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ABSTRACT  

Objective: Accurately identifying clinical phenotypes from Electronic Health Records (EHRs) 

provides additional insights into patients’ health, especially when such information is unavailable 

in structured data. This study evaluates the application of OpenAI's Generative Pre-trained 

Transformer (GPT)-4 model to identify clinical phenotypes from EHR text in non-small cell lung 

cancer (NSCLC) patients. The goal was to identify disease stages, treatments and progression 

utilizing GPT-4, and compare its performance against GPT-3.5-turbo, Flan-T5-xl, Flan-T5-xxl, 

and two rule-based and machine learning-based methods, namely, scispaCy and medspaCy. 

Materials and Methods: Phenotypes such as initial cancer stage, initial treatment, evidence of 

cancer recurrence, and affected organs during recurrence were identified from 13,646 records for 

63 NSCLC patients from Washington University in St. Louis, Missouri. The performance of the 

GPT-4 model is evaluated against GPT-3.5-turbo, Flan-T5-xxl, Flan-T5-xl, medspaCy and 

scispaCy by comparing precision, recall, and micro- F1 scores. 

Results: GPT-4 achieved higher F1 score, precision, and recall compared to Flan-T5-xl, Flan-

T5-xxl, medspaCy and scispaCy’s models. GPT-3.5-turbo performed similarly to that of GPT-4. 

GPT and Flan-T5 models were not constrained by explicit rule requirements for contextual 

pattern recognition. SpaCy models relied on predefined patterns, leading to their suboptimal 

performance.  

Discussion and Conclusion: GPT-4 improves clinical phenotype identification due to its robust 

pre-training and remarkable pattern recognition capability on the embedded tokens. It 

demonstrates data-driven effectiveness even with limited context in the input. While rule-based 

models remain useful for some tasks, GPT models offer improved contextual understanding of 

the text, and robust clinical phenotype extraction. 
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BACKGROUND AND SIGNIFICANCE  

Introduction  

 Extracting clinical phenotypes from unstructured Electronic Health Records (EHRs) is a 

critical task in natural language processing (NLP). Accurately identifying relevant phenotypes 

from unstructured text utilizing NLP techniques provides additional insights into patients’ health, 

especially when such information is unavailable in structured data. NLP extraction techniques 

facilitate this process by mapping unstructured text to a structured representation, making it 

easier to evaluate patients’ disease progression, treatment modalities, and treatment 

effectiveness. This is particularly evident when analyzing data from non-small cell lung cancer 

patients, where unstructured text is abundant. Accurately identifying disease stage, treatments 

and progression from cancer text will contribute to continued research efforts aimed at 

improving treatment strategies for non-small lung cancer patients, assessing disease progression, 

and improving lung cancer-related outcomes.  

Background  

Clinical phenotype extraction is an ongoing research area where the type of extraction 

tasks and target phenotypes vary across different clinical domains. Rule-based, machine 

learning-based, and deep-learning models have been applied to phenotype extraction.1-7 While 

rule-based models extract phenotypes based on pre-defined patterns, most machine learning and 

deep-learning approaches are trained on sentences or documents labeled with the relevant 

phenotypes and the model subsequently classifies texts into these phenotypes.5,8 SpaCy models, 

including MedspaCy7 and scispaCy9 are two recent and frequently used hybrid frameworks that 

utilize statistical and machine-learning named entity recognition methods in conjunction with 

rule-based NLP to identify clinical phenotypes. There are studies that have utilized medspaCy 
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and scispaCy to identify specific sections within EHR text for NER, extract phenotypes from 

relation extraction documents, and generate text embeddings.10-14 

 Although extracting clinical phenotypes is essential, several gaps remain in the literature. 

There is no effective model for direct extraction, as most of these models require additional 

training and fine-tuning.15,16 Moreover, current methods often lack robustness, leading to 

suboptimal performance.15- 19 In addition, limited availability of labeled, publicly accessible 

cancer EHR text leaves an important domain underexplored for NLP.  

 Pre-trained transformer-based language models have recently been studied for tasks such 

as question answering, text generation, and machine translation.20,21 Despite the success of 

transformer-based language model in such tasks, their application in the context of clinical 

phenotype extraction remain underexplored, opening numerous avenues of research. Recent 

research has demonstrated the use of large language models (LLMs) for entity extraction.22-25 

However, it is essential to investigate these recent transformer-based methods in specific clinical 

domains and compare their performance to previously recognized machine learning and rule-

based models to generate insights into their potential benefits for clinical phenotype extraction. 

