
 Fast and accurate imputation of genotypes
 from noisy low-coverage sequencing data
 in bi-parental populations
 Cécile Triay 1,§ & Alice Boizet 2,§ , Christopher Fragoso 3,4 , Anestis Gkanogiannis 5 ,
 Jean-François Rami 2 , Mathias Lorieux 1,5,*

 1 DIADE, University of Montpellier, IRD, Cirad, Montpellier, France
 2 AGAP, University of Montpellier, Cirad, INRAE, Montpellier SupAgro, Montpellier, France
 3 Verinomics, Inc., 5 Science Park, New Haven, CT 06511, USA
 4 Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511
 5 Agrobiotechnology Unit, Alliance Bioversity-CIAT, International Center for Tropical Agriculture, Cali, Colombia.
 * Corresponding author
 § Equivalent contribution

 Abstract
 Motivation: Genotyping of bi-parental populations can be performed with low-coverage next-generation
 sequencing (LC-NGS). This allows the creation of highly saturated genetic maps at reasonable cost, precisely
 localized recombination breakpoints (i.e., the crossovers), and minimized mapping intervals for
 quantitative-trait locus analysis.

 The main issues with these low-coverage genotyping methods are (1) poor performance at heterozygous loci,
 (2) high percentage of missing data, (3) local errors due to erroneous mapping of sequencing reads and
 reference genome mistakes, and (4) global, technical errors inherent to NGS itself.

 Recent methods like Tassel-FSFHap or LB-Impute are excellent at addressing issues 1 and 2, but nonetheless
 perform poorly when issues 3 and 4 are persistent in a dataset (i.e., “noisy” data). Here, we present a new
 algorithm for imputation of LC-NGS data that eliminates the need of complex pre-�iltering of noisy data,
 accurately types heterozygous chromosomal regions, precisely estimates crossover positions, corrects
 erroneous data, and imputes missing data. The imputation of genotypes and recombination breakpoints is
 based on maximum-likelihood estimation. We compare its performance with Tassel-FSFHap and LB-Impute
 using simulated data and two real datasets. Furthermore, the algorithm is much faster than Hidden Markov
 Model methods.

 Availability: NOISYmputer and its source code are available as a multiplatform (Linux, macOS, Windows) Java
 executable at the URL
 https://gitlab.cirad.fr/noisymputer/noisymputerstandalone/-/tree/1.0.0-RELEASE?ref_type=tags .

 Introduction
 In genetic studies, bi-parental genetic populations can be created from inbred parental lines using various
 crossing systems, e.g., F 2 intercross issued from F 1 self-pollination (F 2) and recombinant inbred lines by single
 seed descent (SSD). These populations are used to create recombination maps and, if phenotypes are
 available, to �ind gene or quantitative-trait locus (QTL) genomic positions.

 To do so, each individual of the population under study has to be characterized for its genomic content – or
 “genotyped” at many loci. This can be done using different molecular biology techniques, including various
 types of molecular markers. The gold standard for genetic variant discovery is obtained by different
 next-generation sequencing (NGS) techniques like restriction site-associated DNA sequencing (RADseq)
 (Davey and Blaxter 2010) , genotyping by sequencing (GBS) (Elshire et al. 2011) , and whole-genome
 sequencing (WGS) (Huang et al. 2009) . These techniques provide very large numbers of markers and
 therefore facilitate the construction of highly saturated genetic maps. This provides accurate locations of
 recombination breakpoints in each individual, which is important for a number of applications, e.g., studies of

 1

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://gitlab.cirad.fr/noisymputer/noisymputerstandalone/-/tree/1.0.0-RELEASE?ref_type=tags
https://www.zotero.org/google-docs/?r8Y0WF
https://www.zotero.org/google-docs/?vS4M0Q
https://www.zotero.org/google-docs/?65CkKf
https://doi.org/10.1101/2024.03.13.584787

 local recombination rate, genetic maps comparison, or QTL detection. Though NGS is less and less expensive to
 implement, sequencing a large number of samples can still be costly, and is commonly applied via reduced
 representation (RRS-NGS) or low-coverage (LC-NGS) strategies to reduce genotyping costs.

 Reducing sequencing costs through minimized per-sample coverage has an important experimental downside:
 LC-NGS mechanically introduces a series of issues, the main ones being:

 - Issue 1: Low power to detect heterozygosity under low coverage : For example, if only one sequencing
 read is generated at a locus, only one of the two alleles is revealed. As each additional read has a 0.5
 probability of detecting the second allele, even 3 reads have only 0.75 probability of detecting a
 heterozygous call. Spread over thousands of sites, extensive inaccuracy in heterozygous regions becomes
 highly problematic.

 - Issue 2: Extensive genotype missingness : The sparse distribution of reads at low coverage (3X coverage,
 for example, only implies an average of 3 reads per site) results in a complete lack of reads at some
 variant loci. Even in plants, which contain more genetic variation than humans, there are 6-22 SNPs per
 1 Kb, resulting in abundant opportunity for non-reference variant missingness under low coverage (Xu et
 al. 2017) .

 - Issue 3: Errors due to erroneous mapping of sequencing reads : NGS technologies are based on short
 reads (e.g., 150 base pair, paired-end Illumina technology). Due to the combinatorial limitation of the
 sequence contained in short reads, multiple mapping locations may be identi�ied, especially in plant
 genomes which exhibit much more repetitive content than human genomes. Additionally, in plants, such
 as rice, structural variation speci�ic to subpopulations may be completely missing in single reference
 genomes. These assembly errors, omissions, and challenges posed by repetitious regions are sources of
 erroneous variants. Moreover, outright assembly errors may cause consistent, yet locally encountered
 genotyping errors.

 - Issue 4: Technical errors inherent to NGS methodology : Sequencing errors may be globally introduced at
 a variety of stages in the NGS pipeline, from errors incurred in PCR-dependent library construction to
 NGS sequencing itself. The initial GBS protocol is known to generate libraries contaminated by chimeric
 inserts (Heffel�inger et al. 2014) . Although rare, these errors may become problematic at low coverage, as
 additional reads refuting an erroneous call may not be available at a given locus.

 Common imputation algorithms implemented in computer programs like Beagle (Browning and Browning
 2007; Browning et al. 2021) or Impute2 (Howie et al. 2012) , although very accurate in diversity panels, are
 not well adapted to the bi-parental context since they rely on large databases to infer haplotypes. Ef�icient
 methods have been recently developed to impute genotypic data derived from LC-NGS assays in bi-parental
 populations. For instance, Tassel-FSFHap (thereafter simply FSFHap) (Swarts et al. 2014) and LB-Impute
 (Fragoso et al. 2016) can all address issues 1 and 2 accurately. Yet, these methods can produce inaccurate
 results when the errors mentioned in issues 3 and 4 – thereafter called “noisy data” – are too frequent. Thus,
 these methods might require additional bioinformatic steps to �ilter out low-quality markers before and after
 imputation. Even then, troublesome markers might not be detected easily and could alter dramatically the
 quality of the imputation and the �inal genetic map.

 In this work, we present NOISYmputer, a maximum likelihood estimation algorithm for imputation of LC-NGS
 data that eliminates the need of complex pre-�iltering of noisy data, accurately �inds heterozygous
 chromosomal regions, corrects erroneous data, imputes missing data and precisely locates the recombination
 breakpoints (i.e., the meiotic crossovers). We test its accuracy using simulated data and we compare its
 performance with FSFHap, LB-Impute using three datasets: (1) a rice F 2 population sequenced by WGS, (2) a
 maize F 2 population sequenced by GBS and (3) 84 simulated F 2 populations with controlled depth, error rate
 and marker density. The algorithm is implemented in NOISYmputer, a multiplatform Java command line
 program (see “Availability” section).

 2

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://www.zotero.org/google-docs/?UgPcB9
https://www.zotero.org/google-docs/?UgPcB9
https://www.zotero.org/google-docs/?8inqNT
https://www.zotero.org/google-docs/?X9HhGX
https://www.zotero.org/google-docs/?X9HhGX
https://www.zotero.org/google-docs/?eAPRhS
https://www.zotero.org/google-docs/?6fWSg8
https://www.zotero.org/google-docs/?temzqZ
https://doi.org/10.1101/2024.03.13.584787

 Design and implementation
 Imputation method
 In this section we describe the main imputation algorithm, which is applied separately to each chromosome.
 The imputation can be preceded or followed by different �iltering options in NOISYmputer (details in next
 section) that can be applied to reduce or eliminate the noise in the data (Figure 1).

