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Abstract25

A large proportion of genetic variations involved in complex diseases are rare26

and located within non-coding regions, making the interpretation of underlying27

biological mechanisms a daunting task. Although technical and methodological28

progresses have been made to annotate the genome, current disease - rare-variant29

association tests incorporating such annotations suffer from two major limita-30

tions. Firstly, they are generally restricted to case-control designs of unrelated31

individuals, which often require tens or hundreds of thousands of individuals to32

achieve sufficient power. Secondly, they were not evaluated with region-based33

annotations needed to interpret the causal regulatory mechanisms. In this work34

we propose RetroFun-RVS, a new retrospective family-based score test, incor-35

porating functional annotations. One of the critical features of the proposed36

method is to aggregate genotypes while measuring rare variant sharing among37

affected family members to compute the test statistic. Through extensive sim-38

ulations, we have demonstrated that RetroFun-RVS integrating networks based39

on 3D genome contacts as functional annotations reaches greater power over the40

region-wide test, other strategies to include sub-regions and competing methods.41

Also, the proposed framework shows robustness to non-informative annotations,42

keeping a stable power when causal variants are spread across regions. We pro-43

vide recommendations when dealing with different types of annotations or family44

structures commonly encountered in practice. Application of RetroFun-RVS is45

illustrated on whole genome sequence in the Eastern Quebec Schizophrenia and46

Bipolar Disorder Kindred Study with networks constructed from 3D contacts47

and epigenetic data on neurons. In summary we argue that RetroFun-RVS, by48

allowing integration of functional annotations corresponding to regions or net-49

works with transcriptional impacts, is a useful framework to highlight regulatory50

mechanisms involved in complex diseases.51

Keywords: Non-coding genome, Pedigree-based association tests, Variant52

sharing, 3D genome53
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1 Introduction54

Over the past few years with the democratization of whole-exome or whole-55

genome sequencing data, important progresses have been made in the effort to56

link genetic variations to phenotypes. Indeed, at population scale, Genome-57

Wide Association Studies (GWAS) have provided useful resources to highlight58

variants involved in diseases. However, these methods, in addition to requiring59

tens or hundreds of thousands of individuals, are mainly restricted to common60

variants, leaving an important part of heritability unexplained1. In fact, stud-61

ies have shown that the individual genetic risk is also substantially influenced62

by rare variants (minor allele frequency (MAF) ≤ 1%),2,3. In addition to be-63

ing rare, variants influencing disease risk tend to be located within non-coding64

regions, making the underlying biological mechanisms difficult to interpret4.65

Thus, the tremendous amount of rare variants located within non-coding re-66

gions brings new challenges to identify new causal variants involved in diseases,67

and accounting for their functional impacts remains crucial from a fine-mapping68

perspective, hence translational medicine applications5.69

Methods have been proposed to overcome the challenge of sparsity. Indeed,70

because variants are rare, methods testing them in an unitary fashion perform71

badly6. Thus, rare-variants association tests (RVATs) are methods aggregating72

genotypes across several variant sites within a gene, pathway or regions func-73

tionally close. By collapsing variants over regions, these methods considerably74

reduce the number of tests throughout the genome, hence increasing statistical75

power. Among them, burden tests were initially proposed and are powerful76

when all variants across regions show a homogeneous effect7,6. However, when77

regions combine both deleterious and protective variants, burden tests compar-78

ing cases to controls suffer from a substantial decrease of power. Alternatives79

to address this limitation have been proposed8,9. One of the critical features80

of RVATs is that they can be expressed through regression models, allowing81

either the integration of covariates or variant weights, either fixed (based on the82

MAF), or estimated in a data adaptive manner6,10.83

An alternative approach is to exploit family-based studies. In addition to84

reducing genetic heterogeneity, pedigree-based studies have been shown to have85

more power than population-based approaches for detecting rare variants, when86

an enrichment of risk variants among families is expected11,12,13. Information87

provided by variants segregating with the disease, even imperfect, can be ex-88

ploited to highlight new causal variants, giving a second breath to studies in ex-89

tended pedigrees14. Recent methods based on identity-by-descent (IBD) or com-90

bining both linkage approaches and RVATs have been developed15,16,17. These91

approaches focus on, or can be restricted to only affected family members, when92

these are expected to contribute more information than unaffected subjects18.93

Affected-only designs have a long tradition in gene-gene or gene-environment94

interaction analysis and have been extended to family-based studies, requir-95

ing smaller sample sizes to reach equivalent power, compared to considering96

unrelated case-only individuals, which is an appealing feature in practice19.97

However, in many cases, knowing and defining the sampling scheme is difficult,98
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hence impossible, pushing researchers to consider retrospective approaches. Ret-99

rospective models by conditioning on phenotypes do not explicitly model the100

ascertainment process. Successful applications of such methods have been shown101

for common18 and rare variants20.102

A limitation of all the above methods is that none of them currently inte-103

grates external information on biological mechanisms involved in diseases. How104

to leverage information on non-coding regulatory elements in the detection of105

variants influencing disease risk remains an open question. Thus, there is an in-106

creasing interest in using external information for this task, and hence highlight-107

ing the biological mechanisms. Recent methods, such as FST21 or FunSPU22
108

have proposed to adaptively test functional annotations under a general RVAT109

framework. These methods have shown substantial increases in power when at110

least one functional score is predictive for the effect of variants on the trait,111

while they show robustness when no annotations were predictive for variant112

impact on the trait, revealing new causal variants involved in complex traits.113

