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ABSTRACT 17 

Precise identification of species is fundamental in microbial genomics, crucial for understanding the 18 

microbial communities. While the 16S rRNA gene, particularly its V3-V4 regions, has been 19 

extensively employed for microbial identification, however has limitations in achieving species-level 20 

resolution. Advancements in long-read sequencing technologies have highlighted the rRNA operon as 21 

a more accurate marker for microbial classification and analysis than the 16S rRNA gene. This study 22 

aims to compare the accuracy of species classification and microbial community analysis using the 23 

rRNA operon versus the 16S rRNA gene. We evaluated the species classification accuracy of the 24 

rRNA operon,16S rRNA gene, and 16S rRNA V3-V4 region using a BLAST based method and a k-25 

mer matching based method with public data available from NCBI. We further preformed simulations 26 

to model microbial community analysis. We accessed the performance using each marker in 27 

community composition estimation and differential abundance analysis. Our findings demonstrate that 28 

the rRNA operon offers an advantage over the 16S rRNA gene and its V3-V4 region for species-level 29 

classification within genus. When applied to microbial community analysis, the rRNA operon enables 30 

a more accurate determination of composition. Using the rRNA operon yielded more reliable results 31 

in differential abundance analysis as well. 32 

IMPORTANCE  33 

We quantitatively demonstrated that the rRNA operon outperformed the 16S rRNA and its V3-V4 34 

regions in accuracy, for both individual species identification and species-level microbial community 35 

analysis. Our findings can provide guidelines for selecting appropriate markers in the field of 36 

microbial research.  37 
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INTRODUCTION 38 

Accurate taxonomic classification is crucial for reliable outcomes in microbial genomics research. As 39 

analysis increasingly shifts towards species-level identification beyond the genus level, enhancing the 40 

resolution of microbial identification becomes critical for discerning specific species (1). This plays a 41 

significant role in discovering novel microbial species and fostering a comprehensive understanding 42 

of microbial communities (1). 43 

Next-generation sequencing (NGS) technologies have revolutionized microbial genomics, enabling 44 

rapid and cost-effective sequencing of whole genomes and amplicons (2). Second-generation 45 

sequencing platforms, like Illumina's HiSeq and MiSeq, generate millions of short reads (100-300 bp) 46 

(3), while third-generation technologies, like PacBio's SMRT and Oxford Nanopore's MinION, 47 

produce significantly longer reads (up to 100 kb or more) (4, 5). 48 

16S rRNA gene sequencing is a widely used method for microbial identification and community 49 

profiling (6, 7). It targets the highly conserved 16S rRNA gene, containing variable regions among 50 

species. Some second-generation sequencing approaches using only specific variable regions (e.g., V3 51 

and V4) as markers can be cost-effective but have limitations in taxonomic resolution (8). Even 52 

utilizing the entire 16S rRNA gene, accurate species-level classification remains challenging, 53 

potentially underestimating diversity and hindering accurate characterization of microbial 54 

communities (9, 10). 55 

The emergence of third-generation sequencing technologies has enabled the analysis of larger 56 

genomic regions, paving the way for whole rRNA operon sequencing as a prominent approach (11). 57 

Encompassing the 16S, 23S, and 5S rRNA genes, along with the Internal Transcribed Spacer (ITS) 58 

regions, the rRNA operon provides a comprehensive framework for microbial identification and 59 

phylogenetic studies (12). Compared to 16S rRNA sequencing, rRNA operon sequencing offers richer 60 

information content, promising higher-resolution taxonomic classification, reaching the species level 61 

and more accurate microbiome community analysis (13). However, further quantitative research is 62 
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required to fully validate these expectations. 63 

This study utilizes public data to compare the accuracy of species classification within the same genus 64 

using the entire rRNA operon sequence, the 16S rRNA sequence, and the V3 and V4 regions of the 65 

16S rRNA. Additionally, we create simulated microbiome community data to compare how accurately 66 

each region determines the proportion of each species. The aim is to provide guidelines for selecting 67 

marker regions for bacterial species classification and species-level microbiome studies. 68 