 By imputation, we mean here guessing, con�irming or correcting the genotype at a SNP site in a sample.
 LC-NGS generates poor information in heterozygous regions (see explanation on the confounding effect in
 SNPs with one or few reads – issue 1 of the Introduction section). Conversely, homozygous regions are much
 less prone to these confounding effects. Yet, missing data (issue 2), noisiness (issue 3) and sequencing errors
 (issue 4) can lower the power to identify homozygous diplotypes (i.e., the combination of two gametic
 haplotypes). The general idea of the algorithm is, like in Hidden Markov Model (HMM), to use information of
 various SNPs around the imputed SNP, leaving unimputed the regions surrounding the recombination
 breakpoints laying between the two diplotypes. The locations of the recombination breakpoints are then
 inferred. Furthermore, instead of modeling error rates, we take an iterative approach to estimate them (Figure
 1).

 Imputation - Step 1: Genotype calling
 Let’s consider a chromosome of an F 2 individual with one single recombination breakpoint that separates a
 homozygous diplotype (AA; BB) from a heterozygous diplotype (AB, or BA, equivalent thereafter). Let’s also
 consider a set of SNPs evenly dispersed on the physical genome, say, every 500 base pairs (bp). In the AA
 diplotype, and far from the breakpoint location, all SNPs should be genotyped as AA, except from the different
 kinds of errors cited above. To determine the genotype of a particular SNP, and due to these errors, one must
 consider not only its score in the VCF, but also its immediate “environment”, that is, the SNPs that are located
 just before and just after it along the chromosome. Those surrounding SNPs help identify a potential error in
 the SNP scoring. Different approaches can be taken to look at the SNP environment. In segregating
 populations, the vast majority of the genome is exempt from crossing overs. Indeed, when implementing a
 sliding window method like described hereby, the expected proportion of the genome with no recombination
 in the window is , where is the number of SNPs in the sliding window, is 𝑃

 𝑛𝑜𝑋𝑂
 ≈1 − 1

 100 𝑁 () 𝐷 (8 𝑚 − 2) 𝑚 𝑁
 the total number of SNPs, and is the expected genome size in centimorgans (cM). Hence, in almost the entire 𝐷
 genome except the breakpoint regions there are only two or three possible diplotypes, depending on the
 population type. Thus, instead of calculating all the likelihoods of possible paths (like in Hidden Markov Model
 methods), the problem is reduced to calculate the likelihoods of the data for the three possible diplotypes.
 Furthermore, there is no need to include transition (i.e. , recombination) probabilities. The main advantage of
 this approach is its computation time, which increases linearly according to the diplotype size, while the time
 complexity is O (T x S 2) for the Viterbi algorithm applied to resolve fully connected Hidden Markov Model
 processes, with T being the length of the sequence of observations and S being the number of hidden states.
 We now describe the algorithm with the example of an F 2 population.

 In practice, one de�ines starting values for error rates for reads A () and B (), being respectively the 𝑒
 𝐴

 𝑒
 𝐵

 probability of observing a B read () whereas the genotype is truly AA and observing an A read () whereas 𝑂
 𝐵

 𝑂
 𝐴

 the genotype is truly a BB

 𝑒
 𝐴

 = 𝑝 𝑂
 𝐵

 | 𝐴𝐴 () 𝑒
 𝐵

= 𝑝 𝑂
 𝐴

 | 𝐵𝐵 ()
 We allow different error rates for A and B reads since the A and B parents are generally not equally
 (genetically) distant from the reference genome. For example, once could set and if 𝑒

 𝐴
= 0 . 005 𝑒

 𝐵
= 0 . 003

 Parent B is closer genetically to the Reference genome than Parent A is. Those values will be automatically
 re�ined after one or several rounds of imputation.

 Thus, at homozygous sites, the probability of observing an A read if the true genotype is AA is

 𝑝 𝑂
 𝐴

 | 𝐴𝐴 () = 1 − 𝑒
 𝐴

 3

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 101

 102

 103

 104

 105

 106

 107

 108

 109

 110

 111

 112

 113

 114

 115

 116

 117

 118

 119

 120

 121

 122

 123

 124

 125

 126

 127

 128

 129

 130

 131

 132

 133

 134

 135

 136

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

 Figure 1. NOISYmputer’s workflow. It is composed of three major phases: pre-imputation, imputation and post-imputation. Some
 steps are optional (dashed borders) while others are required for the algorithm to complete.

 4

 137

 138

 139

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

 and the probability of observing a B read if the true genotype is BB is

 𝑝 𝑂
 𝐵

 | 𝐵𝐵 () = 1 − 𝑒
 𝐵

 At heterozygous (AB) sites, and assuming that the A and B reads have the same chance to occur, the
 probabilities of observing A and B reads are

 𝑝 𝑂
 𝐴

 | 𝐴𝐵 () = 1
 2 𝑝 (𝑂

 𝐴
 | 𝐴𝐴) + 1

 2 𝑝 (𝑂
 𝐴

 | 𝐵𝐵) = 1
 2 (1 − 𝑒

 𝐴
) + 1

 2 𝑒
 𝐵

 𝑝 𝑂
 𝐵

 | 𝐴𝐵 () = 1
 2 𝑝 (𝑂

 𝐵
 | 𝐵𝐵) + 1

 2 𝑝 (𝑂
 𝐵

 | 𝐴𝐴) = 1
 2 (1 − 𝑒

 𝐵
) + 1

 2 𝑒
 𝐴

 Let’s consider a chromosome with SNPs. For each site of the chromosome, we de�ine a symmetrical 𝑛 𝑆𝑁 𝑃
 𝑗

 window () containing the at its center, SNPs before it in the sequence and SNPs after it (with read 𝑊
 𝑗

 𝑆𝑁 𝑃
 𝑗

 𝑚 𝑚
 count > 0). SNPs that are located in chromosome ends are omitted, since it is not possible to de�ine
 symmetrical windows around them. This case is discussed later on.

 For each site of the window three situations are possible: i) the genotype of the is AA 𝑆𝑁 𝑃
 𝑖

 𝑊
 𝑗

 𝐺
 𝑖

 𝑆𝑁 𝑃
 𝑖

 (homozygous for parent A allele), ii) the genotype is BB (homozygous for parent B allele) or iii) the 𝐺
 𝑖

 genotype is AB (heterozygous). 𝐺
 𝑖

 By using the binomial distribution with sample size equal to and the number of successes equal to (and 𝑛
 𝑖

 𝑛𝐴
 𝑖

 thus of fails equal to), we estimate the likelihood of observing a given combination of reads (and 𝑛𝐵
 𝑖

 𝑛 𝐴
 𝑖

 𝑛 𝐵
 𝑖

 as) at , knowing already the probability of observing A reads under the three possible 𝑛
 𝑖

= 𝑛 𝐴
 𝑖

+ 𝑛 𝐵
 𝑖

 𝑆𝑁 𝑃
 𝑖

 genotypes:

 𝑃 [𝑛 𝐴
 𝑖
 | 𝑝 (𝑂

 𝐴
 | 𝐴𝐴)] =

 𝑛
 𝑖

 𝑛 𝐴
 𝑖 () 𝑝 (𝑂

 𝐴
 | 𝐴𝐴) 𝑛 𝐴

 𝑖 (1 − 𝑝 (𝑂
 𝐴

 | 𝐴𝐴) 𝑛
 𝑖
− 𝑛 𝐴

 𝑖 =
 𝑛

 𝑖
 𝑛 𝐴

 𝑖 () 𝑝 (𝑂
 𝐴

 | 𝐴𝐴) 𝑛 𝐴
 𝑖 𝑝 (𝑂

 𝐵
 | 𝐴𝐴) 𝑛 𝐵

 𝑖

 𝑃 [𝑛 𝐴
 𝑖
 | 𝑝 (𝑂

 𝐴
 | 𝐵𝐵)] =

 𝑛
 𝑖

 𝑛 𝐴
 𝑖 () 𝑝 (𝑂

 𝐴
 | 𝐵𝐵) 𝑛 𝐴

 𝑖 (1 − 𝑝 (𝑂
 𝐴

 | 𝐵𝐵) 𝑛
 𝑖
− 𝑛 𝐴

 𝑖 =
 𝑛

 𝑖
 𝑛 𝐴

 𝑖 () 𝑝 (𝑂
 𝐴

 | 𝐵𝐵) 𝑛 𝐴
 𝑖 𝑝 (𝑂

 𝐵
 | 𝐵𝐵) 𝑛 𝐵

 𝑖

 𝑃 [𝑛 𝐴
 𝑖
 | 𝑝 (𝑂

 𝐴
 | 𝐴𝐵)] =

 𝑛
 𝑖

 𝑛 𝐴
 𝑖 () 𝑝 (𝑂

 𝐴
 | 𝐴𝐵) 𝑛 𝐴

 𝑖 (1 − 𝑝 (𝑂
 𝐴

 | 𝐴𝐵) 𝑛
 𝑖
− 𝑛 𝐴

 𝑖 =
 𝑛

 𝑖
 𝑛 𝐴

 𝑖 () 𝑝 (𝑂
 𝐴

 | 𝐴𝐵) 𝑛 𝐴
 𝑖 𝑝 (𝑂

 𝐵
 | 𝐴𝐵) 𝑛 𝐵

 𝑖

 Since the binomial factor is the same for the three possible genotypes, it can be omitted in the calculations.
 Then, individual relative probabilities that the genotype of the is AA, BB or AB are de�ined as: 𝐺