Moreover, the multiple ways to define test statistics corresponding to several114

functional annotations created a need for combining p-values within a given re-115

gion to assess the association with a trait, while adjusting for multiplicity. Liu116

et al. 23 have proposed the aggregated Cauchy association test (ACAT), a pow-117

erful statistical framework combining p-values in an efficient way, not requiring118

resampling procedures, nor independent p-values nor explicit models for corre-119

lations. This facilitating applications even at the genome-wide scale. Although120

these set-based tests have made possible the discovery of new regions involved121

in complex diseases, they required very large sample sizes of unrelated subjects.122

More recently, with the striking development of methods detecting regula-123

tory elements such as enhancers24,25, progresses have been made in associating124

non-coding SNPs to their target genes26,27. Subsequently, some authors have125

proposed to incorporate this information within statistical frameworks. Ma126

et al. 28 have demonstrated that long range 3D interactions between genes and127

enhancers add information for the integration of non-coding regulatory regions128

within gene-based frameworks. This model, consistent with previous studies,129

only considers pairs of gene-enhancer,29. Frameworks extending gene-enhancer130

pairs to Cis-Regulatory Hubs (CRHs), networks encompassing up to several131

genes and active enhancers have been proposed30. CRHs have been shown132

to be a relevant model in schizophrenia etiology, explaining more heritability133

than tissue- and non-tissue- specific elements, and being more effective to link134

noncoding SNPs to differentially expressed genes in schizophrenia compared to135

Topologically Associated Domains (TADs) or pairs of gene-enhancer. To our136

knowledge, no study to date has proposed to integrate functional annotations137

within a family-based RVAT framework, while allowing the incorporation of138

discontinuous genomic regions involved in 3D-based networks.139

In this paper, we propose RetroFun-RVS (Retrospective Functional Rare140

Variant Sharing), a model, allowing the integration of functional annotations141

under a family-based design considering only affected individuals. Through ex-142

tensive simulation studies, we have demonstrated that RetroFun-RVS integrat-143

ing CRHs as functional annotations is a more powerful approach to detect causal144
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variants over other strategies, while well controlling the Type I error rate. We145

provide recommendations when dealing with different types of functional scores146

or pedigree structures. Finally, illustrating RetroFun-RVS on the whole genome147

sequence in the Eastern Quebec Schizophrenia and Bipolar disorder Kindred148

study we have demonstrated that integrating 3D-based functional annotations149

through networks is a relevant strategy to gain power for detection of causal150

variants, while highlighting the underlying biological mechanisms involved in151

diseases.152

2 Material and Methods153

2.1 Notations and Model154

Suppose that we have N subjects within F families, where nf is the number of155

individuals for the f th family. Let’s define Y , a binary vector of phenotypes, G156

a N ×p matrix of genotypes for rare variants, coded as unordered, discrete vari-157

ables. Assuming a log-additive model for the individual SNP effect on disease158

risk, under the assumptions of rare disease for all genotypes (i.e. weak vari-159

ant penetrance) and of conditional independence of the phenotypes of different160

individuals given their genotypes and considering only affected individuals, fol-161

lowing Schaid et al. 18 , the retrospective likelihood for one family can be written162

as:163

P (G|Y ) =
exp (

∑
i∈D

∑p
j=1 βjxij)P (G)∑

G∗ exp (
∑

i∈D

∑p
j=1 βjx∗

ij)P (G∗)

where D is the subset of affected members in the family, while xij is a con-164

densed notation for x(Gij), the number of minor alleles {0, 1, 2} for variant j in165

individual i in the multilocus genotype configuration G for all family members.166

Also, we assume that only one copy of the minor allele was introduced once by167

a family founder, implying xij can only take the values 0 or 1 in the absence168

of inbreeding in the family (occasional genotypes with 2 variant alleles may be169

recoded as xij = 1 with little impact on the results). In presence of inbreeding170

and/or cryptic relatedness among family founders, homozygous genotypes for171

rare alleles are expected and are allowed in the RetroFun-RVS implementation172

using options described in the Supplementary Material and Methods.173

In Schaid et al. 18 , P (G) is the unconditional genotype probability and de-174

pends on MAF, which needs to be estimated in practice. However, obtaining175

accurate estimates of rare variant MAFs in a population is difficult. Instead, we176

opted for conditioning the probability on the event of observing at least one a177

copy of each RV j present in the family (i.e.,
∑

i xij ≥ 1) as in15. In addition,178

we combined this conditional probability with the assumption that the variant179

frequency tends to 0, hence the probability does not depend on MAF and there-180

fore the computation does not require external variant frequency estimates. In181

this context, the genotypes can be interpreted as rare variant sharing patterns182

