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 Abstract 
 Motivation:  Genotyping  of  bi-parental  populations  can  be  performed  with  low-coverage  next-generation 
 sequencing  (LC-NGS).  This  allows  the  creation  of  highly  saturated  genetic  maps  at  reasonable  cost,  precisely 
 localized  recombination  breakpoints  (i.e.,  the  crossovers),  and  minimized  mapping  intervals  for 
 quantitative-trait locus analysis. 

 The  main  issues  with  these  low-coverage  genotyping  methods  are  (1)  poor  performance  at  heterozygous  loci, 
 (2)  high  percentage  of  missing  data,  (3)  local  errors  due  to  erroneous  mapping  of  sequencing  reads  and 
 reference genome mistakes, and (4) global, technical errors inherent to NGS itself. 

 Recent  methods  like  Tassel-FSFHap  or  LB-Impute  are  excellent  at  addressing  issues  1  and  2,  but  nonetheless 
 perform  poorly  when  issues  3  and  4  are  persistent  in  a  dataset  (i.e.,  “noisy”  data).  Here,  we  present  a  new 
 algorithm  for  imputation  of  LC-NGS  data  that  eliminates  the  need  of  complex  pre-�iltering  of  noisy  data, 
 accurately  types  heterozygous  chromosomal  regions,  precisely  estimates  crossover  positions,  corrects 
 erroneous  data,  and  imputes  missing  data.  The  imputation  of  genotypes  and  recombination  breakpoints  is 
 based  on  maximum-likelihood  estimation.  We  compare  its  performance  with  Tassel-FSFHap  and  LB-Impute 
 using  simulated  data  and  two  real  datasets.  Furthermore,  the  algorithm  is  much  faster  than  Hidden  Markov 
 Model methods. 

 Availability:  NOISYmputer  and  its  source  code  are  available  as  a  multiplatform  (Linux,  macOS,  Windows)  Java 
 executable at the URL 
 https://gitlab.cirad.fr/noisymputer/noisymputerstandalone/-/tree/1.0.0-RELEASE?ref_type=tags  . 

 Introduction 
 In  genetic  studies,  bi-parental  genetic  populations  can  be  created  from  inbred  parental  lines  using  various 
 crossing  systems,  e.g.,  F  2  intercross  issued  from  F  1  self-pollination  (F  2  )  and  recombinant  inbred  lines  by  single 
 seed  descent  (SSD).  These  populations  are  used  to  create  recombination  maps  and,  if  phenotypes  are 
 available, to �ind gene or quantitative-trait locus (QTL) genomic positions. 

 To  do  so,  each  individual  of  the  population  under  study  has  to  be  characterized  for  its  genomic  content  –  or 
 “genotyped”  at  many  loci.  This  can  be  done  using  different  molecular  biology  techniques,  including  various 
 types  of  molecular  markers.  The  gold  standard  for  genetic  variant  discovery  is  obtained  by  different 
 next-generation  sequencing  (NGS)  techniques  like  restriction  site-associated  DNA  sequencing  (RADseq) 
 (Davey  and  Blaxter  2010)  ,  genotyping  by  sequencing  (GBS)  (Elshire  et  al.  2011)  ,  and  whole-genome 
 sequencing  (WGS)  (Huang  et  al.  2009)  .  These  techniques  provide  very  large  numbers  of  markers  and 
 therefore  facilitate  the  construction  of  highly  saturated  genetic  maps.  This  provides  accurate  locations  of 
 recombination  breakpoints  in  each  individual,  which  is  important  for  a  number  of  applications,  e.g.,  studies  of 
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 local  recombination  rate,  genetic  maps  comparison,  or  QTL  detection.  Though  NGS  is  less  and  less  expensive  to 
 implement,  sequencing  a  large  number  of  samples  can  still  be  costly,  and  is  commonly  applied  via  reduced 
 representation (RRS-NGS) or low-coverage (LC-NGS) strategies to reduce genotyping costs. 

 Reducing  sequencing  costs  through  minimized  per-sample  coverage  has  an  important  experimental  downside: 
 LC-NGS mechanically introduces a series of issues, the main ones being: 

 -  Issue  1:  Low  power  to  detect  heterozygosity  under  low  coverage  :  For  example,  if  only  one  sequencing 
 read  is  generated  at  a  locus,  only  one  of  the  two  alleles  is  revealed.  As  each  additional  read  has  a  0.5 
 probability  of  detecting  the  second  allele,  even  3  reads  have  only  0.75  probability  of  detecting  a 
 heterozygous  call.  Spread  over  thousands  of  sites,  extensive  inaccuracy  in  heterozygous  regions  becomes 
 highly problematic. 

 -  Issue  2:  Extensive  genotype  missingness  :  The  sparse  distribution  of  reads  at  low  coverage  (3X  coverage, 
 for  example,  only  implies  an  average  of  3  reads  per  site)  results  in  a  complete  lack  of  reads  at  some 
 variant  loci.  Even  in  plants,  which  contain  more  genetic  variation  than  humans,  there  are  6-22  SNPs  per 
 1 Kb,  resulting  in  abundant  opportunity  for  non-reference  variant  missingness  under  low  coverage  (Xu  et 
 al.  2017)  . 

 -  Issue  3:  Errors  due  to  erroneous  mapping  of  sequencing  reads  :  NGS  technologies  are  based  on  short 
 reads  (e.g.,  150  base  pair,  paired-end  Illumina  technology).  Due  to  the  combinatorial  limitation  of  the 
 sequence  contained  in  short  reads,  multiple  mapping  locations  may  be  identi�ied,  especially  in  plant 
 genomes  which  exhibit  much  more  repetitive  content  than  human  genomes.  Additionally,  in  plants,  such 
 as  rice,  structural  variation  speci�ic  to  subpopulations  may  be  completely  missing  in  single  reference 
 genomes.  These  assembly  errors,  omissions,  and  challenges  posed  by  repetitious  regions  are  sources  of 
 erroneous  variants.  Moreover,  outright  assembly  errors  may  cause  consistent,  yet  locally  encountered 
 genotyping errors. 

