated with cisplatin at different doses (10%,
50%, and 200% of IC50) and for different treatment times (24h, 12h). Subsequently, cells in
different treatment conditions were labeled with distinct oligo-conjugated antibodies
(Hashtags) against HGSC cell surface proteins β2-Microglobulin (β2M) and CD298. All cells
were pooled and subjected to one 10x single-cell RNA seq run. The gene expression and
hashtag libraries for NGS were constructed and sequenced according to the manufacturer's
protocol. Library quality was assessed on the Bioanalyser using the Agilent High Sensitivity
DNA kit (Agilent). Libraries were sequenced on the Illumina NextSeq 2000 sequencing
platform according to 10x manufacturer's protocol. Raw base call files were demultiplexed
into FASTQ files, aligned to the GRCh38 human reference genome, filtered, and processed to
count barcodes and UMIs using the Cell Ranger software (v6.0.2, 10x Genomics). Cell
demultiplexing was performed using the demultiplexing function HTODemux from the R
package Seurat v4.2.0. The subsequent analysis used the single-cell filtered count matrix of
all the genes.

Extraction of the cisplatin gene expression signature

In total, we had five replicated experiments for each cell line that included treatment with
different concentrations of cisplatin and at different times. For each experiment
independently, we calculated the effect size as Cohen's d between cisplatin-treated cells
(10%, 50%, and 200% concentration, 12h, and 24h) and control cells (control and vehicle) for
each gene separately and obtained a vector containing the effect size between treated and
control cells across all genes. This vector ranks the genes by how the cisplatin treatment
affects them (from upregulated to downregulated), and we used it as a proxy for a 'cisplatin
gene expression signature.' To evaluate the agreement between the 10 cisplatin gene
expression signatures obtained, we calculated the Pearson correlation between all of them. To
obtain the average cisplatin gene expression signature, we calculated the mean of effect sizes
across the 10 experiments for each gene.

Classification of cells based on sensitivity to cisplatin

For each cell treated with cisplatin at a concentration of 200% during 24h, we calculated the
cisplatin sensitivity score (CisSenScore) as the log ratio between the counts in the 1000 genes
with higher effect size in the average cisplatin gene expression signature and the 10,000
genes with lower effect size (serves as background to control for the difference in total counts
across cells). Based on this CisSenScore, we classified the treated cells (at concentration
200% for 24 h) into 'more-sensitive' (25% of cells with the highest CisSenScore) and
'less-sensitive' (25% of cells with the lowest CisSenScore).

Identifying the transcriptional programs associated with drug sensitivity

For each experiment, we applied a principal component analysis (PCA) to the expression
values of the control cells. The expression values were centered separately for treated and
control cells. As the PCs were calculated from gene expression values from the control
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experiments (i.e., without any perturbation), they reflect the background changes in gene
expression. Then, we projected the expression values from the treated cells onto the PC space
of the control cells. For the subsequent analyses, we used the first 10 PCs with the highest
variance in PCA. Then, for each experiment, we checked which of the 10 PCs separate the
'more-sensitive' and the 'less-sensitive' cells in the projected data (i.e., values from the treated
cells). Specifically, for each PC, we calculated the effect size (as Cohen's d) between the PC
activities of the cells previously classified as 'more-sensitive' versus the 'less-sensitive.' To
account for the cell cycle effects, we also checked which of the 10 PCs separate the cell cycle
phases (effect size between G1 vs. S, G1 vs G2M, and S vs G2M cells). For subsequent
analyses, we selected 27 PCs with an absolute Cohen's d greater than 0.5 between
'more-sensitive' and 'less-sensitive' cells, but that did not separate any of the cell cycle phases
(Cohen's d < 0.5 in all of the three cell cycle phases). Each of these selected PCs represents
gene expression patterns or transcriptional programs (up-regulation and down-regulation of
certain genes) of inter-individual variability in non-treated cells (only present in a subset of
the non-treated cells). When these transcriptional programs are upregulated (or
down-regulated) in the treated cells, they correlate with a higher (or lower) sensitivity to
cisplatin. As a validation, we expected to identify the same transcriptional programs
associated with drug sensitivity in the different replicated experiments. Therefore, we
performed a hierarchical clustering of the 27 selected PCs that separated 'more-sensitive' and
'less-sensitive' cells. By visual inspection, we selected three clusters that capture three robust
(found in several replicates) transcriptional programs associated with drug sensitivity. For
each cluster, we calculated an average transcriptional program (mean value across all PCs in
the cluster by gene). Then, we estimated the pathway activities induced by each of the three
robust transcriptional programs (clusters) using GSEA20. For each cluster, we ranked the
genes according to the median gene weight across the different gene expression signatures in
the cluster and applied the GSEA function from the ClusterProfiler package for the hallmark
gene sets of the Human MSigDB21 Collections.
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Data availability
All raw DNA sequencing data are submitted to the European Genome-phenome Archive
(EGA) and will be publicly available under study accession number EGAS00001006775.
Raw bulk RNA sequencing data are deposited in the EGA and are publicly available
(EGAS00001004714). Quantified signals for t-CycIF data will be available in Synapse upon
publication. Unpublished raw scRNA-seq data will be deposited in the EGA, and processed
scRNA-seq data will be deposited in Gene Expression Omnibus (GEO) upon publication.
Source data used in Fig. 3a-d and Extended Data Fig. 2a,c,d,e,f are provided in this paper. All
other data supporting the results of this study are available from the corresponding author
upon reasonable request.