(referring to as RVS in the method name). The sum in the denominator is over183

all genotype configurations respecting the condition within the given pedigree,184
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where G∗ denotes one particular configuration. Since we expect that risk vari-185

ant effects dominate protective variant effects in the score test statistic when186

considering only affected individuals (Supplementary Materials and Methods187

and Figure S1), we propose to adapt the retrospective framework for a burden188

test7,6. Hence, we can express βj the effect of the jth variant through wjβ0189

where wj is usually a weighting function to specify variant effects through a190

function of MAF.191

As suggested by He et al. 21 , the effect for the jth variant can be partitioned192

into effect parameters γk with respect to functional annotations Zjk, k = 1 . . . q.193

Consequently, under a burden test framework this leads to:194

βj = wj

q∑
k=0

Zjkγk

with Zj0 = 1 and γ0 corresponding to the original burden test parameter.195

Intuitively, this partition of the variant effect allows a modulation of the variant196

effect based on MAF and functional annotations. Moreover, when no predictive197

functional annotations are present for the trait, the burden of all p variants198

may nonetheless capture an overall effect on risk, and testing γ0 ensures the199

combined test has some power. When at least one annotation is predictive, the200

partitioned model offers increased power over the original test21.201

Now combining the retrospective likelihood model described by18 and the202

decomposed variant effect, we obtain:203

P (G|Y ) =
exp(

∑
i∈D

∑p
j=1 wjxij

∑q
k=0 Zjkγk)P (G)∑

G∗ exp(
∑

i∈D

∑p
j=1 wjx∗

ij

∑q
k=0 Zjkγk)P (G∗)

Thus for the kth functional annotation the score function Sk summed across204

the F families is :205

Sk(γ) =
F∑

f=1

 p∑
j=1

wjZjk

(∑
i∈D

xfij −

∑
G∗

f

∑
i∈D x∗

fij exp(
∑p

j=1 wj

∑q
k∗=0 Zjk∗γk∗

∑
i∈D x∗

fij)P (G∗
f )∑

G∗
f
exp(

∑p
j=1 wj

∑q
k∗=0 Zjk∗γk∗

∑
i∈D x∗

fij)P (G∗
f )

)
Intuitively, this quantity can be seen as the difference between the observed206

genotype value and the expected value, weighted by MAF and functional an-207

notations. Setting γ to 0, we obtain the score statistic for the kth functional208

annotation:209

Sk(0) =
F∑

f=1

 p∑
j=1

wjZjk

∑
i∈D

xfij −
∑
G∗

fj

∑
i∈D

x∗
ijP (G∗

fj)


The genotype probability required P (Gfj) is for a single variant configura-210

tion in family f and can be computed using RVS31. Qk is the test statistic cor-211

responding to Sk(0), asymptotically following a normal distribution with mean212

0 and variance obtained by combining sharing pattern probabilities under the213
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null and observed genotypes within families. Moreover, simplifications may be214

obtained from assumptions on the linkage disequilibrium structure (See Supple-215

mentary Materials and Methods). However, we observed when only few variants216

are expected within a functional annotation or a small number of families is ob-217

served that resampling procedures may be required to adequately control the218

Type I error rate (See next sub-section Bootstrap procedure using rare variant219

sharing patterns).220

For testing multiple functional scores within a single unified test H0 : ∀k, γk =221

0 vs H1 : ∃k, γk > 0 , we then propose to combine q + 1 single p-values corre-222

sponding to the q functional annotations and the original burden with ACAT23.223

Briefly, ACAT aggregates individual p-values and approximates the test statis-224

tic (and the subsequent p-value) based on a Cauchy distribution. So, for q + 1225

tests in a region of interest, the ACAT statistic can be written as:226

TACAT =

q∑
k=0

tan((0.5− pk)π)

which follows approximately a Cauchy distribution under H0.227

2.2 Bootstrap procedure using rare variant sharing pat-228

terns229

We propose a weighted non-parametric bootstrap procedure in order to compute230

empirical p-values. Basically, genotypes were generated conditionally on the231

number of observed variants in a family, considering the rare variant sharing232

patterns occurring among family members. This procedure only requires the233

aggregated genotypes across affected individuals e.g., Xfj =
∑

i∈D xfij and the234

sharing pattern probabilities for a given family f , e.g., P (Gfj). We apply the235

following procedure for estimating the null distribution of the test statistic:236