 -  Issue  4:  Technical  errors  inherent  to  NGS  methodology  :  Sequencing  errors  may  be  globally  introduced  at 
 a  variety  of  stages  in  the  NGS  pipeline,  from  errors  incurred  in  PCR-dependent  library  construction  to 
 NGS  sequencing  itself.  The  initial  GBS  protocol  is  known  to  generate  libraries  contaminated  by  chimeric 
 inserts  (Heffel�inger  et  al.  2014)  .  Although  rare,  these  errors  may  become  problematic  at  low  coverage,  as 
 additional reads refuting an erroneous call may not be available at a given locus. 

 Common  imputation  algorithms  implemented  in  computer  programs  like  Beagle  (Browning  and  Browning 
 2007;  Browning  et  al.  2021)  or  Impute2  (Howie  et  al.  2012)  ,  although  very  accurate  in  diversity  panels,  are 
 not  well  adapted  to  the  bi-parental  context  since  they  rely  on  large  databases  to  infer  haplotypes.  Ef�icient 
 methods  have  been  recently  developed  to  impute  genotypic  data  derived  from  LC-NGS  assays  in  bi-parental 
 populations.  For  instance,  Tassel-FSFHap  (thereafter  simply  FSFHap)  (Swarts  et  al.  2014)  and  LB-Impute 
 (Fragoso  et  al.  2016)  can  all  address  issues  1  and  2  accurately.  Yet,  these  methods  can  produce  inaccurate 
 results  when  the  errors  mentioned  in  issues  3  and  4  –  thereafter  called  “noisy  data”  –  are  too  frequent.  Thus, 
 these  methods  might  require  additional  bioinformatic  steps  to  �ilter  out  low-quality  markers  before  and  after 
 imputation.  Even  then,  troublesome  markers  might  not  be  detected  easily  and  could  alter  dramatically  the 
 quality of the imputation and the �inal genetic map. 

 In  this  work,  we  present  NOISYmputer,  a  maximum  likelihood  estimation  algorithm  for  imputation  of  LC-NGS 
 data  that  eliminates  the  need  of  complex  pre-�iltering  of  noisy  data,  accurately  �inds  heterozygous 
 chromosomal  regions,  corrects  erroneous  data,  imputes  missing  data  and  precisely  locates  the  recombination 
 breakpoints  (i.e.,  the  meiotic  crossovers).  We  test  its  accuracy  using  simulated  data  and  we  compare  its 
 performance  with  FSFHap,  LB-Impute  using  three  datasets:  (1)  a  rice  F  2  population  sequenced  by  WGS,  (2)  a 
 maize  F  2  population  sequenced  by  GBS  and  (3)  84  simulated  F  2  populations  with  controlled  depth,  error  rate 
 and  marker  density.  The  algorithm  is  implemented  in  NOISYmputer,  a  multiplatform  Java  command  line 
 program (see “Availability” section). 
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 Design and implementation 
 Imputation method 
 In  this  section  we  describe  the  main  imputation  algorithm,  which  is  applied  separately  to  each  chromosome. 
 The  imputation  can  be  preceded  or  followed  by  different  �iltering  options  in  NOISYmputer  (details  in  next 
 section) that can be applied to reduce or eliminate the noise in the data (Figure 1). 

 By  imputation,  we  mean  here  guessing,  con�irming  or  correcting  the  genotype  at  a  SNP  site  in  a  sample. 
 LC-NGS  generates  poor  information  in  heterozygous  regions  (see  explanation  on  the  confounding  effect  in 
 SNPs  with  one  or  few  reads  –  issue  1  of  the  Introduction  section).  Conversely,  homozygous  regions  are  much 
 less  prone  to  these  confounding  effects.  Yet,  missing  data  (issue  2),  noisiness  (issue  3)  and  sequencing  errors 
 (issue  4)  can  lower  the  power  to  identify  homozygous  diplotypes  (  i.e.,  the  combination  of  two  gametic 
 haplotypes).  The  general  idea  of  the  algorithm  is,  like  in  Hidden  Markov  Model  (HMM),  to  use  information  of 
 various  SNPs  around  the  imputed  SNP,  leaving  unimputed  the  regions  surrounding  the  recombination 
 breakpoints  laying  between  the  two  diplotypes.  The  locations  of  the  recombination  breakpoints  are  then 
 inferred.  Furthermore,  instead  of  modeling  error  rates,  we  take  an  iterative  approach  to  estimate  them  (Figure 
 1). 

 Imputation - Step 1: Genotype calling 
 Let’s  consider  a  chromosome  of  an  F  2  individual  with  one  single  recombination  breakpoint  that  separates  a 
 homozygous  diplotype  (AA;  BB)  from  a  heterozygous  diplotype  (AB,  or  BA,  equivalent  thereafter).  Let’s  also 
 consider  a  set  of  SNPs  evenly  dispersed  on  the  physical  genome,  say,  every  500  base  pairs  (bp).  In  the  AA 
 diplotype,  and  far  from  the  breakpoint  location,  all  SNPs  should  be  genotyped  as  AA,  except  from  the  different 
 kinds  of  errors  cited  above.  To  determine  the  genotype  of  a  particular  SNP,  and  due  to  these  errors,  one  must 
 consider  not  only  its  score  in  the  VCF,  but  also  its  immediate  “environment”,  that  is,  the  SNPs  that  are  located 
 just  before  and  just  after  it  along  the  chromosome.  Those  surrounding  SNPs  help  identify  a  potential  error  in 
 the  SNP  scoring.  Different  approaches  can  be  taken  to  look  at  the  SNP  environment.  In  segregating 
 populations,  the  vast  majority  of  the  genome  is  exempt  from  crossing  overs.  Indeed,  when  implementing  a 
 sliding  window  method  like  described  hereby,  the  expected  proportion  of  the  genome  with  no  recombination 
 in  the  window  is  ,  where  is  the  number  of  SNPs  in  the  sliding  window,  is  𝑃 