 𝑖
 𝑆𝑁 𝑃

 𝑖

 𝑝 𝐺
 𝑖

= 𝑋 () = 𝑃 [𝑛 𝐴
 𝑖
 | 𝑝 (𝑂

 𝐴
 | 𝑋)] /

 𝑋
∑ 𝑃 [𝑛 𝐴

 𝑖
 | 𝑝 (𝑂

 𝐴
 | 𝑋)], 𝑤𝑖𝑡ℎ 𝑋 = 𝐴𝐴 , 𝐵𝐵 , 𝐴𝐵

 The probabilities for the window’s diplotype around the to be AA, BB or AB are obtained by multiplying 𝑆𝑁 𝑃
 𝑗

 the individual probabilities of all the SNPs in the window. As multiplication of probabilities can result in very
 small numbers, we add their logarithms instead to avoid reaching the precision limit of the computer:

ρ
 𝑋

=
 𝑖 = 𝑆𝑁 𝑃

 𝑗
− 𝑚

 𝑆𝑁 𝑃
 𝑗
 + 𝑚

∑ 𝑙𝑜𝑔 𝑝 𝐺
 𝑖

= 𝑋 ()[], 𝑤𝑖𝑡ℎ 𝑋 = 𝐴𝐴 , 𝐵𝐵 , 𝐴𝐵

 Finally, the relative probabilities for the window’s around the to be AA, BB or AB are de�ined as: 𝑊
 𝑗

 𝑆𝑁 𝑃
 𝑗

 𝑃 𝑊
 𝑗

= 𝐴𝐴 () = 𝑒𝑥𝑝 ρ
 𝐴𝐴 () / 𝑒𝑥𝑝 ρ

 𝐴𝐴 () + 𝑒𝑥𝑝 ρ
 𝐵𝐵 () + 𝑒𝑥𝑝 ρ

 𝐴𝐵 ()()
 𝑃 𝑊

 𝑗
= 𝐵𝐵 () = 𝑒𝑥𝑝 ρ

 𝐵𝐵 () / 𝑒𝑥𝑝 ρ
 𝐴𝐴 () + 𝑒𝑥𝑝 ρ

 𝐵𝐵 () + 𝑒𝑥𝑝 ρ
 𝐴𝐵 ()()

 5

 140

 141

 142

 143

 144

 145

 146

 147

 148

 149

 150

 151

 152

 153

 154

 155

 156

 157

 158

 159

 160

 161

 162

 163

 164

 165

 166

 167

 168

 169

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

 𝑃 𝑊
 𝑗

= 𝐴𝐵 () = 𝑒𝑥𝑝 ρ
 𝐴𝐵 () / 𝑒𝑥𝑝 ρ

 𝐴𝐴 () + 𝑒𝑥𝑝 ρ
 𝐵𝐵 () + 𝑒𝑥𝑝 ρ

 𝐴𝐵 ()()
 A genotype is assigned to the SNP if the relative probability of its surrounding window is superior to a given 𝑗
 threshold . To guarantee that no SNP is falsely genotyped, the threshold is set to a very stringent value α α
 (0.999 by default). SNPs with for all genotypes are assigned a missing data value. 𝑃 𝑊

 𝑗 () < α

 We repeat the process for each SNP of the chromosome. For chromosome ends, the procedure is similar 𝑗
 except that the half-window on the end side is smaller due to the lack of sites available to the left or right of

 . 𝑆𝑁 𝑃
 𝑗

 This leaves two types of chromosomal regions unimputed and �illed with missing data: 1) regions between
 imputed chromosome segments with identical diplotypes and for which none of the criteria are matched to
 assign a genotype, and 2) regions near recombination breakpoints.

 Imputation - Step 2: Gap �illing and error rate estimation
 Step 2 consists in (i) �illing the unimputed regions with the surrounding genotype, with the condition that they
 are surrounded (left and right) by identical imputed genotypes, then (ii) re-estimating error rates.

 The �illing procedure assumes that a double recombination event is very unlikely. The maximum region size
 that is allowed for data �illing can be calculated using the local recombination rate, which is calculated from
 the data of the entire F 2 population, imputed from Step 1. So, regions larger than the maximum size are left
 unimputed. It is desirable to use an interference model to estimate the distances (in cM), for instance the one
 implemented in the Kosambi mapping function (Kosambi 1944) . The method employed in NOISYmputer to
 estimate recombination fractions in F 2 populations is the standard Expectation-Maximization algorithm
 (Dempster et al. 1977) .

 Let’s take the example of two SNPs A and C that de�ine the bounds of such a region. They are separated by the
 genetic distance (cM). The maximum probability of a double crossover can be calculated as follows. We �irst 𝑑
 search for the SNP B that is the closest to the middle point between A and C (in cM). Then, we calculate the
 recombination fractions and from and using the inverse of the Kosambi mapping function 𝑟

 𝐴𝐵
 𝑟

 𝐵𝐶
 𝑑

 𝐴𝐵
 𝑑

 𝐵𝐶

 𝑟 = 1
 2 𝑡𝑎𝑛ℎ 2 𝑑 /100 ()

 Note that when cM. In the case of highly saturated maps, this formula can be used in most 𝑟 ≈ 𝑑
 100 𝑑 < 15

 intervals.

 Then the maximum probability of the missing data to be different to the surrounding genotype is

 if SNPs A and C are homozygous 𝑟
 𝐴𝐵𝐶

= 𝑟
 𝐴𝐵

 𝑟
 𝐵𝐶

+ 𝑟
 𝐴𝐵

 2 𝑟
 𝐵𝐶

 2 ≈ 𝑟
 𝐴𝐵

 𝑟
 𝐵𝐶

 if SNPs A and C are heterozygous 𝑟
 𝐴𝐵𝐶

= 2 𝑟
 𝐴𝐵

 𝑟
 𝐵𝐶

+ 𝑟
 𝐴𝐵

 2 𝑟
 𝐵𝐶

 2 ≈ 2 𝑟
 𝐴𝐵

 𝑟
 𝐵𝐶

 The regions for which are �illed with the surrounding genotype; is set to 0.001 by default. 𝑟
 𝐴𝐵𝐶

 ≤α α

 This step leaves the breakpoint regions unimputed.

 We can then estimate new values for and by comparing the observed data with the newly imputed 𝑒
 𝐴

 𝑒
 𝐵

 regions. This is done by simply counting the proportion of A reads in BB-imputed segments, and the
 proportion of B reads in AA-imputed segments.

 Imputation - Step 3: Locating recombination breakpoints
 Step 3 consists in imputing the SNP genotypes in the regions near the recombination breakpoints – i.e.,
 between diplotypes of different states. The general idea is to determine an interval of high probability of
 presence (loose support interval) of the breakpoint, then to calculate the likelihood of the data under the
 hypothesis of a recombined segment.

 6

 170

 171

 172

 173

 174

 175

 176

 177

 178

 179

 180

 181

 182

 183

 184

 185

 186

 187

 188

 189

 190

 191

 192

 193

 194

 195

 196

 197

 198

 199

 200

 201

 202

 203

 204

 205

 206

 207

 208

 209

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://www.zotero.org/google-docs/?IzfZRJ
https://www.zotero.org/google-docs/?Tdp4Gy
https://doi.org/10.1101/2024.03.13.584787

 This procedure allows determining with high con�idence a loose support interval where the recombination
 breakpoint is located. Here we take the example of a segment BB to the left of the breakpoint and a segment
 AB to the right. Since we already know from Step 1 which are the two genotypes at the left and the right of the
 breakpoint, we only need to consider the only two possible diplotypes, BB and AB. This saves one degree of
 freedom.