• Sample aggregated genotypes for the pf variants in family f across the F237

families {X̃b
11, · · · , X̃b

1p1
, · · · , X̃b

F1, · · · , X̃b
FpF

}1≤b≤B using the sharing pat-238

tern probabilities P (Gf j) obtained with RVS31.239

• Construct the test statistic Q̃k

b
.240

• Compute empirical p-values for all k, p− valuek = 1
B

∑B
b=1 I(Q̃k

b
≥ Qk).241

• ACAT-combined p-values are then obtained using empirical p-values in-242

stead of asymptotic p-values over the q + 1 functional annotations.243

Because the B boostrap samples require only one set of rare variant sharing244

probabilities for all families, they only need to be computed once, hence increas-245

ing the computational performance, ensuring accurate estimation of p-values.246
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3 Numerical Simulations247

We adopted the principle that CRHs are the annotations capturing best the248

causal variants, with simpler annotations capturing causal variants to a lesser249

extent. We thus selected a TAD in iPSC-derived neurons encompassing four250

CRHs showing different complexities (two genes-five enhancers (CRH1); two251

genes-two enhancers (CRH2); one gene-one enhancer (CRH3); one gene-four252

enhancers (CRH4)) to setup the simulation study. See Table S1 and30 for253

more details. Genotypes were simulated based on observed variant sites and254

their corresponding MAF for the European population from the 1000 Genome255

Project database (phase 3). We extracted the 510 rare (MAF ≤ 1%) coding non-256

synonymous and within-enhancer non-coding single nucleotide variants from257

the TAD 800 kb (chr1:24100000-24970000). Using RarePedsim32, we generated258

sequence data over the above 800 kb region for 270 affected subjects in the259

primary sample of 52 pedigrees ranging from small to extended (Figures 1 and260

S2) Families were simplified by removing inbreeding loops. For both Type I261

error rate and power evaluation, the dichotomous phenotype was assumed to262

follow a logistic model without covariates and with a population prevalence of263

1%. Details on pedigree structures under the different scenarios were provided in264

Table S2. We focused on evaluating the ACAT-combined p-values. Importantly,265

to avoid large departures from the asymptotic distribution of RetroFun-RVS,266

we only considered functional annotations with a number of families greater267

than five. We also explored additional scenarios considering pedigrees of small268

to moderate size, families with a varying number of affected members and with269

presence of inbreeding. Details and results for these setups were provided in the270

Supplementary Numerical Simulations.271

3.1 Type I Error Simulations272

To determine whether the proposed framework preserves the desired Type I er-273

ror rate, genotype data were generated unconditional on the affection status for274

family members. We specified a null effect for variants observed in families, i.e.,275

odds-ratio (OR) = 1. Generating ten thousand replicates, we first examined the276

performance of RetroFun-RVSCRHs, which is RetroFun-RVS applied to CRHs277

and including variants over the entire TAD as global burden, with alternative278

definitions of regions to be included as functional scores: RetroFun-RVSPairs,279

RetroFun-RVSGenes, and RetroFun-RVSSliding−Window, for the method consid-280

ering pairs of gene-enhancers, genes and a 10 Kb sliding window, respectively281

(Figure 2).282

3.2 Empirical Power Simulations283

We set 2% of the variants over the entire region to be risk variants as suggested284

before28, also performing simulations with 1% of risk variants as a sensitiv-285

ity analysis. Genotypes were generated conditional on the affection status for286

each pedigree member assuming a multiplicative model with fixed variant ef-287
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fect, i.e., not depending on the MAF. Simulating one thousand replicates, we288

considered different scenarios where we varied the proportion of causal variants289

found in CRHs: 100%, 75% and 50% of causal variants (OR=5) were located290

within one CRH. The remaining variants being neutral (OR=1). This sce-291

nario is expected when variants are concentrated within elements functionally292

close. These three proportions correspond to the most advantageous scenario293

where all causal variants are within the same region and two mixed scenar-294

ios where signal is spread across the sequence of the region at different de-295

grees. Our first evaluation assessed the gain of power by incorporating CRHs296

as functional annotations over the test including no scores (referred to as Bur-297

den Original). We also compared RetroFun-RVSCRHs with others strategies to298

incorporate regions as functional annotations: RetroFun-RVSPairs, RetroFun-299

RVSGenes, and RetroFun-RVSSliding−Window, for the method considering pairs300

of gene-enhancers, genes and a 10 Kb sliding window, respectively (Figure 2).301

Also, we assessed the performance in terms of power of our method compared302

to existing approaches namely, RVS15 and RV-NPL17 (Figure S3). Power was303

evaluated as the proportion of p-values less than α = 8.33× 10−6, correspond-304

ing to the Bonferroni-adjusted 0.05 significance level when testing six thousand305

independent regions across the genome, corresponding to three thousand TADs306

(the average number of TADs found in our previous study across cell-types or307

tissues30, while permitting the same number of additional domains of interest,308

i.e., outside TADs, to be tested. Results at lower proportion of risk variants309