 𝑛𝑜𝑋𝑂 
 ≈1 −  1 

 100  𝑁 ( ) 𝐷 ( 8  𝑚 −  2 )  𝑚  𝑁 
 the  total  number  of  SNPs,  and  is  the  expected  genome  size  in  centimorgans  (cM).  Hence,  in  almost  the  entire  𝐷 
 genome  except  the  breakpoint  regions  there  are  only  two  or  three  possible  diplotypes,  depending  on  the 
 population  type.  Thus,  instead  of  calculating  all  the  likelihoods  of  possible  paths  (like  in  Hidden  Markov  Model 
 methods),  the  problem  is  reduced  to  calculate  the  likelihoods  of  the  data  for  the  three  possible  diplotypes. 
 Furthermore,  there  is  no  need  to  include  transition  (  i.e.  ,  recombination)  probabilities.  The  main  advantage  of 
 this  approach  is  its  computation  time,  which  increases  linearly  according  to  the  diplotype  size,  while  the  time 
 complexity  is  O  (  T  x  S  2  )  for  the  Viterbi  algorithm  applied  to  resolve  fully  connected  Hidden  Markov  Model 
 processes,  with  T  being  the  length  of  the  sequence  of  observations  and  S  being  the  number  of  hidden  states. 
 We now describe the algorithm with the example of an F  2  population. 

 In  practice,  one  de�ines  starting  values  for  error  rates  for  reads  A  (  )  and  B  (  ),  being  respectively  the  𝑒 
 𝐴 

 𝑒 
 𝐵 

 probability  of  observing  a  B  read  (  )  whereas  the  genotype  is  truly  AA  and  observing  an  A  read  (  )  whereas  𝑂 
 𝐵 

 𝑂 
 𝐴 

 the genotype is truly a BB 

 𝑒 
 𝐴 

   =  𝑝  𝑂 
 𝐵 

 |  𝐴𝐴 ( )  𝑒 
 𝐵 

=  𝑝  𝑂 
 𝐴 

 |  𝐵𝐵 ( )
 We  allow  different  error  rates  for  A  and  B  reads  since  the  A  and  B  parents  are  generally  not  equally 
 (genetically)  distant  from  the  reference  genome.  For  example,  once  could  set  and  if  𝑒 

 𝐴 
=  0 .  005  𝑒 

 𝐵 
=  0 .  003 

 Parent  B  is  closer  genetically  to  the  Reference  genome  than  Parent  A  is.  Those  values  will  be  automatically 
 re�ined after one or several rounds of imputation. 

 Thus, at homozygous sites, the probability of observing an A read if the true genotype is AA is 

 𝑝  𝑂 
 𝐴 

 |  𝐴𝐴 ( ) =  1 −  𝑒 
 𝐴 
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 Figure 1.  NOISYmputer’s  workflow.  It  is  composed  of  three  major  phases:  pre-imputation,  imputation  and  post-imputation.  Some 
 steps are optional (dashed borders) while others are required for the algorithm to complete. 
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 and the probability of observing a B read if the true genotype is BB is 

    𝑝  𝑂 
 𝐵 

 |  𝐵𝐵 ( ) =  1 −  𝑒 
 𝐵 

 At  heterozygous  (AB)  sites,  and  assuming  that  the  A  and  B  reads  have  the  same  chance  to  occur,  the 
 probabilities of observing A and B reads are 

 𝑝  𝑂 
 𝐴 

 |  𝐴𝐵 ( ) =  1 
 2     𝑝 ( 𝑂 

 𝐴 
 |  𝐴𝐴 ) +  1 

 2     𝑝 ( 𝑂 
 𝐴 

 |  𝐵𝐵 ) =     1 
 2    ( 1 −  𝑒 

 𝐴 
)   +     1 

 2     𝑒 
 𝐵 

 𝑝  𝑂 
 𝐵 

 |  𝐴𝐵 ( ) =  1 
 2     𝑝 ( 𝑂 

 𝐵 
 |  𝐵𝐵 ) +  1 

 2     𝑝 ( 𝑂 
 𝐵 

 |  𝐴𝐴 ) =     1 
 2    ( 1 −  𝑒 

 𝐵 
)   +     1 

 2     𝑒 
 𝐴 

   

 Let’s  consider  a  chromosome  with  SNPs.  For  each  site  of  the  chromosome,  we  de�ine  a  symmetrical  𝑛  𝑆𝑁  𝑃 
 𝑗 

 window  (  )  containing  the  at  its  center,  SNPs  before  it  in  the  sequence  and  SNPs  after  it  (with  read  𝑊 
 𝑗 

 𝑆𝑁  𝑃 
 𝑗 

 𝑚  𝑚 
 count  >  0).  SNPs  that  are  located  in  chromosome  ends  are  omitted,  since  it  is  not  possible  to  de�ine 
 symmetrical windows around them. This case is discussed later on. 

 For  each  site  of  the  window  three  situations  are  possible:  i)  the  genotype  of  the  is  AA  𝑆𝑁  𝑃 
 𝑖 

 𝑊 
 𝑗 

 𝐺 
 𝑖 

 𝑆𝑁  𝑃 
 𝑖 

 (homozygous  for  parent  A  allele),  ii)  the  genotype  is  BB  (homozygous  for  parent  B  allele)  or  iii)  the  𝐺 
 𝑖 

 genotype  is AB (heterozygous).  𝐺 
 𝑖 

 By  using  the  binomial  distribution  with  sample  size  equal  to  and  the  number  of  successes  equal  to  (and  𝑛 
 𝑖 

 𝑛𝐴 
 𝑖 

 thus  of  fails  equal  to  ),  we  estimate  the  likelihood  of  observing  a  given  combination  of  reads  (  and  𝑛𝐵 
 𝑖 

 𝑛  𝐴 
 𝑖 

    𝑛  𝐵 
 𝑖 

 as  )  at  ,  knowing  already  the  probability  of  observing  A  reads  under  the  three  possible     𝑛 
 𝑖 

=     𝑛  𝐴 
 𝑖    

+     𝑛  𝐵 
 𝑖 

 𝑆𝑁  𝑃 
 𝑖 

 genotypes: 