 
OBJECTIVES  

 The aim of this study was to investigate the most recent transformer-based language 

models as they remain underexplored for cancer phenotype extraction from real-world EHR text. 

We evaluated the application of OpenAI’s Generative Pre-Trained Transformer (GPT)-4 model25 

for clinical phenotype extraction in an EHR retrospective study focusing on non-small cell lung 

cancer patients as a specific case study. We used GPT-4 to identify individual words or tokens in 

a data sequence as distinct phenotypes. Specifically, we measure the prevalence of specific lung 

cancer phenotypes, including cancer stage, treatment modalities, cancer recurrence instance, and 
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organs affected by cancer recurrence. These phenotypes are important for informing treatment 

decisions and assessing disease progression in non-small cell lung cancer patients.  

 We built the model framework using a clinical text dataset from Washington University 

in St. Louis, Missouri, for a patient population diagnosed with non-small cell lung cancer. To 

evaluate the effectiveness of GPT-4, we compared its results against 2 subject matter experts’ 

manual annotation. We also conducted a comparative analysis with GPT-3.5-turbo26, Flan-T527 

(Flan-T5-xl, Flan-T5-xxl), and spaCy (medspaCy, scispaCy), currently frequently used rule-

based and machine learning approaches in clinical phenotype extraction. While Flan-T5 models 

are LLMs, spacy models are two recent and hybrid frameworks that utilize statistical and 

machine-learning methods in conjunction with rule-based NLP to identify clinical phenotypes. 

We selected these baseline models based on their inherent capacity for rapid extraction, and their 

ability to generate results without requiring training or additional fine-tuning. 

 Our comparison between scispaCy, medspaCy, Flan-T5-xl, Flan-T5-xxl, GPT-3.5-turbo 

and GPT-4 aims to highlight the strengths and weaknesses of each approach for cancer 

phenotype extraction from unstructured clinical text, providing valuable insights into their 

effectiveness and potential use for cases in cancer phenotype extraction from EHR. In evaluating 

these current approaches for phenotype extraction, we also note their limitations.  

MATERIALS AND METHODS 

 To extract a detailed representation of specific lung cancer phenotypes, we used GPT-4, 

available through Microsoft’s Azure OpenAI Service. We compared and evaluated the 

performance of the current models by comparing true positives (recall) and false positives at the 

patient-level.  The following subsections discuss the datasets, annotation methods, and 

methodologies used for extracted information, baseline comparison techniques, and evaluation 
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metrics used to quantify differences in results. Figure 1 illustrates the pipeline we followed for 

extraction. The study was approved with a waiver of consent by the Washington University in St. 

Louis Institutional Review Board. 

Dataset 

Retrospective outpatient and inpatient EHR data were obtained from Washington 

University Physicians / BJC Healthcare system in St. Louis, Missouri, for all patient encounters 

with a non-small cell lung cancer diagnosis between 2018-2023. For this study, we extracted a 

total of 13,646 texts from the EHR of a randomly selected subset of 63 patients.  

Lung cancer phenotypes extraction from the clinical narratives  

Our extraction pipeline currently targets four types of phenotypes: cancer stage, cancer 

treatment (chemotherapy, radiation, surgery), evidence of cancer recurrence, and organs affected 

by cancer recurrence. We selected these phenotypes based on suggestions from subject matter 

experts regarding which phenotypes would be most helpful for a proof-of-concept work. The 

variations extracted for each phenotype are listed in Table 1. We attempted to search for all 

variations of the targeted phenotypes from the corpus.  

 
Table 1: Variations of the relevant phenotypes used in the search for phenotype extraction. All 
strings were case-insensitive. 