and considering small pedigrees are also reported.310

4 Illustration on the Eastern Quebec Schizophre-311

nia and Bipolar Disorder Kindred Study312

To illustrate the application of RetroFun-RVS to a whole-genome sequencing313

(WGS) study, we used data from the initial freeze of WGS on participants from314

the Eastern Quebec schizophrenia and bipolar disorder kindred study. Signed315

consent was obtained from all participants or from the parents for participants316

under 18 years of age for collection of all data analyzed here, under the supervi-317

sion of the University-affiliated neuroscience and mental health ethics commit-318

tee.319

A description of genomic sequencing and data quality control can be found320

in the Supplementary Materials and Methods. For the present analysis we kept321

the 28 families with at least two relatives affected by the broad definition of322

schizophrenia, bipolar disorder and schizoaffective disorder in the Eastern Que-323

bec Kindred Study33. These 28 families included a total of 288 participants324

with WGS, including 175 who were affected. Inbreeding loops where two par-325

ents are first or second cousins were present in 6 families. All families of the326

Eastern Quebec kindred study were connected in a single genealogy with a mean327

completeness of 71% at the 10th generation back using the BALSAC database328

(balsac.uqac.ca). Using that genealogy, we estimated to 0.0032 the mean kin-329
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ship between the founders of the 28 families included in this study (the subjects330

who did not have parents in the 28 family structures before genealogy recon-331

struction). We used that value to apply the correction for cryptic relatedness332

to the RV sharing probabilities described by14 in the computation of the ex-333

pected value, variance and covariance of the score statistics Sk(0) under the334

null hypothesis to obtain the asymptotic p-value of the tested variant sets. As a335

sensitivity analysis, we also analyzed the data using the standard approach de-336

scribed in subsection 2.1 in the simplified family structures without inbreeding337

loops from the primary sample used for the simulation study, replacing ho-338

mozygous rare genotypes by heterozygous ones. The bootstrap procedure was339

applied to the variant sets yielding an aymptotic p-value below the significance340

level Bonferroni-corrected for the number of tests performed.341

Our study focused on rare autosomal SNVs and short indels. We defined342

a rare variant as being absent or having a frequency < 0.01 in GnomAD non-343

Finnish European sample and in a sample of 1,756 controls from the founder344

Quebec population included in the CARTaGENE cohort (www.cartagene.qc.ca)34.345

We used as functional annotation the 1,633 CRHs defined by30 in neurons346

derived from induced pluripotent stem cells. We included the 1237 CRHs cov-347

ering at least one retained rare SNV or short indel, and either comprised in a348

single TAD (1042), overlapping two TADs (145) or outside any TAD (50). We349

applied ACAT to combine p-values of the burden test and CRH-specific tests350

in the 679 TADs with at least one rare SNV in a CRH entirely contained in the351

TAD and tested the other CRHs individually, for a total of 874 tests.352

5 Results353

5.1 Simulation of Type I Error Rate354

The results show that, when we considered CRHs as functional annotations355

and accounted for variant dependence in the variance calculation, the Type I356

error rate was well-controlled when combining p-values using ACAT (Figure357

3). However, we observed slight false positive inflations when RetroFun-RVS358

was applied with the independence variant structure or combining p-values us-359

ing Fisher’s combined probability method (Figure S4A-S4B). Moreover, results360

for RetroFun-RVSCRHs with no functional annotations and for each individual361

score show that the approach with covariance terms is either well calibrated362

or slightly conservative (Figure S4D to S4F). In addition, the method shows363

moderate Type I error rate inflation when applied to small to moderate family364

structures, increasing when assuming variant independence (Figure S5). Fur-365

ther investigations have shown that Type I error depends on the structure con-366

sidered (Figure S6). When investigating scenarios in presence of inbreeding,367

we observed that RetroFun-RVSCRHs considering homozygous configurations368

slightly reduces Type I error inflation in presence of a modest number of inbred369

families, compared to results where consanguinity is left untreated (Figure S7A),370

consistent with the improvement in Type I error control achieved by the depen-371
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dence correction. In contrast to our "only-inbred" scenario, where high level of372

false positives are observed even when considering homozygous configurations373

(Figure S7B).374

Turning now to pairs and genes as functional annotations, we observed mod-375

erate inflation of the Type I error rate in extended pedigrees, even when con-376

sidering variant dependence, while for 10Kb sliding windows the Type I error377

rate inflation was more severe (Figure S8). We attempted to discard 10 kb win-378

dows with few variants, and observed that Type I error control was achieved379

on windows encompassing 30 variants or more but few windows met this re-380

quirement (results not shown). Moreover, the bootstrap procedure applied to381

RetroFun-RVSPairs, RetroFun-RVSGenes and , RetroFun-RVSSliding−Window to382

compute p-values empirically provides Type I error rate control, although being383

conservative, particularly for functional annotations encompassing few variants384