 𝑃 [ 𝑛  𝐴 
 𝑖 
    |     𝑝 ( 𝑂 

 𝐴 
 |     𝐴𝐴 )] =

 𝑛 
 𝑖 

 𝑛  𝐴 
 𝑖 ( )     𝑝 ( 𝑂 

 𝐴 
    |     𝐴𝐴 ) 𝑛  𝐴 

 𝑖    ( 1 −  𝑝 ( 𝑂 
 𝐴 

    |     𝐴𝐴 ) 𝑛 
 𝑖 
−    𝑛  𝐴 

 𝑖    =
 𝑛 

 𝑖 
 𝑛  𝐴 

 𝑖 ( )     𝑝 ( 𝑂 
 𝐴 

    |     𝐴𝐴 ) 𝑛  𝐴 
 𝑖     𝑝 ( 𝑂 

 𝐵 
    |     𝐴𝐴 ) 𝑛  𝐵 

 𝑖    

 𝑃 [ 𝑛  𝐴 
 𝑖 
    |     𝑝 ( 𝑂 

 𝐴 
 |     𝐵𝐵 )] =

 𝑛 
 𝑖 

 𝑛  𝐴 
 𝑖 ( )     𝑝 ( 𝑂 

 𝐴 
    |     𝐵𝐵 ) 𝑛  𝐴 

 𝑖    ( 1 −  𝑝 ( 𝑂 
 𝐴 

    |     𝐵𝐵 ) 𝑛 
 𝑖 
−    𝑛  𝐴 

 𝑖    =
 𝑛 

 𝑖 
 𝑛  𝐴 

 𝑖 ( )     𝑝 ( 𝑂 
 𝐴 

    |     𝐵𝐵 ) 𝑛  𝐴 
 𝑖     𝑝 ( 𝑂 

 𝐵 
    |     𝐵𝐵 ) 𝑛  𝐵 

 𝑖 

 𝑃 [ 𝑛  𝐴 
 𝑖 
    |     𝑝 ( 𝑂 

 𝐴 
 |     𝐴𝐵 )] =

 𝑛 
 𝑖 

 𝑛  𝐴 
 𝑖 ( )     𝑝 ( 𝑂 

 𝐴 
    |     𝐴𝐵 ) 𝑛  𝐴 

 𝑖    ( 1 −  𝑝 ( 𝑂 
 𝐴 

    |     𝐴𝐵 ) 𝑛 
 𝑖 
−    𝑛  𝐴 

 𝑖    =
 𝑛 

 𝑖 
 𝑛  𝐴 

 𝑖 ( )  𝑝 ( 𝑂 
 𝐴 

    |     𝐴𝐵 ) 𝑛  𝐴 
 𝑖     𝑝 ( 𝑂 

 𝐵 
    |     𝐴𝐵 ) 𝑛  𝐵 

 𝑖 

 Since  the  binomial  factor  is  the  same  for  the  three  possible  genotypes,  it  can  be  omitted  in  the  calculations. 
 Then, individual relative probabilities that the genotype  of the  is AA, BB or AB are de�ined as:  𝐺 

 𝑖 
 𝑆𝑁  𝑃 

 𝑖 

 𝑝  𝐺 
 𝑖 

=  𝑋 ( ) =  𝑃 [ 𝑛  𝐴 
 𝑖 
    |     𝑝 ( 𝑂 

 𝐴 
    |     𝑋 )]    /    

 𝑋 
∑  𝑃 [ 𝑛  𝐴 

 𝑖 
    |     𝑝 ( 𝑂 

 𝐴 
    |     𝑋 )],     𝑤𝑖𝑡ℎ     𝑋 =  𝐴𝐴 ,     𝐵𝐵 ,     𝐴𝐵 

 The  probabilities  for  the  window’s  diplotype  around  the  to  be  AA,  BB  or  AB  are  obtained  by  multiplying  𝑆𝑁  𝑃 
 𝑗 

 the  individual  probabilities  of  all  the  SNPs  in  the  window.  As  multiplication  of  probabilities  can  result  in  very 
 small numbers, we add their logarithms instead to avoid reaching the precision limit of the computer: 

ρ
 𝑋 

=
 𝑖    =    𝑆𝑁  𝑃 

 𝑗 
−    𝑚 

 𝑆𝑁  𝑃 
 𝑗 
   +    𝑚 

∑  𝑙𝑜𝑔  𝑝  𝐺 
 𝑖 

=  𝑋 ( )[ ],     𝑤𝑖𝑡ℎ     𝑋    =     𝐴𝐴 ,     𝐵𝐵 ,     𝐴𝐵 

 Finally, the relative probabilities for the window’s  around the  to be  AA, BB or AB are de�ined as:  𝑊 
 𝑗 

 𝑆𝑁  𝑃 
 𝑗 

 𝑃  𝑊 
 𝑗 

=  𝐴𝐴 ( ) =  𝑒𝑥𝑝 ρ
 𝐴𝐴 ( ) /  𝑒𝑥𝑝 ρ

 𝐴𝐴 ( ) +  𝑒𝑥𝑝 ρ
 𝐵𝐵 ( ) +  𝑒𝑥𝑝 ρ

 𝐴𝐵 ( )( )
 𝑃  𝑊 

 𝑗 
=  𝐵𝐵 ( ) =  𝑒𝑥𝑝 ρ

 𝐵𝐵 ( ) /  𝑒𝑥𝑝 ρ
 𝐴𝐴 ( ) +  𝑒𝑥𝑝 ρ

 𝐵𝐵 ( ) +  𝑒𝑥𝑝 ρ
 𝐴𝐵 ( )( )
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 𝑃  𝑊 
 𝑗 

=  𝐴𝐵 ( ) =  𝑒𝑥𝑝 ρ
 𝐴𝐵 ( ) /  𝑒𝑥𝑝 ρ

 𝐴𝐴 ( ) +  𝑒𝑥𝑝 ρ
 𝐵𝐵 ( ) +  𝑒𝑥𝑝 ρ

 𝐴𝐵 ( )( )
 A  genotype  is  assigned  to  the  SNP  if  the  relative  probability  of  its  surrounding  window  is  superior  to  a  given  𝑗 
 threshold  .  To  guarantee  that  no  SNP  is  falsely  genotyped,  the  threshold  is  set  to  a  very  stringent  value  α α
 (0.999 by default). SNPs with  for all genotypes are assigned a missing data value.  𝑃  𝑊 

 𝑗 ( ) <  α    

 We  repeat  the  process  for  each  SNP  of  the  chromosome.  For  chromosome  ends,  the  procedure  is  similar  𝑗 
 except  that  the  half-window  on  the  end  side  is  smaller  due  to  the  lack  of  sites  available  to  the  left  or  right  of 

 .  𝑆𝑁  𝑃 
 𝑗 

 This  leaves  two  types  of  chromosomal  regions  unimputed  and  �illed  with  missing  data:  1) regions  between 
 imputed  chromosome  segments  with  identical  diplotypes  and  for  which  none  of  the  criteria  are  matched  to 
 assign a genotype, and 2) regions near recombination breakpoints. 