 69 

RESULTS 70 

Species classification accuracy within genus. 71 

Both BLAST and k-mer matching methods demonstrated significantly higher accuracy when utilizing 72 

the entire rRNA operon compared to the 16S rRNA alone (Fig. 1). The average accuracy for BLAST-73 

based classification using the rRNA operon reached 0.999, with a standard deviation of 0.005. This 74 

accuracy dropped to 0.936 with a standard deviation of 0.108 when using the 16S rRNA, and further 75 

decreased to 0.689 with a standard deviation of 0.300 with the 16S rRNA V3-V4 regions. This trend 76 

reflects that analyzing broader genomic regions leads to improved accuracy and reduced variability. 77 

k-mer matching yielded comparable results. The average accuracy using the rRNA operon was 0.999, 78 

exceeding the 0.918 observed for the 16S rRNA and 0.693 for the V3-V4 regions. The rRNA operon 79 

also displayed the lowest standard deviation (0.006), compared to 0.123 for the 16S rRNA and 0.297 80 

for the V3-V4 regions. 81 

Across both methods, the Haemophilus genus exhibited the lowest accuracy with the rRNA operon, 82 

which was 0.960. For the 16S rRNA, the lowest accuracy was observed in the Serratia genus, with 83 

BLAST and k-mer matching methods reporting 0.402 and 0.496, respectively. Notably, employing the 84 

rRNA operon compared to the 16S rRNA consistently achieved higher accuracy for all genera when 85 

using the k-mer matching method. The BLAST method presented a single minor exception in 86 
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Chlamydia, where 16S rRNA yielded marginally higher accuracy with a difference of only 0.0002.  87 

On average, the rRNA operon achieved a classification accuracy 0.084 higher with BLAST and 0.109 88 

higher with k-mer matching compared to the 16S rRNA. The largest observed difference in a single 89 

genus reached a substantial gap of 0.503 (BLAST) and 0.598 (k-mer matching). Using the rRNA 90 

operon, the BLAST method achieved perfect species classification accuracy (1.0) in 89.6% (43) of 91 

genera, and the k-mer match method did so in 83.3% (40) of genera. In contrast, with the 16S rRNA, 92 

the BLAST method had less than 0.9 accuracy in 31.3% (15) of genera, and the k-mer matching 93 

method in 37.5% (18) of genera. This indicates that using the rRNA operon enables more precise 94 

species classification than the 16S rRNA.  95 

The standard deviation of accuracy with the 16S rRNA was a significant 19.8 times higher (BLAST) 96 

and 20.7 times higher (k-mer matching) compared to the rRNA operon. Additionally, the minimum 97 

accuracy observed with the rRNA operon consistently exceeded 0.95, whereas the 16S rRNA dipped 98 

below 0.5 in some cases.  99 

Microbial community composition prediction. 100 

We conducted simulations to evaluate the effectiveness of different regions for predicting the species 101 

compositions (Fig. 2). These simulations assumed species existed in random proportions following a 102 

Dirichlet distribution. The figure depicts the predicted proportions of the top 10 species for each 103 

method (rRNA operon, 16S rRNA, and 16S rRNA V3-V4 regions). Predictions using the rRNA 104 

operon closely matched the actual compositions. The 16S rRNA predictions displayed a similar trend 105 

to the actual compositions, but with some discrepancies in the ratios between species. Predictions 106 

based on the 16S rRNA V3-V4 regions deviated significantly from the actual compositions.  107 

To numerically verify these observed trends, we calculated the Pearson correlation coefficient 108 

between the actual and predicted proportions (Table 1). Across six simulations, the correlation 109 

between actual and predicted proportions using the rRNA operon remained consistently high, with an 110 
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average of 0.999 and a standard deviation of 0.0001. This held true regardless of the number of reads 111 

used in the simulation. The 16S rRNA exhibited a lower average correlation (0.849) with a higher 112 

standard deviation (0.014), indicating a poorer match to the actual proportions and greater variability 113 

between simulations compared to the rRNA operon. The 16S rRNA V3-V4 regions yielded the lowest 114 

average correlation (0.288) with a standard deviation of 0.022. The correlation between actual and 115 

predicted proportions increased with the number of simulated reads for both the 16S rRNA and its 116 