 If de�ines the closest SNP position to the point where in Step 1, we take 𝑘 𝑝 𝑊
 𝑗

= 𝐵𝐵 () = 𝑝 𝑊
 𝑗

= 𝐴𝐵 () 𝑘 − 2 𝑚
 and as starting points to guarantee that the breakpoint is covered by the interval. Then, for each 𝑘 + 2 𝑚 𝑆𝑁 𝑃

 𝑗
 of the scanned area, we recalculate and , but this time in asymmetric windows of size 𝑝 𝑊

 𝑗
= 𝐵𝐵 () 𝑝 𝑊

 𝑗
= 𝐴𝐵 ()

 , that is, for BB, we de�ine a window from to and for AB a window from to . 𝑚 𝑆𝑁 𝑃
 𝑗

 𝑆𝑁 𝑃
 𝑗

+ 𝑚 𝑆𝑁 𝑃
 𝑗

− 𝑚 𝑆𝑁 𝑃
 𝑗

 And then, following calculations similar to Step 1 but omitting the probabilities for the AA genotype:

 in the B window 𝑝 𝑊
 𝑗

= 𝐵𝐵 () = 𝑒𝑥𝑝 ρ
 𝐵𝐵 () / 𝑒𝑥𝑝 ρ

 𝐵𝐵 () + 𝑒𝑥𝑝 ρ
 𝐴𝐵 ()()

 in the H window 𝑝 𝑊
 𝑗

= 𝐴𝐵 () = 𝑒𝑥𝑝 ρ
 𝐴𝐵 () / 𝑒𝑥𝑝 ρ

 𝐵𝐵 () + 𝑒𝑥𝑝 ρ
 𝐴𝐵 ()()

 Starting from , and progressing to the right, we look for the �irst site for which : 𝑘 − 2 𝑚 𝑆𝑁 𝑃
 𝑗

 , with = 0.05 by default. 𝑃
 𝑆𝐼

= 1 − 𝑝 𝑊
 𝑗

= 𝐵𝐵 ()() 1 − 𝑝 𝑊
 𝑗

= 𝐴𝐵 ()() > α
 𝑆𝐼

α
 𝑆𝐼

 The breakpoint loose support interval is de�ined between the �irst position from the left and from right (𝑘
 𝐿
)

 where . (𝑘
 𝑅

) 𝑃
 𝑆𝐼

> α
 𝑆𝐼

 T he breakpoint support interval and position are then estimated within the loose support interval. To do so,
 for each in the breakpoint interval to , a probability that the diplotype’s window contains a 𝑆𝑁 𝑃

 𝑗
 𝑘

 𝐿
 𝑘

 𝑅
 𝑃

 𝑏𝑘𝑝
 breakpoint in its middle is estimated. We de�ine a left window for that includes the and 𝑝

 𝑏𝑘𝑝
 𝑊

 𝑗
= 𝐵𝐵 () 𝑆𝑁 𝑃

 𝑗
 goes to the left until the window’s data count reaches SNPs with at least one read (the left boundary of 𝑚 /2
 this window is called) and a right window for that starts at and goes to the right 𝑚

 𝐿
 𝑝

 𝑏𝑘𝑝
 𝑊

 𝑗
= 𝐴𝐵 () 𝑆𝑁 𝑃

 𝑗
+ 1

 until the window’s data count reaches SNPs with at least one read (the right boundary of this window is 𝑚 /2
 called). Values of and are recalculated for each . 𝑚

 𝑅
 𝑚

 𝐿
 𝑚

 𝑅
 𝑆𝑁 𝑃

 𝑗

 The log-probabilities for the left and right segments are:

ρ
 𝑏𝑘𝑝

 𝑊
 𝑗

= 𝐵𝐵 () =
 𝑖 = 𝑚

 𝐿

 𝑗

∑ 𝑙𝑜𝑔 𝑝 𝐺
 𝑖

= 𝐵𝐵 ()[]

ρ
 𝑏𝑘𝑝

 𝑊
 𝑗

= 𝐴𝐵 () =
 𝑖 = 𝑗 + 1

 𝑚
 𝑅

∑ 𝑙𝑜𝑔 𝑝 𝐺
 𝑖

= 𝐴𝐵 ()[]
 Then, the probability that the and are surrounding the breakpoint is: 𝑆𝑁 𝑃

 𝑗
 𝑆𝑁 𝑃

 𝑗 + 1

 𝑝
 𝑏𝑘𝑝

 𝐵𝐾
 𝑗 () = 𝑒𝑥𝑝 ρ

 𝑏𝑘𝑝
 𝑊

 𝑗
= 𝐵𝐵 () + ρ

 𝑏𝑘𝑝
 𝑊

 𝑗
= 𝐴𝐵 ()()

 And after normalization:

 𝑃
 𝑏𝑘𝑝

 𝐵𝐾
 𝑗 () = 𝑝

 𝑏𝑘𝑝
(𝐵𝐾

 𝑗
) / 𝑚𝑎𝑥 𝑝

 𝑏𝑘𝑝
 𝐵𝐾

 𝑧 (): 𝑧 = 𝑘
 𝐿
, … , 𝑘

 𝑅 ()
 The breakpoint is estimated in the middle of the interval de�ined by the SNP having the maximal 𝑃

 𝑏𝑘𝑝
(𝐵𝐾

 𝑗
)

 and the next SNP to its right.

 Finally, the unimputed genotypes in the breakpoint area are completed in assigning the BB genotype to the
 SNPs to the left of the SNP with the max (included) and AB to the right. 𝑃

 𝑏𝑘𝑝
(𝐵𝐾

 𝑗
)

 7

 210

 211

 212

 213

 214

 215

 216

 217

 218

 219

 220

 221

 222

 223

 224

 225

 226

 227

 228

 229

 230

 231

 232

 233

 234

 235

 236

 237

 238

 239

 240

 241

 242

 243

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

 Imputation of breakpoint positions for the other types of homozygous-heterozygous transitions (AB → BB,

 AA → AB, AB → AA) are easily derived from the example beforehand.

 The support interval for the breakpoint around its most likely position can be de�ined in searching for the
 SNPs (left and right starting from the SNP with the maximum) for which 𝑃

 𝑏𝑘𝑝
(𝐵𝐾

 𝑗
) − 𝑙𝑜𝑔

 10
 𝑃

 𝑏𝑘𝑝
 𝐵𝐾

 𝑗 ()() ≥ α
 𝑑𝑟𝑜𝑝

 , where is the dropping value of . is set to 1 by default, corresponding to ten-fold decrease of α
 𝑑𝑟𝑜𝑝

 𝑃
 𝑏𝑘𝑝

α
 𝑑𝑟𝑜𝑝

 compared with . 𝑃
 𝑏𝑘𝑝

 𝑃
 𝑏𝑘𝑝

 𝐵𝐾
 𝑗 ()

 Filtering options – before imputation

 Genotypic frequencies, heterozygosity, missing data
 The program can �ilter out SNPs for parental genotypes, and progeny heterozygosity, percentage of missing
 data and parental genotypic frequencies. Min and max �iltering values can be manually entered (though
 usually not recommended), or the program can calculate them from the genotype matrix imported from the
 VCF. In this case, genotypic frequencies are calculated for each SNP, and the �ilter values are derived from the
 extreme percentiles of the frequency distribution. Correction factors can be applied to the percentiles, to avoid
 too small or too large values.

 Read counts
 SNPs with too few or too many reads can be eliminated. This can be useful to, for instance, remove SNPs in
 duplicated regions.

 Incoherent SNPs
 In sequence-based genetic mapping, it is common to observe SNPs that do not segregate the same way as their
 immediate environment, indicating a probable mapping error due to, for instance, structural variation
 between the reference genome and the population parents, or between the parents, or both. As segregation
 distortion is a frequent phenomenon in many organisms, the Mendelian expected frequencies cannot be used
 to analyze the SNP segregation. Instead, the procedure de�ines a window of SNPs around each tested locus. 𝑛
 By default, =1% the number of SNPs in the largest chromosome. For each window/SNP couple, it calculates 𝑛
 the genotypes AA, BB and AB frequencies and the reads A and B frequencies across the population from the
 genotypes called in the VCF and compares the SNP with the window segregation of genotypes and reads using
 a chi-square test, where expected counts are the observed frequencies in the window multiplied by the
 population size. It then �ilters out SNPs for which the chi-square statistic exceeds a de�ined threshold for
 genotypes or reads frequencies.

 Filtering options – after imputation

 Incoherent chromosome segments (single individual)
 Even after imputation and the different �iltering operations, some few, improbable chromosome short
 diplotypes can still remain in the imputed matrix – we call them “small chunks”. The procedure identi�ies each
 small chunk composed of identical alleles, embedded in a homogeneous genomic environment that has a
 different allele. The method resembles the one used in Imputation - Step2.