 Imputation - Step 2: Gap �illing and error rate estimation 
 Step  2  consists  in  (i)  �illing  the  unimputed  regions  with  the  surrounding  genotype,  with  the  condition  that  they 
 are surrounded (left and right) by identical imputed genotypes, then (ii) re-estimating error rates. 

 The  �illing  procedure  assumes  that  a  double  recombination  event  is  very  unlikely.  The  maximum  region  size 
 that  is  allowed  for  data  �illing  can  be  calculated  using  the  local  recombination  rate,  which  is  calculated  from 
 the  data  of  the  entire  F  2  population,  imputed  from  Step  1.  So,  regions  larger  than  the  maximum  size  are  left 
 unimputed.  It  is  desirable  to  use  an  interference  model  to  estimate  the  distances  (in  cM),  for  instance  the  one 
 implemented  in  the  Kosambi  mapping  function  (Kosambi  1944)  .  The  method  employed  in  NOISYmputer  to 
 estimate  recombination  fractions  in  F  2  populations  is  the  standard  Expectation-Maximization  algorithm 
 (Dempster  et al.  1977)  . 

 Let’s  take  the  example  of  two  SNPs  A  and  C  that  de�ine  the  bounds  of  such  a  region.  They  are  separated  by  the 
 genetic  distance  (cM).  The  maximum  probability  of  a  double  crossover  can  be  calculated  as  follows.  We  �irst  𝑑 
 search  for  the  SNP  B  that  is  the  closest  to  the  middle  point  between  A  and  C  (in  cM).  Then,  we  calculate  the 
 recombination fractions  and  from  and  using the inverse of the Kosambi mapping function  𝑟 

 𝐴𝐵 
 𝑟 

 𝐵𝐶 
 𝑑 

 𝐴𝐵 
 𝑑 

 𝐵𝐶 

 𝑟 =  1 
 2  𝑡𝑎𝑛ℎ  2  𝑑  /100 ( )

 Note  that  when  cM.  In  the  case  of  highly  saturated  maps,  this  formula  can  be  used  in  most  𝑟  ≈  𝑑 
 100  𝑑 <  15 

 intervals. 

 Then the maximum probability of the missing data to be different to the surrounding genotype is 

 if SNPs A and C are homozygous  𝑟 
 𝐴𝐵𝐶 

=  𝑟 
 𝐴𝐵 

 𝑟 
 𝐵𝐶 

+  𝑟 
 𝐴𝐵 

 2  𝑟 
 𝐵𝐶 

 2 ≈  𝑟 
 𝐴𝐵 

    𝑟 
 𝐵𝐶 

   

 if SNPs A and C are heterozygous  𝑟 
 𝐴𝐵𝐶 

=  2     𝑟 
 𝐴𝐵 

 𝑟 
 𝐵𝐶 

+  𝑟 
 𝐴𝐵 

 2  𝑟 
 𝐵𝐶 

 2     ≈     2     𝑟 
 𝐴𝐵 

 𝑟 
 𝐵𝐶 

   

 The regions for which  are �illed with the surrounding genotype;  is set to 0.001 by default.  𝑟 
 𝐴𝐵𝐶 

 ≤α α

 This step leaves the breakpoint regions unimputed. 

 We  can  then  estimate  new  values  for  and  by  comparing  the  observed  data  with  the  newly  imputed  𝑒 
 𝐴 

 𝑒 
 𝐵 

 regions.  This  is  done  by  simply  counting  the  proportion  of  A  reads  in  BB-imputed  segments,  and  the 
 proportion of B reads in AA-imputed segments. 

 Imputation - Step 3: Locating recombination breakpoints 
 Step  3  consists  in  imputing  the  SNP  genotypes  in  the  regions  near  the  recombination  breakpoints  –  i.e., 
 between  diplotypes  of  different  states.  The  general  idea  is  to  determine  an  interval  of  high  probability  of 
 presence  (loose  support  interval)  of  the  breakpoint,  then  to  calculate  the  likelihood  of  the  data  under  the 
 hypothesis of a recombined segment. 
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 This  procedure  allows  determining  with  high  con�idence  a  loose  support  interval  where  the  recombination 
 breakpoint  is  located.  Here  we  take  the  example  of  a  segment  BB  to  the  left  of  the  breakpoint  and  a  segment 
 AB  to  the  right.  Since  we  already  know  from  Step  1  which  are  the  two  genotypes  at  the  left  and  the  right  of  the 
 breakpoint,  we  only  need  to  consider  the  only  two  possible  diplotypes,  BB  and  AB.  This  saves  one  degree  of 
 freedom. 