Phenotype Variations 
 
 
 

Initial treatment 

Chemotherapy 
Chemo-radiation 

Radiation 
Surgery 

Lobectomy 
Segmentectomy 

Wedge Resection 
 

Initial stage 
Stage 0 
Stage 1 
Stage 2 
Stage 3 
Stage 4 
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Cancer recurrence instances 

 

Relapsed 
Recurred 

Recurrence 
Recurrent 

 
 
 

Organs affected by cancer 
recurrence 

 

Liver 
Kidney 
Bone 
Brain 

Lymph 
Local Lung 

Adrenal glands 
Pleura 

Pericardium 
 
 
Gold-standard data annotation 

  The results from the phenotype extraction pipeline for each model were evaluated against 

gold-standard manual annotation from 2 subject matter experts at the same institution, containing 

expert determination of initial cancer stage, initial treatment, recurrence instances, and organs 

affected by cancer recurrence for each patient in the cohort. A Research Electronic Data Capture 

(REDCap)28 form was designed to collect responses from the annotators to comprehensively 

capture patient phenotypes in a consistent format across annotators. The annotated dataset 

consisted of the 63 unique patients from the BJC EHR, comprising a total of 13,646 records for 

all patients. 

Non-small cell lung cancer phenotype extraction and model comparison 

 We implemented GPT-4 and compared its performance with GPT-3.5-turbo, medspaCy 

and scispaCy. We constrained ourselves to spaCy models because our initial investigation of two 

transformer-based language models, T529 and ClinicalBERT21, did not effectively capture the 

necessary phenotypes in its default setting as they are classifier models with labels assigned for 

each text. We opted against their inclusion in the main manuscript and made comparisons with 

spaCy’s rule-based and machine learning-based methods which demonstrated better results 
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compared to T5 and ClinicalBERT for baseline comparison. Results utilizing a subset of clinical 

text for T5 and ClinicalBERT are included in Supplementary Table 1-2. 

  For all models, the input to the models were the phenotypes and their variations. For 

GPT, we implemented the default zero-shot model where the model input was the text together 

with the prompt to guide the model for phenotype extraction. We opted for the zero-shot 

approach to directly compare its performance with the rule-based and machine learning-based 

approaches. We used the same phenotype variations for extraction across all spaCy model 

implementations. GPT models did not require inclusion of all phenotype variations. GPT was 

able to identify stages 0-4 without explicitly mentioning each stage number in the prompt. 

Similarly, we did not have to explicitly specify each organ type in the prompt to extract organs 

affected by recurrence.  

Our current implementation on GPT and Flan-T5 models focused on capturing both exact 

and relaxed matches of the phenotype variations mentioned in Table 1. Relaxed matches were 

results that might have some deviations in the results, but they fit the phenotype descriptions 

keeping the context and the meaning of results the same. Exact matches were exact strings or 

phrases that were identical between gold standard and LLM.  

  We performed uncertainty analysis by bootstrapping and calculating confidence intervals 

to capture model variability and provide insights into the stability of the model’s performance. 

Bootstrapping resamples model predictions to create a distribution of metrics which can can then 

be used to estimate confidence intervals. GPT models may exhibit variability in their generated 

outputs.  

Development of the GPT pipeline as an information extractor to extract each phenotype 
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 GPT-3.5-turbo and GPT-4 are a transformer-based language models developed by 

OpenAI, trained on large unspecified corpora for multiple NLP tasks. They have been used for 

natural language generation tasks using their chatCompletion and translations endpoint. Our 

setup is an adaptation of the sequence labeling task from the chatCompletion framework for 

phenotype extraction. The sequence labeling setup requires providing context to the model, 

where the model generates responses that include labeled phenotypes from the clinical notes. The 

model outputs are the expected phenotypes we are trying to extract. The core idea involves 

assigning specific labels to individual words or tokens in the clinical notes, capturing the relevant 

information while retaining the original context. Details on model architecture and training 

dataset for GPT are provided in Supplementary Text 1.  

To build the GPT framework, we used Microsoft’s Azure OpenAI Service, which 

provides REST API access to OpenAI’s language models. We deployed the OpenAI API 

endpoint via a HIPAA-compliant subscription within Washington University’s Azure tenant. 

This enabled us to study the performance of GPT on real-world data in a secure and HIPAA-

compliant manner. Additionally, we applied for and received an exemption from content 

filtering, abuse monitoring, and human review of our use of the Azure OpenAI service, which 

removes the ability of Microsoft employees to perform any form of data review. At the time of 

our experiments, GPT-3.5-turbo Version 0301 and GPT-4 Version 0613 were the most recent 

GPT models available.  