V3-V4 regions, reaching a plateau beyond 500,000 reads.  117 

To quantify the similarity between the actual and predicted microbial community compositions, we 118 

employed the Bray-Curtis distance metric. A smaller Bray-Curtis distance signifies greater similarity 119 

between the two datasets. The predicted composition using the rRNA operon yielded a remarkably 120 

close distance to the actual composition, averaging only 0.001 across six simulations. Conversely, the 121 

average distances observed when utilizing the 16S rRNA and 16S rRNA V3-V4 regions were higher, 122 

at 0.088 and 0.367 respectively. Predictions based on the rRNA operon exhibited the closest match to 123 

the actual community composition, with distances 71.2 times smaller than those obtained using the 124 

16S rRNA. 125 

To statistically validate these observations, we conducted an Analysis of Similarities (ANOSIM) test 126 

using Bray-Curtis distance. This non-parametric method evaluates the probability of observed 127 

differences in similarity between groups arising by chance. The results confirmed these findings. 128 

Predictions made with the rRNA operon yielded a p-value of 0.272, indicating no statistically 129 

significant difference from the actual community composition. Conversely, predictions utilizing the 130 

16S rRNA and 16S rRNA V3-V4 regions produced p-values of 0.006 and 0.004, respectively. These 131 

significant p-values (p < 0.01) demonstrate that these methods yielded compositions statistically 132 

distinct from the actual community. 133 

Microbial community composition and differential abundance in human gut microbiome data. 134 

We evaluated the performance using the rRNA operon, 16S rRNA, and 16S rRNA V3-V4 regions for 135 
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microbal community composition prediction using real human gut microbiome data (Fig. 3). The 136 

analysis included 558 overlapping species from samples of 14 healthy donors and 14 patients. The 137 

correlation between the reference species proportions and those predicted using the rRNA operon was 138 

remarkably high, averaging 1.00 with a minimal standard deviation of 0.000003. Predictions based on 139 

the 16S rRNA and the 16S V3-V4 regions exhibited lower correlations with the reference, with 140 

averages of 0.931 and 0.660, and standard deviations of 0.104 and 0.323, respectively. The rRNA 141 

operon consistently achieved high correlations between predicted proportions and reference 142 

proportions, with the lowest value still exceeding 0.999. Conversely, the 16S rRNA exhibited a 143 

significantly lower correlation, dropping as low as 0.620. These results align with our observations 144 

from the randomly generated data.  145 

We further assessed the methods by conducting differential abundance analyses based on both the 146 

reference compositions and those predicted by each classification method. We compared species 147 

identified as significantly different in each case (Fig. 4). The reference data identified 132 148 

significantly differentially abundant species, which were accurately reflected by the predictions made 149 

with the rRNA operon. The 16S rRNA identified 151 significant species, with 127 overlapping with 150 

the reference findings. It missed 5 significant species (false negatives) and identified 24 species as 151 

significant that were not truly so (false positives). This translates to a false negative rate of 3.79% and 152 

a false positive rate of 18.2%, highlighting a higher prevalence of false positives with 16S rRNA. The 153 

16S rRNA V3-V4 regions performed even worse, with even greater false negative (22.0%) and false 154 

positive (25.8%) rates. 155 

Fig. 5 depicts the coefficients of species that were identified as false negatives or false positives when 156 

using the 16S rRNA, as well as those whose coefficients differed in direction compared to using the 157 

reference. Here, the coefficient represents the relative abundance of a species in patients compared to 158 

donors. Some species identified as significantly different by 16S rRNA that were not detected by the 159 

reference or the rRNA operon predictions. Additionally, one species exhibited an opposing abundance 160 
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trend between donors and patients when comparing the reference and 16S rRNA data. Furthermore, 161 

the magnitudes of the coefficients often differed between the reference and 16S rRNA findings. 162 