(Figure S9). To summarize, the results show that RetroFun-RVS with asymp-385

totic p-values is a valid approach when CRHs or a large region are considered in386

extended pedigrees, despite being inflated to various degrees for others strate-387

gies or certain family structures. Bootstrap p-values can be computed in these388

instances to control the Type I error rate.389

5.2 Power and Scalability Comparison Considering Differ-390

ent Strategies to build Functional Annotations391

In the first set of power evaluations, we assessed power under different scenar-392

ios of causal variant distributions. Firstly, we compared RetroFun-RVS inte-393

grating CRHs with the same method incorporating no functional annotation.394

Consequently, when 100% and 75% of causal variants were within one CRH,395

our method RetroFun-RVSCRHs performed better than the original burden test396

showing gains of 10% and 9%, while at 50% causal the power remains compa-397

rable (Figure 4A). Also, considering only pedigrees of small to moderate size,398

we observed that, even if both RetroFun-RVSCRHs and the original burden test399

without annotation exhibit lower power, the gain for RetroFun-RVSCRHs be-400

comes higher as the percentage of causal variant within the CRH of interest401

increases (Figure S10). Congruent results were obtained when a lower propor-402

tion of causal variants was considered, showing a minimal power gain of 10%403

and a maximal increase of 125% (Figure S11). Therefore, our findings suggest404

that substantial power gain can be achieved when CRHs are predictive for the405

effect of variants on the trait, RetroFun-RVSCRHs showing robustness when sig-406

nal is spread across several CRHs. Then, we compared RetroFun-RVSCRHs to407

other strategies to integrate regions as functional annotations, namely RetroFun-408

RVSpairs, and RetroFun-RVSgenes. Our results show that integrating CRHs as409

functional annotations is a more powerful strategy compared to the other strate-410

gies considered (Figure 4B). The power of RetroFun-RVS considering sliding411

windows as functional annotations comparable to RetroFun-RVSCRHs (Figure412

S12) is likely explained by inflated Type I error rate. Globally our results fol-413

low the same pattern when decreasing the proportion of causal variants (Figure414

S13). In summary, RetroFun-RVSCRHs exhibits power gains when CRHs show415
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high or modest percentages of causal variants. Also, the method is robust and416

powerful under the different scenarios that we considered, that are, inclusion417

of weakly predictive CRHs, small percentages of risk variants, and presence of418

small families.419

5.3 Power Comparison with Others Affected-Only Meth-420

ods421

In the second set of power evaluations, we compared RetroFun-RVSCRHs with422

other affected-only methods, namely RVS15 and RV-NPL17. Thus, to proceed423

to fair comparisons between methods, we adapted RVS and RV-NPL to take424

CRHs into account (See Supplementary Numerical Simulations). With 2% risk425

variants, when we considered 75% of causal variants located within one CRHs,426

we observed that RetroFun-RVS reaches greater power compared to compet-427

ing methods 4C), exhibiting significantly shorter computing times (Table 1).428

At lower proportions of risk variants, the new method remains more powerful429

compared to RV-CHP or RVS, and equivalent to RV-NPL (Figure S14).430

6 Illustration on the Eastern Quebec Schizophre-431

nia and Bipolar Disorder Kindred Study432

No ACAT-combined-over-TAD or single CRH p-value reached the significance433

level α = 0.05/874 = 5.7 × 10−5 corresponding to a Bonferroni correction434

for the number of tests performed, after recomputing with the bootstrap the435

asymptotic p-values below that level. As an illustration, we provide details436

of the CRH with a bootstrap p-value = 0.00016 (asymptotic p = 0.000077)437

to illustrate patterns of sharing that can be captured by RetroFun-RVS. The438

original Burden p-value is 0.18, thus if variants in the CRH are true suscep-439

tibility variants, this result would be aligned with our simulation studies in440

which the unified test was more powerful with predictive functional annota-441

tions. This CRH between positions 43998889 and 44492786 on chromosome 7442

encompasses 11 genes (PGAM2, POLM, AEBP1, DBNL, POLD2, RASA4CP,443

YKT6, CAMK2B, SPDYE1, NUDCD3, POLR2J4 ) and 19 enhancers . Impor-444

tantly, on the eight variants seen in at least one affected subject (in a total of445

eleven families), four were located either in an intergenic or a genic enhancer,446

impacting between one and ten genes simultaneously. These enhancers located447

up to 343 Kb distance apart from their target genes (average 91Kb). This result448

suggests that strategies linking non-coding variants to the nearest gene will fall449

short in identifying the putative causal gene. We illustrated this result in Figure450

S15. Figure S16 illustrates the family with the rare SNV shared by the most451

affected subjects, including one who shares the rare allele with other affected452

family members through unknown relations accounted for by the correction for453

cryptic relatedness based on the kinship among founders.454
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7 Discussion455