 For phenotype extraction, the model identifies treatment procedures, stage information, 

and recurrence information from the clinical notes (Table 1).  Each note is an input in the prompt 

along with an instruction to extract the relevant phenotype categories (e.g., treatment, staging) or 

their sub-categories (e.g., surgery, radiation, chemotherapy, stage numbers) to extract desired 
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information. The primary objective was to compare the performance of GPT-3.5-turbo and GPT-

4 in the context of cancer phenotype extraction. Our goal was not to explore different prompting 

strategies. Therefore, we implemented a zero-shot prompt strategy as our only approach for GPT 

models. This approach involves providing the model with a single prompt without additional 

examples or contextual information. The same set of zero-shot prompts was used as input for 

both GPT-3.5-turbo and GPT-4 to maintain consistency in the evaluation of their performance. 

We attempted 3-5 variations of prompts for each phenotype, and we selected the prompt that had 

more accurate results. The final prompts used in this study are reported in Supplementary 

Figure 1. Due to the probabilistic design of GPT models, the output may include extra words or 

phrases around the actual phenotypes, which were then parsed using regular expressions in the 

post-processing step (Supplementary Table 3). The hyperparameters chosen for the model are 

reported in Supplementary Table 4.  

Development of the spaCy-based NLP pipelines to extract each clinical phenotype using hybrid 

techniques  

 In our study, we implemented spaCy’s rule-based and machine learning-based 

approaches. ScispaCy is a rule-based and Named Entity Recognition (NER)-based Python library 

for biomedical text processing, which has demonstrated robust results on several Named Entity 

Recognition (NER) tasks compared to the neural network models of the time.5 It is trained on 

gene data, PubMed articles, medications datasets, and one of their proprietary datasets. We 

implemented scispaCy version 0.5.2 following the code structure specified in their 

documentation. For each phenotype of interest, we added specific phenotypes and their 

corresponding string variations as rules in the pipeline that were then extracted by the model. We 

incorporated scispaCy’s built-in functions to handle negation and NER. The results were strings 
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extracted from the text and the position of the characters in that text. If a string was not present in 

the text, the output was null. Finally, the output was mapped into their specific phenotype 

categories.  

 MedspaCy is also a rule-based and NER-based Python library that includes UMLS 

(Unified Medical Language System)30 mappings for clinical phenotype extraction. A similar 

approach was applied for medspaCy (version 1.0.1) as scispaCy. The output from medspaCy was 

similar to scispaCy, with strings extracted from the text and the position of the characters from 

that text. The final result from the pipeline were all the strings that medspaCy extracted.  

 For medspaCy and scispaCy, each existing output string from the clinical notes that 

matched with phenotype variations was later assigned to the relevant phenotype categories on a 

patient-level, which were then analyzed as the final extracted phenotypes.  

  Additional details on the model pipeline and training dataset are provided in 

Supplementary Text 2. 

Development of the Flan-T5 transformer-based model pipeline  

Flan-T5 is an open-source language model developed by Google that has been fine-tuned 

on multiple question answering and text generation tasks. We conducted Flan-T5 experiments 

with the same prompts that we implemented for the GPT models to make sure the experiment 

setup was consistent across models. The Flan-T5 models were downloaded from the 

HuggingFace model hub at https://huggingface.co/google/flan-t5-xxl and 

https://huggingface.co/google/flan-t5-xl. Similar to the GPT models, we used regular expressions 

to parse the Flan-T5 output to extract the relevant phenotypes. Additional details on the model 

architecture and training data are provided in Supplementary Text 3. 

 
RESULTS AND EVALUATION 
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Patient Population and Corpus Creation 

 For the 63 patients selected for this study, average length of each text in corpus is 814 

tokens (SD=5022.72). Table 2 describes the patient demographics used in this study. The 

unstructured texts for these patients included letters, progress notes, and telephone encounters. 

Distribution of text types for each phenotype are included in Supplementary Table 5. The texts 

primarily describe patients’ disease trajectory during their visit, ranging from primary cancer 

diagnosis, cancer stage, treatment type, treatment completion, and cancer recurrence (Figure 2).  

Table 2. Patient demographics.  