Conversely, the results using the rRNA operon displayed a high degree of agreement with the 163 

reference data, with consistent signs and magnitudes of coefficients for most species. Only two 164 

species showed minor discrepancies. 165 

 166 

DISCUSSION 167 

The rRNA operon demonstrably outperformed the 16S rRNA gene in terms of species classification 168 

accuracy. Statistical tests confirmed this observation. Paired Wilcoxon rank sum tests revealed highly 169 

significant differences (p < 0.0001 for BLAST and k-mer matching) in accuracy favoring the rRNA 170 

operon. Furthermore, the rRNA operon exhibited considerably lower variability in accuracy across 171 

genera. This signifies that the rRNA operon offers consistently high and stable classification accuracy 172 

across various genera, while the 16S rRNA can yield unreliable results due to substantial variations in 173 

accuracy depending on the genus. 174 

Simulations revealed a clear advantage for the rRNA operon in predicting species compositions within 175 

microbial communities. The correlation between actual and predicted proportions using the rRNA 176 

operon consistently outperformed both the 16S rRNA and the 16S rRNA V3-V4 regions. Notably, the 177 

correlation with the V3-V4 regions was significantly lower, rendering it unreliable for capturing 178 

meaningful relationships with the actual data. When using the rRNA operon versus the 16S rRNA, the 179 

difference in correlation between actual and predicted compositions in the data was greater than the 180 

difference in accuracy of individual species predictions. Similarly, the Bray-Curtis distance metric 181 

further supported the superiority of the rRNA operon. This suggests a far more accurate reflection of 182 

the true community structure when employing the rRNA operon compared to the 16S rRNA. 183 

Simulations replicating the composition of actual human gut microbiomes yielded consistent results. 184 
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Notably, this lower accuracy in predicting microbial compositions using 16S rRNA was particularly 185 

problematic for patient groups. In the patient data, the average correlation between predicted and 186 

reference compositions for the rRNA operon remained at 1.00, while the 16S rRNA only achieved an 187 

average of 0.870. 188 

The observed difference in accuracy for community composition predictions also impacted the results 189 

of differential abundance analyses. When utilizing proportions derived from the rRNA operon, the 190 

analysis identified the same 132 significant species as those identified using the reference proportions, 191 

indicating perfect agreement. In contrast, the analysis based on 16S rRNA data and 16S rRNA V3-V4 192 

region data yielded discrepancies, further solidifying the limitations of these methods for accurate 193 

prediction. 194 

Using the rRNA operon as a marker provided higher accuracy in individual species classification than 195 

using the 16S rRNA or its V3-V4 regions, leading to more accurate community composition 196 

predictions and more reliable results in differential abundance analyses. However, sequencing costs 197 

may increase with the breadth of the region being read (24). Consequently, the choice of method 198 

should consider the required resolution and available budget. The 16S rRNA can be a suitable option 199 

when less precision is acceptable or species-level analysis is not necessary and genus-level 200 

identification suffices. On the other hand, for research requiring precise species-level analysis, such as 201 

discovering biomarkers, utilizing the microbiome for treatments, or other studies necessitating 202 

accurate species identification, the rRNA operon is preferable. This is especially true for disease-203 

related microbial community studies, as the accuracy difference in community composition 204 

predictions between methods was more pronounced in patient groups, highlighting the importance of 205 

using the rRNA operon for more precise species differentiation in such contexts.  206 

The accuracy of microbal community composition prediction using the 16S rRNA or its V3-V4 207 

regions improves when using more number of reads, which mean sequencing more data. However, 208 

this also raises data production costs and should be carefully weighed. Given the same budget, 209 
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producing less data with the rRNA operon may be more efficient than generating more data with the 210 

16S rRNA. 211 

Employing the rRNA operon as a marker demonstrably enhances individual species classification 212 

accuracy compared to the 16S rRNA gene. This translates to more precise predictions of microbial 213 

community compositions and more reliable differential abundance analysis results. The 16S rRNA 214 

V3-V4 region exhibited even lower accuracy across all scenarios compared to the full 16S rRNA, 215 

highlighting a significant decline in precision. Therefore, for research requiring accurate species 216 

classification, employing the rRNA operon as a marker appears to be the most appropriate choice. In 217 

microbial community studies aiming for precise species-level analysis, utilizing the rRNA operon is 218 

advisable as using the 16S rRNA has its limitations, and relying solely on its V3-V4 regions may 219 

make it challenging to achieve meaningful results. 220 

 221 

MATERIALS AND METHODS 222 

Data collection. 223 

We collected complete bacterial genomes available in the NCBI database as of November 29, 2023 224 