 If  de�ines  the  closest  SNP  position  to  the  point  where  in  Step  1,  we  take  𝑘  𝑝  𝑊 
 𝑗 

=  𝐵𝐵 ( ) =  𝑝  𝑊 
 𝑗 

=  𝐴𝐵 ( )  𝑘 −  2  𝑚 
 and  as  starting  points  to  guarantee  that  the  breakpoint  is  covered  by  the  interval.  Then,  for  each  𝑘 +  2  𝑚  𝑆𝑁  𝑃 

 𝑗 
 of  the  scanned  area,  we  recalculate  and  ,  but  this  time  in  asymmetric  windows  of  size  𝑝  𝑊 

 𝑗 
=  𝐵𝐵 ( )  𝑝  𝑊 

 𝑗 
=  𝐴𝐵 ( )

 ,  that  is,  for  BB,  we  de�ine  a  window  from  to  and  for  AB  a  window  from  to  .  𝑚  𝑆𝑁  𝑃 
 𝑗 

 𝑆𝑁  𝑃 
 𝑗 

+  𝑚  𝑆𝑁  𝑃 
 𝑗 

−  𝑚  𝑆𝑁  𝑃 
 𝑗 

 And then, following calculations similar to Step 1 but omitting the probabilities for the AA genotype: 

 in the B window  𝑝  𝑊 
 𝑗 

=  𝐵𝐵 ( ) =  𝑒𝑥𝑝 ρ
 𝐵𝐵 ( ) /  𝑒𝑥𝑝 ρ

 𝐵𝐵 ( ) +  𝑒𝑥𝑝 ρ
 𝐴𝐵 ( )( )

 in the H window  𝑝  𝑊 
 𝑗 

=  𝐴𝐵 ( ) =  𝑒𝑥𝑝 ρ
 𝐴𝐵 ( ) /  𝑒𝑥𝑝 ρ

 𝐵𝐵 ( ) +  𝑒𝑥𝑝 ρ
 𝐴𝐵 ( )( )

 Starting from  , and progressing to the right, we look for the �irst site  for which :  𝑘 −  2  𝑚  𝑆𝑁  𝑃 
 𝑗 

 , with  = 0.05 by default.  𝑃 
 𝑆𝐼 

=  1 −  𝑝  𝑊 
 𝑗 

=  𝐵𝐵 ( )( )  1 −  𝑝  𝑊 
 𝑗 

=  𝐴𝐵 ( )( ) > α
 𝑆𝐼 

α
 𝑆𝐼 

 The  breakpoint  loose  support  interval  is  de�ined  between  the  �irst  position  from  the  left  and  from  right ( 𝑘 
 𝐿 
)

 where  . ( 𝑘 
 𝑅 

)  𝑃 
 𝑆𝐼 

> α
 𝑆𝐼 

 T  he  breakpoint  support  interval  and  position  are  then  estimated  within  the  loose  support  interval.  To  do  so, 
 for  each  in  the  breakpoint  interval  to  ,  a  probability  that  the  diplotype’s  window  contains  a  𝑆𝑁  𝑃 

 𝑗 
 𝑘 

 𝐿 
 𝑘 

 𝑅 
 𝑃 

 𝑏𝑘𝑝 
 breakpoint  in  its  middle  is  estimated.  We  de�ine  a  left  window  for  that  includes  the  and  𝑝 

 𝑏𝑘𝑝 
 𝑊 

 𝑗 
=  𝐵𝐵 ( )    𝑆𝑁  𝑃 

 𝑗 
 goes  to  the  left  until  the  window’s  data  count  reaches  SNPs  with  at  least  one  read  (the  left  boundary  of  𝑚  /2 
 this  window  is  called  )  and  a  right  window  for  that  starts  at  and  goes  to  the  right  𝑚 

 𝐿 
 𝑝 

 𝑏𝑘𝑝 
 𝑊 

 𝑗 
=  𝐴𝐵 ( )    𝑆𝑁  𝑃 

 𝑗 
+  1 

 until  the  window’s  data  count  reaches  SNPs  with  at  least  one  read  (the  right  boundary  of  this  window  is  𝑚  /2 
 called  ). Values of  and  are recalculated for each  .  𝑚 

 𝑅 
 𝑚 

 𝐿 
 𝑚 

 𝑅 
 𝑆𝑁  𝑃 

 𝑗 

 The log-probabilities for the left and right segments are: 

ρ
 𝑏𝑘𝑝 

 𝑊 
 𝑗 

=  𝐵𝐵 ( ) =
 𝑖 = 𝑚 

 𝐿 

 𝑗 

∑  𝑙𝑜𝑔  𝑝  𝐺 
 𝑖 

=  𝐵𝐵 ( )[ ]

ρ
 𝑏𝑘𝑝 

 𝑊 
 𝑗 

=  𝐴𝐵 ( ) =
 𝑖 = 𝑗 + 1 

 𝑚 
 𝑅 

∑  𝑙𝑜𝑔  𝑝  𝐺 
 𝑖 

=  𝐴𝐵 ( )[ ]
 Then, the probability that the  and  are surrounding the breakpoint is:  𝑆𝑁  𝑃 

 𝑗 
 𝑆𝑁  𝑃 

 𝑗 + 1 

 𝑝 
 𝑏𝑘𝑝 

 𝐵𝐾 
 𝑗 ( ) =  𝑒𝑥𝑝 ρ

 𝑏𝑘𝑝 
 𝑊 

 𝑗 
=  𝐵𝐵 ( ) + ρ

 𝑏𝑘𝑝 
 𝑊 

 𝑗 
=  𝐴𝐵 ( )( )

 And after normalization: 

 𝑃 
 𝑏𝑘𝑝 

 𝐵𝐾 
 𝑗 ( ) =  𝑝 

 𝑏𝑘𝑝 
( 𝐵𝐾 

 𝑗 
)    /  𝑚𝑎𝑥  𝑝 

 𝑏𝑘𝑝 
 𝐵𝐾 

 𝑧 ( ):  𝑧 =  𝑘 
 𝐿 
,  … ,  𝑘 

 𝑅 ( )
 The  breakpoint  is  estimated  in  the  middle  of  the  interval  de�ined  by  the  SNP  having  the  maximal  𝑃 

 𝑏𝑘𝑝 
( 𝐵𝐾 

 𝑗 
)

 and the next SNP to its right. 

 Finally,  the  unimputed  genotypes  in  the  breakpoint  area  are  completed  in  assigning  the  BB  genotype  to  the 
 SNPs to the left of the SNP with the max  (included) and AB to the right.  𝑃 

 𝑏𝑘𝑝 
( 𝐵𝐾 

 𝑗 
)
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 Imputation  of  breakpoint  positions  for  the  other  types  of  homozygous-heterozygous  transitions  (AB  →  BB, 

 AA  →  AB, AB  →  AA) are easily derived from the example beforehand. 