 Consider two SNPs A and C that de�ine the bounds of a region imputed as H and surrounded by regions
 imputed as A or B. Search for the SNP B that is the closest to the middle point between A and C (in cM). Also
 search for an SNP D before the SNP A so that , and an SNP E after the SNP C so that . 𝑑

 𝐷𝐴
 ~ 𝑑

 𝐴𝐵
 𝑑

 𝐶𝐸
 ~ 𝑑

 𝐵𝐶

 Then, calculate the recombination fractions and from and using the inverse of the Kosambi 𝑟
 𝐷𝐵

 𝑟
 𝐵𝐸

 𝑑
 𝐷𝐵

 𝑑
 𝐵𝐸

 mapping function. Then the maximum probability of the “chunk” to be different to the surrounding genotype
 is

 8

 244

 245

 246

 247

 248

 249

 250

 251

 252

 253

 254

 255

 256

 257

 258

 259

 260

 261

 262

 263

 264

 265

 266

 267

 268

 269

 270

 271

 272

 273

 274

 275

 276

 277

 278

 279

 280

 281

 282

 283

 284

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

 𝑟
 𝐴𝐵𝐶

= 𝑟
 𝐷𝐵

 𝑟
 𝐵𝐸

 The chunks for which are restored with the surrounding genotype; is set to 0.001 by default. 𝑟
 𝐴𝐵𝐶

 ≤ α α

 Incoherent chromosome segments (cross-population)
 Entire chromosome segments can be misplaced due to different kinds of genomic structural variation such as
 translocation, or duplication in one of the two parents that is not present in the reference genome. Such
 segments are called “aliens” in the program. If their size is too large, the chi-square procedure that �ilters out
 the incoherent SNPs may fail to identify them since it is run before the imputation. Alien segments are easily
 detected, as they produce severe map expansion. The procedure searches for SNPs that mark rapid changes in
 the slope of the cumulated centimorgans of the genetic map calculated from the imputed matrix. If a SNP
 marker is detected, the procedure then searches for the next SNP that is closely linked (by default r < 0.01) to
 the SNP located just before the slope change. It then eliminates all the SNPs that are in-between.

 Running the program
 Algorithm implementation
 The program is implemented in Java, as a Spring Boot (v2.6.7) project. Spring Boot is an open-source Java
 framework used to create standalone java applications. The executable .jar has been built with JDK 8 using
 Maven (v3.9.6), an open-source build tool.

 Paths to data�iles and working folders paths, as well as parameters for imputation and �iltering can be entered
 in a con�ig �ile or directly in the command line. A “NOISYmputerResults” folder is automatically created, where
 the program writes all the output �iles.

 Data speci�ications
 In this current version, NOISYmputer is built and extensively tested to perform on F 2 intercross data, that is,
 the progeny from F 1 self-fertilization (F 2). NOISYmputer can also be used on recombinant inbred lines by
 single seed descent from the F 2 (SSD).

 Input data for NOISYmputer are standard Variant Call Format (VCF) �iles, with chromosome coordinates.
 Genotypes (GT �ield) and allele depths (AD �ield) must be present in the VCFs. The data should be low
 coverage, that is, the sum of all sequences produced per sample is equivalent to 1-3 times (1-3 X) the size of
 the reference genome used. Ideally, the VCF should contain only bi-allelic single-nucleotide polymorphisms
 (SNPs), however NOISYmputer automatically �ilters out the other types of sites. Small indels are not handled.
 Parental lines need to be included in the VCF �ile with the pre�ix “Parent” in their name. Compressed “.gz” VCFs
 are accepted.

 Results
 NOISYmputer, FSFHap and LB-Impute were run on the IFB Core cluster (specs. available at
 https://i�b-elixirfr.gitlab.io/cluster/doc/cluster-desc/) with one allocated node per job and 32GB to 64GB of
 RAM to make sure that the tested programs are fully ef�icient.

 Details on parameters used for the three imputation methods are provided in Supplementary Data 1.

 Using simulations for calibration
 To test NOISYmputer’s accuracy and precision in breakpoints estimation, we used simulated F 2 datasets
 generated using PopSimul (https://forge.ird.fr/diade/recombination_landscape/popsimul). A set of 84 VCFs
 with samples and varying values of marker density, mean depth and error rate were generated for a 𝑛 = 300
 �inal expected map size of 180 cM (corresponding to an average of 3.6 breakpoints per sample) to mimic the
 chromosome 1 of rice. Using �ive different imputation window sizes, we compared the outputs of
 NOISYmputer to the known positions of breakpoints in the simulated data. In total, a set of 420 combinations

 9

 285

 286

 287

 288

 289

 290

 291

 292

 293

 294

 295

 296

 297

 298

 299

 300

 301

 302

 303

 304

 305

 306

 307

 308

 309

 310

 311

 312

 313

 314

 315

 316

 317

 318

 319

 320

 321

 322

 323

 324

 325

 326

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://ifb-elixirfr.gitlab.io/cluster/doc/cluster-desc/
https://forge.ird.fr/diade/recombination_landscape/popsimul
https://doi.org/10.1101/2024.03.13.584787

 Table 1. Parameter values used in PopSimul to generate simulated F 2 VCFs: marker density, mean depth and error rate. All
 possible combinations of these parameters were tested and imputed using a range of imputation windows in NOISYmputer.

 Parameters Marker density (in
 number of markers
 along the chromosome)

 Mean depth (in X) Error rate NOISYmputer impute
 half window size

 Tested values 220,000
 180,000
 100,000
 66,000

 0.5
 1
 1.5
 2
 2.5
 3
 4

 0.05
 0.01
 0.005

 15
 20
 30
 50
 100

 were analyzed. All combinations and tested parameters are listed in Table 1. The results of these analyses
 con�irmed that NOISYmputer ef�iciently detects the recombination breakpoints and precisely estimates their
 positions.

 Breakpoint detection power
 We assessed NOISYmputer’s ability to correctly detect all breakpoints within samples by comparing positions
 of breakpoints found by NOISYmputer to those of simulated datasets. We considered a breakpoint correct
 when the simulated breakpoint position falls within NOISYmputer's loose support interval, along with the
 correct transition type.

 Across all 420 VCFs, representing an average of 455,000 breakpoints, NOISYmputer demonstrated robust
 detection power, correctly �inding 99.5% of simulated breakpoints (median at 99.6%). NOISYmputer also
 displayed high accuracy as, on average, 98.9% of breakpoints identi�ied correspond to actual breakpoints
 (with a median at 100%). Thus, NOISYmputer presents an overall excellent accuracy and power in detecting
 breakpoints.

 To better understand the impact of each parameter and their interaction on NOISYmputer performance, we
 performed a principal component analysis (PCA) on parameters and performance indicators. Accuracy was
 primarily in�luenced by error rates, but was also affected by the imputation window size when excessively
 large. Conversely, smaller window sizes enhanced detection power. Also, higher marker density correlated
 with improved detection power, as lower densities limit NOISYmputer's ability to identify breakpoints in
 regions with high recombination rates.

 Some speci�ic combinations decreased NOISYmputer detection accuracy and/or power but overall the lower
 performances were still acceptable. For instance, the lowest accuracy was of 72.3% (with error rates at 0.05
 and smaller imputation window size of 15), and the lowest power was of 96.9% (with larger imputation
 window size of 100). This is expected as small windows with high levels of noise are prone to false positive
 breakpoints. On the other hand, large windows (especially if coupled with low depth or marker density) may
 miss double recombination events, leading to false negatives (Figure 2 A and C). In more realistic conditions,
 error rates as high as 0.05 are not typically observed in Illumina sequencing and alignments. When removing
 runs with the 0.05 error rate, the average breakpoint accuracy reached 99.9%, with a median of 100%.
 Similarly, the average detection power was 99.6%, with a median of 99.5% (Figure 2B).

 The data in the VCF �iles, such as sequencing depth or marker density or species model, depend on the model
 species or sequencing type and are generally not under the user's control. We thus looked for the imputation
 window size producing the best results for both breakpoint detection accuracy and power with the VCF that
 mimicked best the real F 2 rice data we had. In both cases, the optimal results were obtained by the imputation
 half window size of 30. Thus, we used this value of 30 later on when exposing NOISYmputer to real datasets.

 10

 327

 328

 329

 330

 331

 332

 333

 334

 335

 336

 337

 338

 339

 340

 341

 342

 343

 344

 345

 346

 347

 348

 349

 350

 351

 352

 353

 354

 355

 356

 357

 358

 359

 360

 361

 362

 363

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

 Precision of breakpoint position
 NOISYmputer’s precision was estimated by computing the difference between the simulated breakpoints
 positions and the estimated ones by NOISYmputer. We considered the size of the support interval and its
 marker density to estimate discrepancy (in number of SNPs) with the actual breakpoint position.

 Across all 420 VCFs, a difference of 1,427 bp on average (equivalent to a discrepancy of ~2 SNPs) was
 observed. The median difference was even lower, with only 245 bp (< 1 SNP discrepancy). This disparity
 between the median and mean is mainly due to extreme combinations, particularly low depth combined with
 high error rate. Notably, variance is higher in 0.5X coverage VCFs, becoming more homogeneous at 1X
 coverage.

 Regarding the imputation window, smaller half-windows resulted in lower average differences between
 NOISYmputer and simulated positions but increased the median difference. Consequently, smaller windows
 enhanced overall precision while potentially increasing the occurrence of extreme discrepancies.

 Error rate estimations
 Error rates (and), are recalculated after a �irst iteration of imputation step 1. NOISYmputer correctly 𝑒

 𝐴
 𝑒

 𝐵
 estimated the error rates in 100% of the cases, with an average difference between simulated and estimated
 error rates of 9.8 10 -7 (standard deviation 4.8 10 -5) (Supplementary Table S1). This re�lects the accuracy of the
 imputation, even with starting values for error rates far from the true values.