(14). To ensure robust comparisons, we only considered genera containing more than 50 complete 225 

genomes. Our final dataset comprised 72 genera, 2,026 species, and 20,314 genome sequences 226 

(Supplementary Table 1). 227 

rRNA operon and 16S rRNA sequence extraction. 228 

We utilized riboSeed with its default settings to extract rRNA operon sequences (15). Following 229 

identification of rRNA gene regions using the riboscan command, we employed the riboselect 230 

command to locate rRNA operon regions containing 16S, 23S, and 5S rRNA. The corresponding 231 

rRNA operon sequences were then extracted. Implementing quality control, only sequences within the 232 

4,000 to 6,000 base pair range were retained. 16S rRNA sequences were extracted from regions 233 
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identified as 16S rRNA by the riboscan results. 234 

We employed EMBOSS's primer search tool to identify the V3-V4 regions within the previously 235 

extracted 16S rRNA sequences (16). The primer sequences used were 'CCTACGGGNGGCWGCAG' 236 

for the forward primer and 'GACTACHVGGGTATCTAATCC' for the reverse primer (17). A 237 

mismatch percentage of 10% was allowed during the search. Following quality control, only 238 

sequences with lengths between 430 bp and 550 bp were retained. 239 

Introduction of sequencing errors.  240 

To simulate real-world applications of using 16S rRNA and rRNA operon sequencing for species 241 

classification, we introduced random sequencing errors into the extracted sequences. Error rates were 242 

determined by referencing a 2022 study comparing the accuracy of Illumina and ONT technologies 243 

(18). 1D ONT MinION read error rates were applied to the rRNA operon sequences, while the 244 

average error rate of Illumina's read1 and read2 was used for the 16S rRNA sequences (Table 2). 245 

Errors were introduced through random positional mismatches, insertions, and deletions. 246 

For each position, a random number between 0 and 1 was generated. If this number was lower than 247 

the error rate, an error was introduced. Mismatches involved replacing the original nucleotide with a 248 

random one. Implementation was carried out using BioPython SeqIO (19). 249 

Species classification within genus. 250 

Two distinct methods were employed to classify species within the same genus: BLAST alignment 251 

score (20) and k-mer matching. 252 

The BLAST-based approach used the sequences of the rRNA operon or 16S rRNA (including random 253 

errors) as the query, while the original sequences of the extracted regions served as the reference. 254 

Nucleotide BLAST was run with default options. Each sequence was classified into the species with 255 

the highest bitscore. In cases of ties, one species was randomly chosen for classification. 256 
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The k-mer matching method benchmarked the approach commonly used in microbiome data 257 

classification by Kraken (21). This method involves finding the number of exact matches of 31-mers 258 

and classifying the sequence to the species with the most 31-mer matches. Similar to the BLAST 259 

approach, ties were resolved by randomly choosing one species for classification. 260 

In both methods, when multiple copies of the rRNA operon or 16S rRNA were present, we classified 261 

based on the copy with the highest score or the greatest number of matches. We assessed the accuracy 262 

of species classification per genus, by calculating the proportion of samples within each genus that 263 

were correctly assigned to their respective species. 264 

Simulation in microbial community data. 265 

To evaluate the accuracy of species classification in community data, a simulation was run on 266 

community composition data. First, we used a Dirichlet distribution to randomly set proportions for 267 

the species in our study and made a mock proportion data. Reads were initially distributed to match 268 

these true species proportions. Based on the likelihood of their classification through k-mer matching 269 

from the previous analysis, reads were then assigned to species. For example, if species A was 270 

correctly classified 90% of the time and misclassified as species B 10% of the time, a read intended 271 

for species A would have a 90% chance of being assigned to A and a 10% chance to B. 272 

This process was applied to all reads. We conducted simulations for library sizes of 5,000, 10,000, 273 

50,000, 100,000, 500,000, 1,000,000 reads. 274 

Microbial community analysis and differential abundance analysis in real world data. 275 