 Total number 
of patients 

Number of patients 
with cancer recurrence  

Number of patients with 
no cancer recurrence  

 
p-value

Number of samples, n (%) 63 (100%) 21 (33.3%) 42 (66.7%)  
Age, median (IQR)  61 (54-68) 58 (55-64) 65 (52-68) 0.297 
Gender, n (%)  
    Female 
    Male 

 
34(54.0%) 
29(46%) 

 
10 (47.6%) 
11(52.4%) 

 
24(57.1%) 
18(42.9%) 

 
0.655 
0.655 

Race, n (%) 
    White 
     African American 
     Asian 

 
51(81.0%) 
10 (15.9%) 

2(3.2%) 

 
17 (81.0%) 
3(14.3%) 
1(4.8%) 

 
34 (81.0%) 
7 (16.7%) 
1(2.4%) 

 
1.000 
1.000 
1.000 

Smoking Status, n (%)  
     Quit 
     Yes 
     Never 

 
45 (71.4%) 
5 (7.9%) 

13(20.6%) 

 
14 (66.7%) 
3 (14.3%) 
4 (19.0%) 

 
31 (73.8%) 

2 (4.8%) 
9(21.4%) 

 
0.767 
0.410 
1.000 

Smoking Status, Age=Recorded at first encounter. IQR=Interquartile Range 

Data Annotation  

Inter-annotator agreement initially calculated for each phenotype using Cohen’s Kappa 

demonstrated high agreement between the annotators (0.68-1.00; Table 3). Differences between 

annotators were resolved through discussions and manual review of the annotations to establish a 

gold standard for final evaluation.  

The annotators annotated the narratives by identifying each phenotype from the clinical 

text for each patient. All the phenotypes mentioned in Table 1 were identified in the annotator’s 
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annotation, with some phenotypes being identified more frequently than others, depending on the 

nature of the patient’s disease trajectory. Some patients show cancer recurrence in multiple 

organs, and the percentage is inclusive of each affected organ. Table 4 summarizes the 

frequency of annotations corresponding to each phenotype variation.  

Table 3. Inter-annotator agreement of manual annotations 

Phenotype Cohen’s Kappa 

Staging 1.0 

Treatment 1.0 

Recurrence 0.72 

Organs 0.68 

 
Table 4. Frequency of annotations corresponding to each phenotype variation identified for each 
patient within the cohort, based on the available annotations.  
 
 

Phenotype Variations Percentage of 
Patients with 
Annotations  

 
Initial treatment 

Chemotherapy 
Chemo-radiation 

Radiation 
Surgery 

14.29% 
53.97% 
11.11% 
9.52% 

 
 

Initial stage 

Stage 0 
Stage 1 
Stage 2 
Stage 3 
Stage 4 

1.61% 
12.90% 
6.45% 

51.61% 
24.11% 

Recurrence instances Recurrence 
No Recurrence 

33.33% 
66.67% 

 
 
 

Organs affected by 
cancer recurrence 

 

Liver 
Kidney 
Bone 
Brain 

Lymph 
Local Lung 

Adrenal glands 

15.79%  
5.26% 

26.31% 
47.37%  
5.26%  
5.26% 
5.26% 
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Pleura 
Pericardium 

5.26% 
5.26% 

 

 We evaluated the performance of each model at identifying the targeted cancer 

phenotypes (staging, treatment, recurrence, and organs) using precision, recall, and micro-F1 

scores to collectively assess the effectiveness of each model in capturing the phenotypes (Figure 

3; Supplementary Table 6). The inclusion of micro-F1 scores in our evaluation process reflects 

our emphasis on achieving a balanced assessment, considering both precision (the proportion of 

correctly identified instances among all instances identified by the model) and recall (the 

proportion of correctly identified instances among all actual instances) to accurately identify 

relevant information while minimizing false positives and false negatives, especially in tasks like 

phenotype extraction from clinical text. 

Comparison of Models 

 The GPT-4 model demonstrated higher F1 scores with high precision and recall, 

indicating its ability to correctly identify all instances of recurrence, staging, treatment, and 

organs in the clinical text better than Flan-T5-xl, Flan-T5-xxl, scispaCy and medspaCy. GPT-4 

achieved a higher F1 score of 0.96 in identifying recurrence instances compared to staging 

(0.92), treatment (0.92), and recurrence organs (0.68).  GPT-3.5-turbo and GPT-4 had 

comparable performance across most phenotypes with the recurrence phenotype showing 

identical F1 score of 0.96. Although scispaCy had lower F1 scores than Flan-T5-xl, Flan-T5-xxl, 

GPT-3.5-turbo and GPT-4, it outperformed medspaCy in most phenotype extraction tasks.  