 Figure 2. Most impacting parameters and data characteristics on NOISYmputer results based on 420 simulated F 2 populations. A)
 Representation of NOISYmputer’s detection accuracy (proportion of NOISYmputer breakpoints being actual breakpoints from
 simulated data) in function of NOISYmputer’s detection power (proportion of simulated breakpoints correctly found by
 NOISYmputer). NOISYmputer shows excellent power detection and accuracy with at least 72.3% and 96.9% respectively. B) Zoom
 on the upper part of the A plot of detection accuracy and power, ignoring the error rate of 0.05. C) PCA Biplot of NOISYmputer
 showing VCFs characteristics and imputation window size influencing detection accuracy and precision with simulated VCFs. The
 lowest detection powers are observed when high error rates are coupled with a small imputation half-window size in
 NOISYmputer. The lowest accuracies correspond to VCFs imputed with a large imputation half-window size in NOISYmputer and
 can be accentuated by very low depth (≤ 1X) and/or low marker density (< 66,000 sites / 44 Mb).

 11

 364

 365

 366

 367

 368

 369

 370

 371

 372

 373

 374

 375

 376

 377

 378

 379

 380

 381

 382

 383

 384

 385

 386

 387

 388

 389

 390

 391

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

 Con�irmed ef�iciency on real data and comparison with other methods
 We assessed the performance of NOISYmputer on two real datasets: i) a maize F 2 population in GBS with 91
 samples, including the parents, and ii) a rice F 2 population with 3X coverage in whole-genome sequencing
 (WGS) comprising 222 samples, including the parents sequenced at ~30X. Details of how the real dataset for
 rice was generated are summarized in the Supplementary Data. The maize dataset is described in the
 LB-Impute publication (Fragoso et al. 2016) .

 In real data, direct estimation of imputation accuracy may be challenging due to the unknown true state at
 each locus. However, it is possible to assess the quality of the imputation indirectly by comparing the �inal
 genetic map to, for instance, existing high-quality maps. A correctly imputed dataset should yield a map size –
 in centimorgans (cM) – consistent with those derived from high-quality marker data. Conversely, datasets with
 a high rate of genotyping errors will exhibit map expansion, resulting in a longer genetic map due to falsely
 imputed recombination breakpoints.

 Using map size estimates in centimorgans (cM) of chromosome 1 of these datasets, we compared the results of
 NOISYmputer to those of LB-Impute and FSFhap (Figure 3 and Table 2). Concerning the maize GBS dataset,
 LB-Impute and FSFhap strongly overestimated the map size expected from high-quality datasets (respectively
 633 cM and 13,271 cM), whereas NOISYmputer’s map was in range with the expected map size (203 cM).
 Regarding the Rice WGS dataset, while both LB-Impute and FSFhap yielded maps much larger than expected
 (23,436 cM and 337,750 cM respectively), NOISYmputer estimated a map size close to the expected value (213
 cM). Also, results from FSFhap on PopSimul data produced very large map size estimations for high error rates
 (5%) VCF, while they were qualitatively similar to NOISYmputer’s for lower (1% and .5%) error rates.

 To further estimate the performance of NOISYmputer on real datasets we also performed comparisons on
 breakpoint detection accuracy, detection power, and position estimate in the 222 F 2 Rice population. This
 dataset includes 20 samples sequenced at ~20X depth, and arti�icially subsetted to 3X (that we call
 pseudo-3X). These 20 samples allow for a more robust evaluation as their breakpoints are well estimated
 thanks to their better depth. We processed similarly to the simulated analyses and compared breakpoint
 detection accuracy, power, and precision of breakpoint estimates for NOISYmputer against the accurately
 estimated breakpoints at 20X coverage. Unfortunately, we were not able to compare NOISYmputer results to
 those of FSFHap and LB-impute as, even if we managed to retrieve each breakpoint position estimate, we
 could not easily check which were actual breakpoints and which were false positives, as TASSEL FSFHap and
 LB-impute do not provide support intervals for breakpoints.

 Overall, NOISYmputer demonstrated excellent results with, on average, 99% accuracy and 97% detection
 power. Regarding precision, on average the difference in position was of 10,219 bp, while the median was of
 only 415 bp. The large difference between the average and the median is due to a few breakpoints estimated
 far from their true position. Indeed, 80% of the breakpoints were still estimated at less than 1,669 bp from
 their true position. In terms of number of SNPs, the discrepancy was of 2 SNPs on average (median: 1)
 (Supplementary Table S2).

 Overestimation of map sizes was mostly due to misinterpretation of noisy data by FSFHap and LB-Impute.
 These discrepancies frequently arise in regions corresponding to structural variations between parental
 genomes. Such variations can occur, for instance, when attempting to map onto regions found exclusively in
 the Parent A genome, which serves as the reference. In such cases, reads from B regions might map to the most
 similar A regions available resulting in false recombination events according to imputation softwares. This
 phenomenon is accentuated in WGS data compared to GBS data as the complete genome is sequenced and
 mapped, thus increasing the number of markers. Including more sites, inducing sites belonging to peculiar
 genomic structures, can hinder the quality of imputation if the software does not take into account the
 coherence of a marker with its surrounding environment in the population. Though FSFHap and LB-impute
 might be precise in the estimated breakpoints positions, their lack of accuracy in breakpoints detection leads
 to results, on whole genome datasets, dif�icult to use without the help of complex �iltering steps. NOISYmputer,
 on the contrary, is very ef�icient at correcting mapping issues or divergence between parental genome
 structures.

 12

 392

 393

 394

 395

 396

 397

 398

 399

 400

 401

 402

 403

 404

 405

 406

 407

 408

 409

 410

 411

 412

 413

 414

 415

 416

 417

 418

 419

 420

 421

 422

 423

 424

 425

 426

 427

 428

 429

 430

 431

 432

 433

 434

 435

 436

 437

 438

 439

 440

 441

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://www.zotero.org/google-docs/?KhGlr0
https://doi.org/10.1101/2024.03.13.584787

 Table 2. Comparison of estimated and expected map sizes for three different datasets using NOISYmputer, FSFHap and
 LB-Impute. The 84 VCFs generated using PopSimul have varying numbers of markers (66,000, 100,000, 180,000 or 220,000),
 depending on the settings used to generate the VCFs. Overall, NOISYmputer is showing considerably higher accuracy in map size
 estimation compared to FSFHap and LB-Impute.

 Dataset Software Estimated map
 size (cM)

 Expected map
 size (cM)

 Initial number of
 markers in VCF

 F 2 Maize GBS
 n = 91 samples including
 parents

 NOISYmputer 203

 ~200 17,945 FSFHap 13,271

 LB-Impute 633

 F 2 Rice WGS
 n = 222 samples including
 30X parents

 NOISYmputer 213

 183 254,095 FSFHap 337,750

 LB-Impute 23,436

 84 PopSimul F 2 s
 n = 300 samples each
 including parents

 NOISYmputer 180

 180
 Different number of
 markers depending on
 the simulation settings

 FSFHap 479,399

 LB-Impute N/A

 A resource-optimized software, CPU- and RAM-ef�icient
 In our comparative analysis of the NOISYmputer with established counterparts, we conducted comprehensive
 benchmarks, focusing on execution time and RAM usage (Table 3 and Figure 3). To do so, we ran NOISYmputer,
 FSFHap and LB-Impute on simulated and real datasets. We then retrieved their CPU time, “wall clock”
 execution time and RAM usage using the seff command on the IFB computing cluster.

 Concerning the F 2 Maize GBS dataset, NOISYmputer ran ~10 and ~45 times faster than FSFhap and LB-Impute,
 respectively. It also used less RAM (~3.4 GB), ~3 times less than FSFHap and ~21 times less than LB-Impute.

 Regarding the F 2 Rice WGS dataset, NOISYmputer used slightly less RAM than FSFHap and was ~13 times
 faster (< 6 min vs. 1h19m). LB-Impute showed poor CPU and RAM ef�iciency as NOISYmputer used ~9 times
 less RAM and ran ~145 times faster.

 Due to the excessive computation time on this single smaller dataset, LB-Impute was excluded from the
 remaining comparisons with the 84 PopSimul VCFs with 300 samples. It is interesting to note that FSFHap
 resource ef�iciency is better on simulated than on real datasets even though they have more samples. Indeed,
 FSFHap used on average 1.93 GB of RAM, whereas NOISYmputer was stable at 3.61 GB. NOISYmputer was still
 faster than FSFHap on average, with ~5 min, while FSFHap ran in ~9 min. This underlies the dif�iculty that
 FSFHap has to impute noisy data, partly due to structural variants and calling errors. These results underscore
 NOISYmputer’s ef�iciency improvement in processing imputation tasks, especially compared to existing
 software for bi-parental population imputation.