Code availability

The code related to the bulk RNA-seq and scRNA-seq analyses will be publicly available in
the GitHub repository (https://github.com/XXX) upon publication. Specific code will be
made available upon request to daria.afenteva@helsinki.fi. Python and R packages used for
this study are described in Methods. All packages are public and are freely available online.
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Figures

Figure 1. Study design and clinical characteristics of chemo-refractory and chemo-sensitive
HGSC patients from the DECIDER cohort.

a, Schematic representation of sampling procedure and study design. DECIDER cohort
comprised patients treated with PDS and NACT, including chemo-refractory (n = 31),
chemo-sensitive (n = 62), and intermediate patients (n = 39). b, Clinical characteristics of
chemo-refractory (left) and chemo-sensitive (right) patients included in the discovery set and
data availability. RNA-seq, RNA sequencing; WGS, whole-genome sequencing; scRNA-seq,
single-cell RNA sequencing; CycIF, cyclic immunofluorescence; HGSC, ovarian high-grade
serous carcinoma; NACT, neoadjuvant chemotherapy; PDS, primary debulking surgery; PFI,
platinum-free interval; ChT, chemotherapy; pSTAT1, phospho-STAT1; IFN-I, interferon type
I; FIGO, International Federation of Gynecology and Obstetrics; IDS, interval debulking
surgery.
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Figure 2. Genomic landscape of chemo-refractory and chemo-sensitive HGSC.

a, Summary of genomic oncogenic events for the chemo-refractory (n = 31) and
chemo-sensitive (n = 62) patient groups. b, Amplifications (red) and deletions (blue) across
all chromosomes in chemo-refractory patients, with genomic alterations plotted relative to a
reference genome of chemo-sensitive patients, revealing similar copy-number landscapes. c,
Loss-of-heterozygosity across the genome of chemo-refractory and chemo-sensitive patients.
The G-score was calculated as the total magnitude of aberrations (logR) across the genome68.
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Figure 3. Pathway and transcriptional factors associated with chemo-refractoriness.