Most of rare genetic variations are located within non-coding regions, making456

the underlying biological mechanisms through which they impact disease risk457

difficult to interpret. Over the past few years, efforts were not only made in458

annotating the genome but also integrating these annotations into statistical459

frameworks21,22. Although such methods have already been developed for un-460

related subjects such as case-control samples, to our knowledge, no approach461

to date has been proposed to integrate functional annotations within family-462

based designs. In this paper we have presented RetroFun-RVS, a retrospective463

burden test, integrating functional annotations considering only affected indi-464

viduals within families. We have shown that binary annotations corresponding465

to disjoint regions with regulatory impacts, such as CRHs, provide power gains466

when such regions concentrate causal variants, outperforming other strategies467

or competing methods (Figure 4), while well controlling the Type I error rate468

in samples of families of various size and structure (Figure 3). Since regulatory469

mechanisms are highly tissue- or context-dependent it can be challenging to470

have the right tissue for the right trait, and misspecifying the model is likely471

in practice. Thus, integrating the original burden test, corresponding to aggre-472

gating all variants across a region, in RetroFun-RVS makes it robust, showing473

stable power when functional annotations poorly predict the trait. Finally,474

by computing p-values asymptotically, RetroFun-RVS is computationally faster475

than competing methods, which often require permutation-based approaches or476

exact probability computations to sharply control the Type I error rate.477

The main rationale behind RetroFun-RVS is that risk variants are enriched478

among affected individuals compared to the expected variant count based on479

their relationships. Hence, one critical feature of our method is to aggregate480

genotypes while measuring rare variant sharing among affected family members481

to compute the test statistic. To implement an affected-only analysis, where482

individuals are selected based on their disease status, we have adopted a ret-483

rospective approach, considering genotypes as random, while conditioning on484

phenotypes18. Also, since genotype probabilities do not depend on MAF under485

the assumption that the variant frequency tends to 0, RetroFun-RVS necessi-486

tates only familial information to compute these probabilities, in order to derive487

the score statistic and its variance (See Material and Methods). This aspect is488

central, since the variance terms need to be computed only once for the entire489

set of families, which is computationally efficient even in presence of large pedi-490

grees. Our rare variant assumption however implies that genotypes homozygous491

for the rare allele are impossible in the absence of inbreeding. Data simulated492

for Type I error and power assessments did contain the small number of ho-493

mozygous rare genotypes expected for variants with MAF = 1%. Conversion to494

heterozygous genotypes did not increase Type I error rate compared to removing495

the variants with homozygous rare genotypes, so we only showed results with496

the conversion to heterozygous genotypes. Also, we observed that RetroFun-497

RVS controls the Type I error rate well in the presence of a small to modest498

number of inbred families (Figure S7A). Thus, if in practice cryptic relatedness499
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or inbreeding are expected for only a small proportion of families, we suggest to500

use RetroFun-RVS without considering homozygous configurations. Indeed, de-501

pending on the inbreeding configuration, computational times may be extremely502

long, limiting applications for large families. Moreover, our simulation studies503

have demonstrated that in the presence of a high proportion of inbred families504

or a high level of inbreeding, RetroFun-RVS may suffer from severe inflation505

without allowing homozygous configurations, and some inflation remains even506

when handling homozygosity (Figure S7B). In an intermediate scenario such as507

the application to the Eastern Quebec Kindred Study with widespread cryptic508

relatedness and some inbreeding, considering homozygous configurations may509

provide a gain in power and is recommended.510

In addition to being computationally effective, RetroFun-RVS is more power-511

ful than other affected-only competing methods, under certain scenarios (Figure512

4C, Figure S13). For example, compared to RVS, on which RetroFun-RVS is513

built upon, but which can only analyze between one and five rare variants si-514

multaneously in the pedigree sample used in the simulation study, we reached515

greater power by testing tens of variants together in annotated regions, or even516

hundreds of variants in the absence of annotations. It is noteworthy that the517

simulated variant ORs did not depend on the variant MAF due to limitations518

of the simulation software. The MAF-dependent variant weighting scheme of519

RetroFun-RVS was thus misspecified in the power evaluation. Greater power520

gains of RetroFun-RVS over the competing methods ignoring variant MAF could521

have been achieved had the variant ORs be inversely related to MAF.522

Although the score test was well-calibrated and powerful in our primary523

sample covering a large size range from small families to extended pedigrees, we524

have detected modest Type I error rate inflation with another sample of small to525

moderate family structures (Figure S5). Additional investigations have shown526

that RetroFun-RVS controls the false positive rate accurately under certain fam-527

ily structures, while providing slightly conservative or inflated quantile-quantile528

plots for other structures (Figure S6). Since we did not observe clear associations529

between the number of affected individuals and false positive rates, we argue530

that the inflation observed is more a question of family structure than family531

size. We argue that RetroFun-RVS controls the Type I error rate adequately532

with typical family samples consisting in combinations of small to extended533

pedigrees. On a related note, some analyses have shown that Type I error rate534

or power are highly dependent on the number of variants present in the region535

of interest. Indeed, we have observed that when large numbers of variants are536

considered, RetroFun-RVS might provide conservative results involving some537

power loss (Figure S4C), while a small number of variants tends to offer in-538

flated Type I error rate (Figure S8). Complementary analyses are needed to539

inspect the empirical relationship between size of region and performance. We540

recommend in practice to use the dependence-adjusted model. Bootstrap pro-541

cedures (Figure S9) might be considered to sharply control Type I error rate542

when unsure of Type I error control due to pedigree structures or for small543

numbers of variants at the expense of longer computing time. However, since544

only small p-values are relevant, application of the bootstrap can be limited545
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to the hits obtained from the asymptotic p-value computation, mitigating the546

computational requirements. Interestingly, the non-parametric bootstrap proce-547

dure offers faster running times for generating 10,000 samples when considering548