 13

 442

 443

 444

 445

 446

 447

 448

 449

 450

 451

 452

 453

 454

 455

 456

 457

 458

 459

 460

 461

 462

 463

 464

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

 Figure 3. Barplot of CPU time and RAM resource usage for NOISYmputer (orange), LB-Impute (gray) and FSFHap (blue) on three
 datasets. Rice_WGS is an F 2 Rice WGS dataset with samples including parents; PopSimul_84 values are averages across 𝑛 = 222
 84 VCFs generated with PopSimul, each VCF containing samples including parents, simulated using ranges of depth, 𝑛 = 300
 marker density and error rate to mimic different characteristics of F 2 VCFs; Maize_GBS is an F 2 Maize GBS dataset with 𝑛 = 91
 samples including parents (with a lower marker density than Rice_WGS). NOISYmputer is overly faster and more RAM-efficient in
 all conditions than FSFHap and LB-Impute, with the exception for RAM usage on simulated VCF files of PopSimul. No data is
 shown for PopSimul_84/LB-Impute, as LB-Impute was not benchmarked due to excessive CPU time.

 Availability and Future Directions
 Availability
 NOISYmputer is available as a multiplatform (Linux, macOS, Windows) Java executable at the URL
 https://gitlab.cirad.fr/noisymputer/noisymputerstandalone/-/tree/1.0.0-RELEASE?ref_type=tags . The
 source code and the documentation are available at the same URL. A Quarto markdown companion
 (compatible with R markdown and Jupyter notebooks IDE) that allows to display graphics of statistics (e.g.,
 genotypic frequencies on SNPs and samples) and graphical genotypes from NOISYmputer output �iles was
 developed and is also available.

 NOISYmputer and its companion are distributed under the GNU Affero General Public License V3.0.

 Future directions

 NOISYmputer’s strengths
 Although previous methods have made signi�icant advances in addressing the challenges listed above, the
 noisiness of imputed datasets are still producing expanded genetic maps, excess heterozygosity, and
 probabilistically unlikely recombination events contained within a short physical interval. Here, we introduce
 an algorithm which, in a series of steps, addresses each source of error to create higher-quality datasets for
 improved trait mapping and genomics-assisted breeding. Our algorithm represents a step to systematically
 address all sources of NGS genotyping error and even errors in the reference genome, and hopefully the
 corrections brought here will be integrated into future algorithm development. Indeed, key features of
 NOISYmputer are its pre- and post-�iltering steps that other currently available software does not perform. In
 �iltering SNPs and segments that are incoherent with their environment and with the population local
 recombination landscape, NOISYmputer ef�iciently eliminates errors of genotype calling, sequencing errors, or
 errors generated by structural variants. The pre-imputation and post-imputation stages of NOISYmputer, in

 14

 465

 466

 467

 468

 469

 470

 471

 472

 473

 474

 475

 476

 477

 478

 479

 480

 481

 482

 483

 484

 485

 486

 487

 488

 489

 490

 491

 492

 493

 494

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://gitlab.cirad.fr/noisymputer/noisymputerstandalone/-/tree/1.0.0-RELEASE?ref_type=tags
https://gitlab.cirad.fr/noisymputer/noisymputerstandalone/-/tree/1.0.0-RELEASE?ref_type=tags
https://doi.org/10.1101/2024.03.13.584787

 Table 3. CPU and RAM usage of NOISYmputer, FSFHap and LB-Impute for three datasets based on the output of the seff
 command on the IFB cluster. NOISYmputer 1st and 2nd Runs are displayed as NOISYmputer shows better CPU time usage for the
 second run since the conversion of the raw VCF file has already been done. For LB-Impute, as imputation is processed in two
 steps, CPU time and execution time results are the sum of the two steps; RAM usage corresponds to the highest RAM usage of
 the two steps (offspring imputation). For the 84 PopSimul VCFs section, results correspond to the average of resource usage for
 each of the 84 PopSimul VCFs for an imputation half-window of 30 SNPs with NOISYmputer and the default window size (50) of
 FSFHap. All tests were conducted on the IFB Core cluster. *As LB-impute showed excessive time and RAM consumption on the
 Rice_WGS dataset, we did not benchmark the 84 PopSimul VCFs with LB-impute.

 Datasets Software CPU time
 (h:m:s)

 Total execution time
 (h:m:s)

 RAM
 (GB)

 F2 Maize GBS
 n = 91 samples
 including parents

 NOISYmputer
 2nd Run 00:00:07 00:00:09 1.00

 1st Run 00:00:27 00:00:28 1.00

 FSFHap 00:06:49 00:04:35 3.42

 LB-Impute 00:20:59 00:21:04 21.61

 F2 Rice WGS
 n = 222 samples
 including 30X parents

 NOISYmputer
 2nd Run 00:06:49 00:04:35 3.42

 1st Run 00:09:47 00:06:44 3.36

 FSFHap 01:19:00 01:19:06 4.02

 LB-Impute 16:18:52 16:19:21 31.48

 84 PopSimul VCFs
 with n = 300 samples
 each including parents

 NOISYmputer 1st Run 00:05:18 00:05:39 3.61

 FSFHap 00:09:20 00:09:24 1.93

 LB-Impute* NA NA NA

 particular, address artifacts of imputation caused by presence-absence variation misrepresented by the
 reference assembly and assembly errors from inaccurate or misordered contigs. These imputation artifacts,
 such as those caused by collapsed structural variants (incoherent sites or false heterozygosity) or
 misassembled “chunks”, are not systematically addressed by other imputation methods, such as LB-Impute
 (Fragoso et al. 2016) , and otherwise must be parsed through manual �iltering of the imputed dataset.

 NOISYmputer is a resource-effective software developed in Java, allowing its integration in bioinformatics
 pipelines. NOISYmputer is parallelizing computation at the sample level in several steps of the algorithm,
 which increases its speed considerably. The use of a Java standalone executable also allows to simulate
 parallelization in running each chromosome on a separate core of a server/cluster. Moreover, NOISYmputer
 employs a maximum likelihood method, instead of hidden Markov models, which considerably reduces
 computational complexity, compared to FSFHap (Swarts et al. 2014) and LB-impute (Fragoso et al. 2016) ,
 while enhancing result accuracy and �lexibility across diverse datasets. Indeed, NOISYmputer is less sensitive
 to noisy regions (due to mapping artifacts for example) as it can handle large windows without being greedy
 in RAM and computation time to overpass complex regions.

 Notably, NOISYmputer's speed allows iterative re�inement of parameter settings. For example, the size of the
 imputation window (in number of SNPs), like in other imputation programs (e.g., FSFhap, LB-Impute), is
 arbitrarily �ixed by the user. The most appropriate value for depends on several factors, including depth and 𝑚
 SNP density. A convenient way to determine which value for to use is to run the imputation several times 𝑚
 with different values until reaching the expected distribution of the number of recombination breakpoints per
 sample across the population (if previously known). Often, saturated genetic maps generated with other types
 of markers are available in the literature, from which the expected distribution is easily derived. With our rice

 15

 495

 496

 497

 498

 499

 500

 501

 502

 503

 504

 505

 506

 507

 508

 509

 510

 511

 512

 513

 514

 515

 516

 517

 518

 519

 520

 521

 522

 523

 524

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://www.zotero.org/google-docs/?25rbX0
https://www.zotero.org/google-docs/?WKqCrl
https://www.zotero.org/google-docs/?2Zbxo5
https://doi.org/10.1101/2024.03.13.584787

 data, the imputation algorithm gave the best results with , so even a few runs should provide a 𝑚 = 30
 satisfying window size.

 Furthermore, NOISYmputer generates a .json �ile from the VCF during the initial run, that is used by the
 consecutive runs, eliminating the redundant tasks of converting the input VCF �ile, thus enhancing speed for
 subsequent launches on the same dataset.

 Its robust performance extends to various VCF characteristics, accommodating differences in SNP quality,
 marker density, error rates, and sequencing depths. This is partly due to its low sensitivity to the SNP calling
 step used to generate the input VCF, as NOISYmputer is re-estimating the probabilities of genotypes using the
 allele depth at each site, along with information of the surrounding environment and of the whole population.
 This results in maintenance of overall excellent detection accuracy, detection power and position precision on
 recombination breakpoints even with very low coverage datasets (≤1X). However, users should exercise
 caution in selecting an appropriate imputation window size to mitigate the risk of false positives and
 negatives.

 In addition to its performance bene�its, NOISYmputer provides users with several comprehensive breakpoint
 con�idence information allowing to further �ilter the identi�ied breakpoints. This is a feature that is innovative
 and useful and not available in other software, to our knowledge. NOISYmputer also outputs statistics on
 genotypic/allelic frequencies, samples and genetic map among others.