 The  support  interval  for  the  breakpoint  around  its  most  likely  position  can  be  de�ined  in  searching  for  the 
 SNPs  (left  and  right  starting  from  the  SNP  with  the  maximum  )  for  which  𝑃 

 𝑏𝑘𝑝 
( 𝐵𝐾 

 𝑗 
) −  𝑙𝑜𝑔 

 10 
 𝑃 

 𝑏𝑘𝑝 
 𝐵𝐾 

 𝑗 ( )( ) ≥ α
 𝑑𝑟𝑜𝑝 

 ,  where  is  the  dropping  value  of  .  is  set  to  1  by  default,  corresponding  to  ten-fold  decrease  of α
 𝑑𝑟𝑜𝑝 

 𝑃 
 𝑏𝑘𝑝 

α
 𝑑𝑟𝑜𝑝 

 compared with  .  𝑃 
 𝑏𝑘𝑝 

 𝑃 
 𝑏𝑘𝑝 

 𝐵𝐾 
 𝑗 ( )

 Filtering options – before imputation 

 Genotypic frequencies, heterozygosity, missing data 
 The  program  can  �ilter  out  SNPs  for  parental  genotypes,  and  progeny  heterozygosity,  percentage  of  missing 
 data  and  parental  genotypic  frequencies.  Min  and  max  �iltering  values  can  be  manually  entered  (though 
 usually  not  recommended),  or  the  program  can  calculate  them  from  the  genotype  matrix  imported  from  the 
 VCF.  In  this  case,  genotypic  frequencies  are  calculated  for  each  SNP,  and  the  �ilter  values  are  derived  from  the 
 extreme  percentiles  of  the  frequency  distribution.  Correction  factors  can  be  applied  to  the  percentiles,  to  avoid 
 too small or too large values. 

 Read counts 
 SNPs  with  too  few  or  too  many  reads  can  be  eliminated.  This  can  be  useful  to,  for  instance,  remove  SNPs  in 
 duplicated regions. 

 Incoherent SNPs 
 In  sequence-based  genetic  mapping,  it  is  common  to  observe  SNPs  that  do  not  segregate  the  same  way  as  their 
 immediate  environment,  indicating  a  probable  mapping  error  due  to,  for  instance,  structural  variation 
 between  the  reference  genome  and  the  population  parents,  or  between  the  parents,  or  both.  As  segregation 
 distortion  is  a  frequent  phenomenon  in  many  organisms,  the  Mendelian  expected  frequencies  cannot  be  used 
 to  analyze  the  SNP  segregation.  Instead,  the  procedure  de�ines  a  window  of  SNPs  around  each  tested  locus.  𝑛 
 By  default,  =1%  the  number  of  SNPs  in  the  largest  chromosome.  For  each  window/SNP  couple,  it  calculates  𝑛 
 the  genotypes  AA,  BB  and  AB  frequencies  and  the  reads  A  and  B  frequencies  across  the  population  from  the 
 genotypes  called  in  the  VCF  and  compares  the  SNP  with  the  window  segregation  of  genotypes  and  reads  using 
 a  chi-square  test,  where  expected  counts  are  the  observed  frequencies  in  the  window  multiplied  by  the 
 population  size.  It  then  �ilters  out  SNPs  for  which  the  chi-square  statistic  exceeds  a  de�ined  threshold  for 
 genotypes or reads frequencies. 

 Filtering options – after imputation 

 Incoherent chromosome segments (single individual) 
 Even  after  imputation  and  the  different  �iltering  operations,  some  few,  improbable  chromosome  short 
 diplotypes  can  still  remain  in  the  imputed  matrix  –  we  call  them  “small  chunks”.  The  procedure  identi�ies  each 
 small  chunk  composed  of  identical  alleles,  embedded  in  a  homogeneous  genomic  environment  that  has  a 
 different allele. The method resembles the one used in Imputation - Step2. 

 Consider  two  SNPs  A  and  C  that  de�ine  the  bounds  of  a  region  imputed  as  H  and  surrounded  by  regions 
 imputed  as  A  or  B.  Search  for  the  SNP  B  that  is  the  closest  to  the  middle  point  between  A  and  C  (in  cM).  Also 
 search for an SNP D before the SNP A so that  , and an SNP E  after  the SNP C so that  .  𝑑 

 𝐷𝐴 
 ~  𝑑 

 𝐴𝐵 
 𝑑 

 𝐶𝐸 
 ~  𝑑 

 𝐵𝐶 

 Then,  calculate  the  recombination  fractions  and  from  and  using  the  inverse  of  the  Kosambi  𝑟 
 𝐷𝐵 

 𝑟 
 𝐵𝐸 

 𝑑 
 𝐷𝐵 

 𝑑 
 𝐵𝐸 

 mapping  function.  Then  the  maximum  probability  of  the  “chunk”  to  be  different  to  the  surrounding  genotype 
 is 
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 𝑟 
 𝐴𝐵𝐶 

=  𝑟 
 𝐷𝐵 

 𝑟 
 𝐵𝐸 

 The chunks for which  are restored with the surrounding genotype;  is set to 0.001 by default.  𝑟 
 𝐴𝐵𝐶 

 ≤     α α

 Incoherent chromosome segments (cross-population) 
 Entire  chromosome  segments  can  be  misplaced  due  to  different  kinds  of  genomic  structural  variation  such  as 
 translocation,  or  duplication  in  one  of  the  two  parents  that  is  not  present  in  the  reference  genome.  Such 
 segments  are  called  “aliens”  in  the  program.  If  their  size  is  too  large,  the  chi-square  procedure  that  �ilters  out 
 the  incoherent  SNPs  may  fail  to  identify  them  since  it  is  run  before  the  imputation.  Alien  segments  are  easily 
 detected,  as  they  produce  severe  map  expansion.  The  procedure  searches  for  SNPs  that  mark  rapid  changes  in 
 the  slope  of  the  cumulated  centimorgans  of  the  genetic  map  calculated  from  the  imputed  matrix.  If  a  SNP 
 marker  is  detected,  the  procedure  then  searches  for  the  next  SNP  that  is  closely  linked  (by  default  r  <  0.01)  to 
 the SNP located just before the slope change. It then eliminates all the SNPs that are in-between. 