To further validate our findings using real-world gut microbiome data, we performed simulations with 276 

publicly available metagenomic proportions. We leveraged gut microbiome data from both donors and 277 

recipients of fecal microbiota transplantation (FMT) described in (22). Assuming the reported 278 

proportions reflect reality, we predicted species proportions based on the classification accuracy of the 279 

rRNA operon, 16S rRNA, and 16S rRNA V3-V4 regions. This procedure mirrored our previous 280 
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community composition simulation, again using a library size of 100,000 reads. Subsequently, we 281 

employed the R package 'Maaslin2' to conduct differential abundance analysis comparing successful 282 

donors and pre-FMT patients (23). The analysis utilized AST transformation, TSS normalization, and 283 

a linear model. We considered findings with an adjusted false discovery rate (FDR) of less than 0.01 284 

to be statistically significant. 285 
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FIG 1. A boxplot of species classification accuracy across genera using the rRNA operon versus 

the 16S rRNA gene and its V3-V4 regions: (A) demonstrates the results from the BLAST method, 

showing a median accuracy of 0.999 (SD: 0.005) for the rRNA operon, 0.936 (SD: 0.108) for the 

16S rRNA, and 0.689 (SD: 0.300) for the V3-V4 regions; (B) presents outcomes from the k-mer 

matching method, with a median accuracy of 0.999 (SD: 0.006) for the rRNA operon, 0.918 (SD: 

0.123) for the 16S rRNA, and 0.693 (SD: 0.297) for the V3-V4 regions. 
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FIG 2. The relative abundance of the top 10 abundant species in the <True= data, where <True= 

represents the actual proportions. "rRNA operon," "16S rRNA," and "16S V3-V4" show the 

proportions of species predicted based on the accuracy of species classification within those 

genomic regions. Each color represents the same species across different predictions, with the x-

axis indicating the number of reads used in the simulation and the y-axis showing the proportion 

of each species.  
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FIG 3. The relative abundance of the top 10 gut microbiome species in (A) FMT donors and (B) 

patients (B). "Reference" indicates actual proportions. "rRNA operon," "16S rRNA," and "16S 

V3-V4" show predicted proportions based on species classification accuracy. 
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FIG 4. Venn diagrams of the significant species identified through differential abundance analysis 

based on proportions derived from the reference and rRNA operon, reference and 16S rRNA, and 

reference and16S rRNA V3-V4 regions. Overlapping sections of the diagram represent the 

number of species significantly identified across both methods. The area exclusive to the 

<Reference= (left side) shows the number of species that were false negatives. Areas unique to 

each method (right side) indicate false positives. Complete overlap between the <Reference= and 

a method implies identical species significance findings. 
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FIG 5. The coefficients from differential abundance analyses using the proportions obtained from 

reference, rRNA operon, and 16S rRNA. We only showed species that have discrepancy in the 

reference and 16S rRNA results; species identified as significant in one analysis but not the other 

and Species with differing direction of coefficient. A positive coefficient (depicted in pink) 

indicates a species is more abundant in patients, while a negative coefficient (shown in sky blue) 

suggests it is less abundant. The magnitude of the coefficient signifies the degree of abundance 

difference. 
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TABLE 1. Pearson correlations between actual species proportions and predicted species 

proportions using the rRNA operon, 16S rRNA, and 16S rRNA V3-V4 region, by the number of 

reads used for the simulation. 

 5,000 10,000 50,000 100,000 500,000 1,000,000 

rRNA operon 0.998 0.998 0.998 0.998 0.998 0.998 

16S rRNA 0.804 0.821 0.835 0.837 0.838 0.838 

16S V3-V4 0.295 0.321 0.344 0.346 0.348 0.348 
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TABLE 2. Error rates applied to simulate sequencing inaccuracies in rRNA operon and 16S rRNA 

sequences for species classification simulations. The table outlines the mismatch, insertion, and 

deletion rates for the rRNA operon sequenced with Nanopore technology and the 16S rRNA 

(including its V3-V4 regions) sequenced with Illumina. 

 

Marker region Sequencing tool Mismatch rate Insertion rate Deletion rate 

rRNA operon Nanopore 0.0116 0.0081 0.0144 

16S rRNA Illumina 0.0089 0.00045 0.00045 

16S rRNA V3-V4 Illumina 0.0089 0.00045 0.00045 
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