a, Pathway activity differences between chemo-sensitive and chemo-refractory HGSC
patients calculated with PROGENy revealed significant (two-tailed Student's t-test < 0.05)
down-regulation of JAK-STAT and TGFβ pathways, along with up-regulation of the hypoxia
pathway in refractory patients. b, Differential activity of transcription factors between
chemo-sensitive and chemo-refractory HGSC patients calculated with CollecTRI,
highlighting the lower activity of interferon regulatory factors IRF2, IRF9, IRF1, and higher
HIF1A activity in refractory patients. Top 5 significantly (two-tailed Student's t-test < 0.05)
up- and down-regulated transcriptional factors are presented. c, Scatter plot depicting the
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weight of the JAK-STAT target genes (x-axis) and their stat-value derived from Differential
Expression Analysis (DEA) analysis (y-axis) of chemo-refractory versus chemo-sensitive
tumors. d, Correlation plot of hypoxia and JAK-STAT z-scores across samples from
chemo-refractory (n = 20), intermediate (n = 24), and chemo-sensitive (n = 38) patients from
the DECIDER cohort, indicating an inverse relationship. Data points are color-coded by
patient status and symbol-coded by tissue origin. One representative treatment-naive sample
from solid metastatic or intra-abdominal tissues with the lowest JAK-STAT score was taken
per patient (Supplementary Table 3 and Methods). e, Multivariable Cox proportional hazards
model showing the prognostic significance of the JAK-STAT score for overall survival (n =
156 patients) in NACT and PDS patients from the DECIDER cohort. One representative
treatment-naive sample from solid metastatic or intra-abdominal tissues with the lowest
JAK-STAT score was taken per patient (Methods). The whiskers represent the 95% CI. The
residual was classified as TRUE when the residual tumor after cytoreductive surgery was
more than 0 mm. HRgene indicates the presence of a mutation in the homologous
recombination deficiency (HRD)-related genes. SBS3 indicates the HRD status of a patient
according to the SBS3 mutational signature. f, GSEA indicating significant enrichment of the
Interferon Alpha Response pathway, with significantly lower activity in chemo-refractory
patients, highlighted by the negative normalized enrichment score (NES). The
Benjamini–Hochberg (BH) procedure was used to adjust the two-sided P values for multiple
testing for GSEA. *P < 1e-2, **P < 1e-3, ***P < 1e-5 (two-tailed Student’s t-test).
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Figure 4. Single-cell RNA-seq and CycIF analyses of selected patients reveal the
heterogeneity of IFN-I activity in chemo-sensitive patients.

a, Overview of single-cell RNA sequencing (scRNA-seq) data from solid metastatic tissues
from four refractory (R) and six chemo-sensitive (S) HGSC patients. Homologous
recombination deficiency (HRD) status was defined by the SBS3 mutational signature. b,
UMAP of 16,682 scRNA-seq profiles from ten patients colored by cell type. c, Proportions of
different cell types (left axis) and logarithmic number of cells (right axis) per tumor. d,
UMAP of 4,577 malignant cells colored by the patient (left) and by the level of IFN-I activity
calculated with DecoupleR (right). e, Boxplots illustrating normalized IFN-I pathway activity
scores in individual cells within each tumor, showing a broader spread of activity in
chemo-sensitive patients. Bar plots show the proportion of cells with IFN-I activity scores
within a specific range for every tumor. f, Tissue cyclic multiplex immunofluorescence
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(t-CycIF) imaging of FFPE tumor samples from the omentum and peritoneum of
chemo-refractory (EOC3) and chemo-sensitive (EOC940) patients, respectively, with
pSTAT1 expression indicating IFN-I activity. Scale bar, 50 μm. g, Boxplots with pSTAT1
expression in malignant cells across chemo-refractory (EOC3, EOC87) and chemo-sensitive
(EOC933, EOC940) patient samples. Bar plots show the proportion of cells with pSTAT1
expression within a specific range for every tumor. Box plots are presented as the range
(whiskers) with the bounds of the box extending to the first and the third quantiles with a line
at the median and whiskers extending to the maximal and minimal data points (Fig. 4e,g).
HRP, homologous recombination proficiency; pSTAT1, phospho-STAT1.
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Figure 5. Single-cell RNA-seq in HGSC cell lines shows that IFN-I response determines
platinum-based drug resistance.
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a, Workflow of the single-cell RNA-seq combined with cell hashing in cell lines. b, Based on
the CisSenScore, the treated cells were separated into ‘more-sensitive’ (top 25%, green) and
‘less-sensitive’ (bottom 25%, orange) in COV362 cells. R1 refers to one of the experiment
replicates. c, Schematic of the data analysis pipeline. The non-treated cells underwent PCA to
extract gene expression patterns of inter-individual variability, and the treated cells were
projected into the PC space to be classified into three types based on the CisSenScore. d,
Three types of PCs in treated cells of COV362_R2 experiment: (1) able to separate
‘more-sensitive’ vs ‘less-sensitive’ cells; (2) able to separate different phases of the cell
cycle; (3) not able to separate. e, Heatmap depicting pairwise similarities between gene
expression patterns of inter-individual variability identified in non-treated cells across
replicates. Hierarchical clustering identified 3 clusters indicated by dashed boxes and
numbers. f, GSEA scores for hallmark gene sets (with p.adjust < 0.05 and GeneRatio > 0.4)
were calculated based on the gene expression signature in cluster1 of the ‘less-sensitive’ cells
compared with the ‘more-sensitive’ cells. Results from cluster 1 are shown. g, Cell viability
of COV362 cells treated with different concentrations of cisplatin-only or cisplatin combined
with 10U/μl IFN-alpha. h, Cell viability of Kuramochi cells treated with different
concentrations of cisplatin-only or cisplatin combined with 10U/μl IFN-alpha. Box plots are
presented as the range (whiskers) with the bounds of the box extending to the first and the
third quantiles with a line at the median and whiskers extending to the farthest data point
lying within 1.5x the interquartile range from the box.
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Supplementary information
Supplementary Table 1. Patient and tumor characteristics.