CRHs as functional annotations, ranging from the single to double, depending549

on the type of annotations considered (Table 1).550

Moreover, RetroFun-RVS in its current form is restricted to binary pheno-551

types and does not allow the integration of individual-level covariates, such as552

sex, age or genetic principal components. Hence, future work is needed to extend553

the framework to cases selected by extreme values of continuous phenotypes and554

to include covariates.555

We argue that the performance of the proposed method is strongly depen-556

dent to the availability of the relevant tissue for the studied disease. Indeed,557

regulatory mechanisms operate in a tissue- or cell-type-specific manner. Our558

framework, by allowing the incorporation of several functional annotations from559

diverse tissues or cell-types without loss of power, is useful to highlight the un-560

derlying biological mechanisms involved in the trait. This aspect is central from561

a fine-mapping perspective, thus RetroFun-RVS will be an important tool to562

pinpoint causal variants located within non-coding regions, which could have563

been missed so far.564

8 Data and Code Availability565

Cis-Regulatory Hubs and Topologically associated domains used in this paper566

are available on https://github.com/lmangnier/CRHs. Variant data were avail-567

able from the 1000 Genome project: https://www.internationalgenome.org/data-568

portal/data-collection/phase-3. The data of the Eastern Quebec SZ and BD569

kindred study are available on request from the corresponding author. We have570

implemented RetroFun-RVS in a R package, available on GitHub571

(https://github.com/lmangnier/RetroFun-RVS). The code for the simulation572

study is at https://github.com/lmangnier/Simulation_RL and the code for the573

processing and analysis of the Eastern Quebec schizophrenia and bipolar disor-574

der kindred study whole genome sequence data is at https://github.com/abureau/RV_in_SZ_BD_kindreds.575
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RetroFun-RVS RV-NPL CHP-NPL RVS
CRHs G-E Pairs Genes Sliding All + Pairs All + Pairs Complete Partial

1.06 (1665.06) 2.02 (3363.39) 1.11 (2979.89) 11.05 (3603.92) 971.4 1823.4 14.26 443.5

Table 1: Running times (in seconds) for analyzing rare variants in the TAD,
in one simulated replicate, using a single 2.10GHz processor. For RetroFun-
RVS, we also provided average running times for computing empirical p-values
based on 10,000 samples (in parenthesis). For RV-NPL empirical p-values were
obtained based on 1 million permutations.

Figure 1: Example of pedigree structures considered in the simulation studies.
Affected subjects are indicated by filled squares or circles
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Figure 2: Overview of functional annotations considered in the simulation stud-
ies. For all 4 panels, big red triangles represent the selected TAD for the sim-
ulation studies, small blue triangles the genes (exons + promoters), and red
circles the enhancers. (A) CRHs as functional annotations. (B) Pairs as func-
tional annotations. CRHs are split with respect to each gene-enhancer pair.
(C) Genes as functional annotations. (D) 10 Kb sliding windows as functional
annotations.
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Figure 3: Quantile-Quantile plot of ACAT-Combined P-values for RetroFun-
RVSCRHs considering variant dependence. We omitted CRHs with a number
of families less than 5 ensuring a proper asymptotic behavior.
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Figure 4: Power evaluation of RetroFun-RVS under different scenarios for
2% risk variants. (A) Power at different proportions of risk variants within
the CRH, between RetroFun-RVSCRHs with no functional annotation (Burden
Original) and RetroFun-RVSCRHs including the four CRHs (ACAT-Combined).
Power was evaluated on 1,000 replicates. (B) Power at different propor-
tions of risk variants within the CRH between RetroFun-RVSCRHs (CRHs),
RetroFun-RVSPairs (G-E Pairs), RetroFun-RVSGenes (Genes), and RetroFun-
RVSSliding−Window (Sliding). Functional annotations with fewer than five fam-
ilies were removed from the analysis for ensuring a proper asymptotic behavior.
Given the Type I error inflation observed for RetroFun-RVSSliding−Window, this
approach was excluded from the power comparison. Power was evaluated on
1,000 replicates. (C) Power at 75% risk variants within one CRH between
RetroFun-RVSCRHs and other affected-only competing methods. Here we in-
cluded RetroFun-RVgenes to mimic CHP-NPL procedure. Power for RetroFun-
RVSCRHs and RetroFun-RVSGenes was evaluated on 1,000 replicates, while for
RV-NPL and RVS we generated 200 replicates.
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