MedspaCy had the lowest F1 score for all phenotypes, suggesting it is less effective at 

information extraction than other models. This is potentially due to its less advanced NER 

techniques than scispaCy and GPT models. Evidently, all models were less effective at 
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accurately identifying organ information, likely due to the lack of specific training data for this 

task.  The model-generated output of GPT-3.5-turbo and GPT-4 varied across each run but 

maintained the underlying meaning of the result across all runs (Supplementary Table 3).  

Qualitative Analysis of the Results  

 We performed a qualitative analysis of the results made by each model in phenotype 

extraction to better understand their strengths and weaknesses.  

 GPT-4 was better able to correctly identify cancer phenotypes while minimizing 

misclassifications, leading to a higher F1 score compared to GPT-3.5-turbo, medspaCy and 

scispaCy. When comparing GPT-3.5-turbo and GPT-4, we found that both models captured 

contextual information accurately. However, the generated text from GPT-4 is more relevant to 

the prompt than the text generated from GPT-3.5-turbo (Supplementary Table 7). Upon 

examining the errors, we observed that GPT models sometimes mislabeled phenotypes when the 

context was ambiguous, especially when the same sentence discussed multiple phenotypes.    

MedspaCy and scispaCy could not identify contextual phenotypes or phenotypes 

mentioned in a negated context, synonyms not part of the rules, and spelling errors. GPT-3.5-

turbo and GPT-4 were far better in these cases. For example, GPT-3.5-turbo and GPT-4 were 

able to identify “T1c N0 M0” as an indication of a cancer stage, whereas the other models could 

not identify stage without significant further pipeline engineering. (Supplementary Table 8,9). 

This could be due to spaCy’s inability to learn contextual information.  

 Across all models, the more specifically we defined a phenotype in the prompt or by 

rules, the better were our chances of identifying it correctly.  

DISCUSSION 
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 Our study highlights GPT-4’s remarkable performance in identifying phenotypes with 

minimal preprocessing and postprocessing steps compared to rule-based or traditional machine-

learning-based algorithms. This aligns well with the established notion that LLMs are data-

driven and highly effective even with limited contextual information, unlike rule-based or 

traditional machine learning algorithms that rely solely on predefined patterns or rules known to 

researchers or clinicians.31  

 GPT-3.5-turbo performs similarly to GPT-4 for some phenotypes. The choice of GPT-

3.5-turbo versus GPT-4 would depend on model run-time and cost of the runs. While GPT-4 is 

more scalable as its results are more relevant to prompts, GPT-3.5-turbo may be more cost-

effective for larger tasks, even when accounting for the additional engineering time necessary to 

process its output (Supplementary Table 10). Overall, GPT models, with their robust 

unsupervised pre-training and remarkable pattern recognition capability on tokens, outperform 

other models as they extract relevant patterns and relationships without being constrained by the 

need for prior knowledge of explicit patterns, rules, or meaning. Based on the context provided 

in the prompt, GPT can capture variations in the representation of the clinical phenotypes, 

making it well suited for information extraction tasks that could extend beyond this study’s focus 

on its application in oncology.  

 Our analyses also revealed that GPT demonstrated significantly better performance 

improvement than the other models, even in its default zero-shot setup without fine-tuning on 

clinical text. Fine-tuning with clinical text requires additional labeled clinical text, which is not 

readily available and would have been time-consuming to procure.  

 For the GPT model outputs, we also obtained varying texts from the API across multiple 

iterations of the same query despite using the same prompt, suggesting that GPT model might 
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not provide identical results across multiple iterations of the same query. This could be due to its 

probabilistic design. After analyzing the output texts, we found that all the extracted phenotypes 

were correctly identified within the text, with only differences in the words and language used.  

 The comparative analysis also revealed that scispaCy performed better than medspaCy in 

our study, possibly because of the additional NER components and diverse data sources that it is 

trained on, in addition to handling the specific type of data that medspaCy is trained on. 