chemo-
refractory
patients

chemo-
sensitive
patients

p-value *
(refractory vs.
sensitive)

intermediate
NACT-treated
patients

PDS-treated
patients

Diagnosis age median [range] 70 [51-85] 68 [38-86] 0.97 68 [54-83] 68.5 [39-88]

Stage
(FIGO2014)

IIA-IIIA 0 (0%) 0 (0%) 0.9 0 (0%) 20 (14%)

IIIB 0 (0%) 0 (0%) 1 (3%) 8 (6%)

IIIC 20 (65%) 38 (61%) 27 (69%) 79 (56%)

IVA 5 (16%) 13 (21%) 7 (18%) 8 (6%)

IVB 6 (19%) 11 (18%) 4 (10%) 27 (19%)

Dissemination
score**

1-5 0 (0%) 3 (6%) 0.026 1 (3%) 37 (26%)

6-10 7 (27%) 12 (24%) 8 (26%) 61 (44%)

11-15 15 (58%) 34 (69%) 18 (58%) 38 (27%)

>15 4 (15%) 0 (0%) 4 (13%) 4 (3%)

unknown 5 (16%) 13 (21%) 8 (21%) 2 (1%)

Over 1000ml
ascites at
diagnosis

No 6 (19%) 27 (44%) 0.024 14 (36%) 89 (64%)

Yes 25 (81%) 35 (56%) 25 (64%) 50 (36%)

unknown 0 (0%) 0 (0%) 0 (0%) 3 (2%)

SBS3 mutational
signature

HRD 11 (39%) 28 (53%) 0.35 10 (33%) 56 (55%)

HRP 17 (61%) 25 (47%) 20 (67%) 45 (45%)

unknown 3 (10%) 9 (15%) 9 (23%) 41 (29%)

ID6 mutation
signature

HRD 7 (30%) 25 (50%) 0.14 4 (14%) 55 (47%)

HRP 16 (70%) 25 (50%) 24 (86%) 62 (53%)

unknown 8 (26%) 12 (19%) 11 (28%) 25 (18%)

HR gene
mutation

No 20 (87%) 39 (75%) 0.36 26 (93%) 86 (73%)

Yes 3 (13%) 13 (25%) 2 (7%) 32 (27%)

unknown 8 (26%) 10 (16%) 11 (28%) 24 (17%)

Foldback
inversions

Not detected 13 (59%) 25 (49%) 0.46 14 (50%) 60 (51%)

Detected 9 (41%) 26 (51%) 14 (50%) 58 (49%)

unknown 9 (29%) 11 (18%) 11 (28%) 24 (17%)

Any debulking
surgery

Yes 11 (35%) 60 (97%) 1.3e-10 33 (85%) 142 (100%)

No 20 (65%) 2 (3%) 6 (15%) 0 (0%)

Residual tumor
after debulking
surgery

No visible tumor 4 (13%) 18 (29%) 1.7e-06 15 (38%) 72 (51%)

1 to 10mm 6 (19%) 35 (56%) 14 (36%) 46 (32%)

more than 10mm 21 (68%) 9 (15%) 10 (26%) 24 (17%)

* The refractory and reference patient groups were compared with the Mann-Whitney test for diagnosis age and the Fisher exact test for other characteristics.
** Isoviita et al. 2019
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Supplementary Table 2. Genomic characteristics of Kuramochi and COV362 cell lines.

Cell line TP53 BRCA1 BRCA2 RB1 MYC

Kuramochi Mutation Mutation Amplification

COV362 Mutation Mutation Low mRNA expression Amplification

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.28.587131doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.28.587131
http://creativecommons.org/licenses/by/4.0/


Extended Data

Supplementary Figure 1. Flowchart of patient stratification from the DECIDER Clinical
Trial.