 Suggestions for Improvement
 NOISYmputer could bene�it from several improvements. The �irst one is including more population types. In
 the next version, we will implement F 2 backcross, or BC 1 F 1 , the progeny of the F 1 hybrid crossed with one of
 the parents (BC 1) ; doubled haploid of F 1 gametes (DH) ; F 2 intercross, that is, the progeny from F 1
 self-fertilization (F 2); recombinant inbred lines by single seed descent from the the BC 1 F 1 (BCSSD); the
 unconventional mating design (UMD) BC 1 F 3 , derived by two generations of self-fertilization of BC 1 F 1
 individuals. For now, it has been extensively tested and optimized for F 2 crosses between distant parents
 which might be one of the hardest designs to estimate breakpoints from. We thus are con�ident that the
 algorithm can be adapted to these other types of crosses.

 Breakpoint detection and accuracy could bene�it from a more complex modeling of the likelihood. Currently,
 we test for the existence of a single transition within the loose support interval in imputation Step 3. Testing
 for one, two or even three transitions in a single interval could increase the probability of �inding close double
 recombination events if they happened to have a higher probability in the tested region. Breakpoint position
 estimation, on the other hand, might be improved by using a combination of NOISYmputer’s current algorithm
 with a hidden markov model occurring in the Step 3 of imputation. This way, a smaller window size could be
 applied and the region to scan would be reduced to a very limited percentage of the genome only, resulting in a
 considerable gain of time.

 NOISYmputer is robust on a broad range of samples and its computation time makes it very convenient. Part of
 the success of NOISYmputer lies in the fact that it performs pre- and post-imputation �iltering steps that
 remove, among other things, incoherent SNPs, meaning SNPs that do not segregate the same way as its
 immediate environment, often indicating mapping errors. This �iltering of incoherent SNPs step uses a
 Chi-square test to evaluate if the observed pattern is reasonable. Unfortunately, Chi-square test thresholds are
 dependent on sample sizes. Thus, when imputing many samples (e.g., =2000) with NOISYmputer, the user 𝑚
 has to adapt the Chi-square threshold to the sample size, which is not convenient. A solution to this would be
 to use a “Cramér’s V” statistic instead (Cramér 1999) , which would be independent of the sample number in
 the VCF.

 Unlike FSFHap or LB-Impute, NOISYmputer does not impute the parental genotypes, which might result in the
 loss of SNPs, especially in datasets derived from very low-coverage sequencing. Although we recommend
 sequencing the parents at high coverage (> 20X), it is not always possible – for instance, when re-analyzing
 historical data. The next version of NOISYmputer will impute the parental genotypes when necessary.

 Finally, as pointed in the Results section, the imputation half-window size can have an impact on the outputs of
 NOISYmputer. NOISYmputer could bene�it from an iterative process that would check for different window

 16

 525

 526

 527

 528

 529

 530

 531

 532

 533

 534

 535

 536

 537

 538

 539

 540

 541

 542

 543

 544

 545

 546

 547

 548

 549

 550

 551

 552

 553

 554

 555

 556

 557

 558

 559

 560

 561

 562

 563

 564

 565

 566

 567

 568

 569

 570

 571

 572

 573

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://www.zotero.org/google-docs/?nxH3zj
https://doi.org/10.1101/2024.03.13.584787

 sizes and analyze the convergence of the results to select the appropriate window size and thus to achieve the
 best compromise between detection accuracy and power, along with precision.

 Acknowledgements
 We thank Karine Labadie (CEA, Institut de Génomique, Genoscope, Evry, France) for sharing the WGS data for
 the sequencing of rice populations, Christine Tranchant-Dubreuil (IRD, Montpellier, France) for her help with
 retrieving the Rice_WGS data and François Sabot (IRD, Montpellier, France) for coordinating the IRIGIN
 project. We are grateful to the Institut Français de Bioinformatique (IFB) for providing computing resources.
 We also thank the Yale Center for Research Computing for guidance and use of the research computing
 infrastructure. The following programs supported parts of this initiative: the French ANR project "LANDSREC"
 (ANR-21-CE20-0012-03), the French Government France Génomique program through its International RIce
 Genome INitiative “IRIGIN” project, and the CGIAR Research Program “RICE”.

 Author’s contributions
 CT participated to the algorithm development, designed and ran the bioinformatics pipeline to call SNPs for
 the WGS dataset (F 2 and SSD), benchmarked and compared all softwares, wrote the quarto markdown
 companion, tested the program for debugging and took part in the manuscript conception. AB participated in
 the algorithm development and implemented it in Java, took part in the manuscript conception. CF helped
 with running LB-Impute for the Rice_WGS dataset for the previous version of NOISYmputer and edited the
 manuscript. AG designed and ran the bioinformatics pipeline to call SNPs for the Rice_WGS dataset for the
 previous version of NOISYmputer. JFR took part in the initial design and de�inition of speci�ications for
 NOISYmputer. ML conceptualized the initial imputation algorithm for NOISYmputer, participated in its further
 development and took part in the manuscript conception.

 References
 Browning S. R., and B. L. Browning, 2007 Rapid and Accurate Haplotype Phasing and Missing-Data Inference

 for Whole-Genome Association Studies By Use of Localized Haplotype Clustering. The American

 Journal of Human Genetics 81: 1084–1097. https://doi.org/10.1086/521987

 Browning B. L., X. Tian, Y. Zhou, and S. R. Browning, 2021 Fast two-stage phasing of large-scale sequence data.

 The American Journal of Human Genetics 108: 1880–1890.

 https://doi.org/10.1016/j.ajhg.2021.08.005

 Cramér H., 1999 Mathematical Methods of Statistics . Princeton University Press.

 Davey J. W., and M. L. Blaxter, 2010 RADSeq: next-generation population genetics. Brie�ings in Functional

 Genomics 9: 416–423. https://doi.org/10.1093/bfgp/elq031

 Dempster A. P., N. M. Laird, and D. B. Rubin, 1977 Maximum Likelihood from Incomplete Data via the EM

 Algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39: 1–38.

 Elshire R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, et al. , 2011 A Robust, Simple

 Genotyping-by-Sequencing (GBS) Approach for High Diversity Species, (L. Orban, Ed.). PLoS ONE 6:

 e19379. https://doi.org/10.1371/journal.pone.0019379

 17

 574

 575

 576

 577

 578

 579

 580

 581

 582

 583

 584

 585

 586

 587

 588

 589

 590

 591

 592

 593

 594

 595

 596

 597

 598

 599

 600

 601

 602

 603

 604

 605

 606

 607

 608

 609

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://doi.org/10.1101/2024.03.13.584787

 Fragoso C. A., C. Heffel�inger, H. Zhao, and S. L. Dellaporta, 2016 Imputing Genotypes in Biallelic Populations

 from Low-Coverage Sequence Data. Genetics 202: 487–495.

 https://doi.org/10.1534/genetics.115.182071

 Heffel�inger C., C. A. Fragoso, M. A. Moreno, J. D. Overton, J. P. Mottinger, et al. , 2014 Flexible and scalable

 genotyping-by-sequencing strategies for population studies. BMC Genomics 15: 979.

 https://doi.org/10.1186/1471-2164-15-979

 Howie B., C. Fuchsberger, M. Stephens, J. Marchini, and G. R. Abecasis, 2012 Fast and accurate genotype

 imputation in genome-wide association studies through pre-phasing. Nat Genet 44: 955–959.

 https://doi.org/10.1038/ng.2354

 Huang X., Q. Feng, Q. Qian, Q. Zhao, L. Wang, et al. , 2009 High-throughput genotyping by whole-genome

 resequencing. Genome Res. 19: 1068–1076. https://doi.org/10.1101/gr.089516.108

 Kosambi D. D., 1944 The Estimation of Map Distances from Recombination Values, pp. 125–130 in D.D.

 Kosambi: Selected Works in Mathematics and Statistics , edited by Ramaswamy R. Springer India, New

 Delhi.

 Swarts K., H. Li, J. A. Romero Navarro, D. An, M. C. Romay, et al. , 2014 Novel Methods to Optimize Genotypic

 Imputation for Low-Coverage, Next-Generation Sequence Data in Crop Plants. The Plant Genome 7:

 plantgenome2014.05.0023. https://doi.org/10.3835/plantgenome2014.05.0023

 Xu C., Y. Ren, Y. Jian, Z. Guo, Y. Zhang, et al. , 2017 Development of a maize 55 K SNP array with improved

 genome coverage for molecular breeding. Mol Breeding 37: 20.

 https://doi.org/10.1007/s11032-017-0622-z

 18

 610

 611

 612

 613

 614

 615

 616

 617

 618

 619

 620

 621

 622

 623

 624

 625

 626

 627

 628

 629

 630

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://www.zotero.org/google-docs/?wUziBR
https://doi.org/10.1101/2024.03.13.584787

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.03.13.584787doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.13.584787