However, both approaches exhibited limitations in handling complex patterns and context-

specific phenotypes. Results from medspaCy and scispaCy also indicate that rule-based models 

do not handle speculation, and context ambiguity adequately, particularly within complex 

sentence structures (Supplementary Table 8-9).  

 Furthermore, while medspaCy and scispaCy offer deterministic results based on 

predefined rules, they fall short of capturing the contextual information required for effective 

information extraction in clinical text. Because of that, researchers must also have 

comprehensive knowledge of the phenotypes and variations of the phenotypes for extraction.  

Finally, it is worth considering the interpretability aspect of these models. While 

medspaCy and scispaCy’s rule-based nature allows for more straightforward interpretability, 

there might be some challenges in interpreting the results of the GPT model due to its unknown 

internal parameters.  

LIMITATIONS 

 Despite these promising results, we acknowledge some limitations in this study. We 

evaluated our results using F1 metrics, which have proven effective in comparing the 

performance of LLMs to that of rule-based and machine learning-based models for information 

extraction. However, it is important to reconsider the utility of traditional evaluation metrics 
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when comparing LLM-generated text with human-generated reference text. This is crucial due to 

the potential discrepancies in reference texts and variations in the representation of results across 

different LLMs, suggesting that traditional information retrieval metrics may not be well suited 

for all LLM tasks. Addressing these limitations will be a key focus in our future research.    

Additionally, we note that our random selection of a subset of patients may introduce bias 

and affect model performance. While the dataset was extracted from a 5-year cohort, the 

evaluation was based on a random subset of patients. Biases in the EHR data and data used for 

training the models could also lead to limitations in handling diverse clinical text or phenotypes 

and affecting model performance. Including a larger dataset in future research would address this 

limitation. 

Finally, we acknowledge that our study did not conduct multiple runs of the GPT models 

due to cost limitations. While some recent work in the non-clinical domain has demonstrated 

LLMs’ highly consistent results over multiple runs, further research is necessary to determine the 

optimal number of runs required for reliable clinical phenotype extraction, particularly in the 

context of lung cancer32. Future work will focus on random subsampling on a subset of the data 

and permutation testing on the subsample to assess model variability.  

CONCLUSION  

In conclusion, the study highlights the potential of GPT-4 for accurate phenotype 

recognition in clinical text. GPT-3.5-turbo model demonstrates performance similar to that of 

GPT-4. Both GPT models seem to be effective not only for text generation tasks but also 

surprisingly for information extraction tasks. While medspaCy and scispaCy offer deterministic 

results and have utility for some tasks, they exhibit limitations in handling complex patterns and 

context-specific phenotypes. Therefore, leveraging data-driven and contextually aware advanced 
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language models like GPT-3.5-turbo and GPT-4 and addressing their current limitations opens 

up new possibilities for robust clinical phenotype extraction, ultimately leading to additional 

insights into patients’ health and improved care.  
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Figure Legends: 

Figure 1. Step-by-step approach to extracting phenotypes.   

Clinical narratives from the EHR were extracted as part of the data collection process. A subset 

of the narratives was randomly selected for manual annotation. ScispaCy, medspaCy, GPT-3.5-

turbo and GPT-4 models were implemented for phenotype extraction. Extracted phenotypes were 

compared with the annotations.  

Figure 2. Sample text from unstructured narratives of non-small cell lung cancer patients.  

The text highlighted in red are the targeted phenotypes for extraction. To protect patient privacy, 

dates in the figure have been replaced with “XX/XX/XXXX” to protect patient privacy.   

Figure 3. Phenotype extraction performance results for the targeted phenotypes. Comparison of 

F1-score, precision and recall for scispaCy, medspaCy, Flan-T5-xl, Flan-T5-xxl, GPT-3.5-turbo, 

GPT-4 models. The figures illustrate the effectiveness of each model in accurately identifying 

stage (A), treatment (B), recurrence instances (C) and recurrent organs (D) from clinical text 

data.  

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 6, 2024. ; https://doi.org/10.1101/2023.09.27.559788doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.27.559788


was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 6, 2024. ; https://doi.org/10.1101/2023.09.27.559788doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.27.559788


was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 6, 2024. ; https://doi.org/10.1101/2023.09.27.559788doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.27.559788


was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 6, 2024. ; https://doi.org/10.1101/2023.09.27.559788doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.27.559788