The chart illustrates the categorization of 274 high-grade serous ovarian cancer (HGSC)
patients into 142 patients treated with primary debulking surgery (PDS) and 132 patients
treated with neoadjuvant chemotherapy (NACT). The NACT group included
chemo-refractory (n = 31), intermediate (n = 24), and chemo-sensitive (n = 62) patients based
on the response to NACT and platinum-free interval (PFI), excluding 11 patients due to
various reasons, such as inadequate treatment or other cancers (Methods). The discovery set
comprised bulk RNA-sequencing data from 20 refractory and 38 sensitive patients,
supplemented by single-cell RNA-seq (scRNA-seq) and cyclic immunofluorescence (CycIF)
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for a subset of patients. The set used for fitting the Cox proportional hazards model
comprised additional NACT-treated patients with intermediate outcomes and patients who
underwent PDS from the DECIDER cohort (n = 156).
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Supplementary Figure 2.

a, Workflow diagram of the bulk RNA expression analysis of samples from chemo-refractory
(n = 20) and chemo-sensitive (n = 38) patients. b, The volcano plot of Differential Expression
Analysis (DEA) results highlighting genes up-regulated (red) and down-regulated (blue) in
the refractory tumors. c, A boxplot comparison of cell type abundances between
chemo-refractory and chemo-sensitive patient samples according to PRISM. d, Boxplot
comparison of cell type abundances between chemo-refractory and chemo-sensitive patient
samples according to Kassandra. e, A scatter plot depicting the weight of the HIF1A
transcriptional target genes (x-axis) and their stat-value derived from the DEA analysis
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(y-axis) of chemo-refractory versus chemo-sensitive tumors. f, Scatter plot depicting the
weight of the IRF9 transcriptional target genes (x-axis) and their stat-value derived from
DEA analysis (y-axis) of chemo-refractory versus chemo-sensitive tumors. g, Kaplan-Meier
survival curves stratified by JAK-STAT pathway activity levels into high (red), medium
(blue), and low (green) in NACT-treated patients from the DECIDER cohort (n = 82 with
available bulk RNA-seq data), with the number at risk table provided. Boxplots are presented
as the range with the bounds of the box extending to the first and the third quantiles with a
line at the median and whiskers extending to the farthest data point lying within 1.5x the
interquartile range from the box.
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Supplementary Figure 3.

a, Schematic representation of the IFN-I signaling pathway, illustrating the cascade from
IFNAR1/2 activation through JAK/STAT phosphorylation and ending with IRF9-mediated
interferon-stimulated genes (ISGs) transcription. b, Jellyfish plot showing the clonal
evolution across different samples in the chemo-refractory patient EOC3 harboring an
IFN-alpha locus deletion, with colors indicating different subclones. The JAK-STAT z-scores
per each sample are displayed as numbers. c, Mosaic plots showing genomic aberration
analysis across the IFN-I signaling genes in chemo-refractory and chemo-sensitive HGSC
patients. ISGF3, interferon-stimulated gene factor-3; ISRE, interferon-stimulated response
element; GAS, gamma-activated sequence.
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Supplementary Figure 4.
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a, Hierarchical clustering of the correlation between the transcriptional signatures (gene
weights) obtained from 10 experiments of both COV362 and Kuramochi. b, Based on the
CisSenScore, the treated cells were separated into ‘more-sensitive’ (top 25%, green) and
‘less-sensitive’ (bottom 25%, orange) in one experiment of Kuramochi cells treated with
cisplatin. c, d, GSEA scores for hallmark gene sets (with p.adjust < 0.05 and GeneRatio >
0.4) calculated based on the gene expression signatures in clusters 2 and 3 of the
‘less-sensitive’ cells compared with the ‘more-sensitive’ cells. e, Percentage of the 100 top
genes in the Interferon Alpha Response pathway overlapping with top genes in each PC
signature from the different experiments. Interferon Alpha Response variability signature was
not recovered in Kuramochi cells due to their lack of baseline heterogeneity in the IFN-I
response. f, Cell viability assay of cisplatin in ovarian cancer cells COV362 and Kuramochi.
g, Cell viability assay of IFN-alpha in ovarian cancer cells COV362 and Kuramochi. Box
plots are presented as the range (whiskers) with the bounds of the box extending to the first
and the third quantiles with a line at the median and whiskers extending to the farthest data
point lying within 1.5x the interquartile range from the box.
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