 Running the program 
 Algorithm implementation 
 The  program  is  implemented  in  Java,  as  a  Spring  Boot  (v2.6.7)  project.  Spring  Boot  is  an  open-source  Java 
 framework  used  to  create  standalone  java  applications.  The  executable  .jar  has  been  built  with  JDK  8  using 
 Maven (v3.9.6), an open-source build tool. 

 Paths  to  data�iles  and  working  folders  paths,  as  well  as  parameters  for  imputation  and  �iltering  can  be  entered 
 in  a  con�ig  �ile  or  directly  in  the  command  line.  A  “NOISYmputerResults”  folder  is  automatically  created,  where 
 the program writes all the output �iles. 

 Data speci�ications 
 In  this  current  version,  NOISYmputer  is  built  and  extensively  tested  to  perform  on  F  2  intercross  data,  that  is, 
 the  progeny  from  F  1  self-fertilization  (F  2  ).  NOISYmputer  can  also  be  used  on  recombinant  inbred  lines  by 
 single seed descent from the F  2  (SSD). 

 Input  data  for  NOISYmputer  are  standard  Variant  Call  Format  (VCF)  �iles,  with  chromosome  coordinates. 
 Genotypes  (GT  �ield)  and  allele  depths  (AD  �ield)  must  be  present  in  the  VCFs.  The  data  should  be  low 
 coverage,  that  is,  the  sum  of  all  sequences  produced  per  sample  is  equivalent  to  1-3  times  (1-3  X)  the  size  of 
 the  reference  genome  used.  Ideally,  the  VCF  should  contain  only  bi-allelic  single-nucleotide  polymorphisms 
 (SNPs),  however  NOISYmputer  automatically  �ilters  out  the  other  types  of  sites.  Small  indels  are  not  handled. 
 Parental  lines  need  to  be  included  in  the  VCF  �ile  with  the  pre�ix  “Parent”  in  their  name.  Compressed  “.gz”  VCFs 
 are accepted. 

 Results 
 NOISYmputer,  FSFHap  and  LB-Impute  were  run  on  the  IFB  Core  cluster  (specs.  available  at 
 https://i�b-elixirfr.gitlab.io/cluster/doc/cluster-desc/  )  with  one  allocated  node  per  job  and  32GB  to  64GB  of 
 RAM to make sure that the tested programs are fully ef�icient. 

 Details on parameters used for the three imputation methods are provided in Supplementary Data 1. 

 Using simulations for calibration 
 To  test  NOISYmputer’s  accuracy  and  precision  in  breakpoints  estimation,  we  used  simulated  F  2  datasets 
 generated  using  PopSimul  (  https://forge.ird.fr/diade/recombination_landscape/popsimul  ).  A  set  of  84  VCFs 
 with  samples  and  varying  values  of  marker  density,  mean  depth  and  error  rate  were  generated  for  a  𝑛 =  300 
 �inal  expected  map  size  of  180  cM  (corresponding  to  an  average  of  3.6  breakpoints  per  sample)  to  mimic  the 
 chromosome  1  of  rice.  Using  �ive  different  imputation  window  sizes,  we  compared  the  outputs  of 
 NOISYmputer to the known positions of breakpoints in the simulated data. In total, a set of 420 combinations 
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 Table  1.  Parameter  values  used  in  PopSimul  to  generate  simulated  F  2  VCFs:  marker  density,  mean  depth  and  error  rate.  All 
 possible combinations of these parameters were tested and imputed using a range of imputation windows in NOISYmputer. 

 Parameters  Marker density (in 
 number of markers 
 along the chromosome) 

 Mean depth (in X)  Error rate  NOISYmputer impute 
 half window size 

 Tested values  220,000 
 180,000 
 100,000 
 66,000 

 0.5 
 1 
 1.5 
 2 
 2.5 
 3 
 4 

 0.05 
 0.01 
 0.005 

 15 
 20 
 30 
 50 
 100 

 were  analyzed.  All  combinations  and  tested  parameters  are  listed  in  Table  1.  The  results  of  these  analyses 
 con�irmed  that  NOISYmputer  ef�iciently  detects  the  recombination  breakpoints  and  precisely  estimates  their 
 positions. 

 Breakpoint detection power 
 We  assessed  NOISYmputer’s  ability  to  correctly  detect  all  breakpoints  within  samples  by  comparing  positions 
 of  breakpoints  found  by  NOISYmputer  to  those  of  simulated  datasets.  We  considered  a  breakpoint  correct 
 when  the  simulated  breakpoint  position  falls  within  NOISYmputer's  loose  support  interval,  along  with  the 
 correct transition type. 

 Across  all  420  VCFs,  representing  an  average  of  455,000  breakpoints,  NOISYmputer  demonstrated  robust 
 detection  power,  correctly  �inding  99.5%  of  simulated  breakpoints  (median  at  99.6%).  NOISYmputer  also 
 displayed  high  accuracy  as,  on  average,  98.9%  of  breakpoints  identi�ied  correspond  to  actual  breakpoints 
 (with  a  median  at  100%).  Thus,  NOISYmputer  presents  an  overall  excellent  accuracy  and  power  in  detecting 
 breakpoints. 

 To  better  understand  the  impact  of  each  parameter  and  their  interaction  on  NOISYmputer  performance,  we 
 performed  a  principal  component  analysis  (PCA)  on  parameters  and  performance  indicators.  Accuracy  was 
 primarily  in�luenced  by  error  rates,  but  was  also  affected  by  the  imputation  window  size  when  excessively 
 large.  Conversely,  smaller  window  sizes  enhanced  detection  power.  Also,  higher  marker  density  correlated 
 with  improved  detection  power,  as  lower  densities  limit  NOISYmputer's  ability  to  identify  breakpoints  in 
 regions with high recombination rates. 

 Some  speci�ic  combinations  decreased  NOISYmputer  detection  accuracy  and/or  power  but  overall  the  lower 
 performances  were  still  acceptable.  For  instance,  the  lowest  accuracy  was  of  72.3%  (with  error  rates  at  0.05 
 and  smaller  imputation  window  size  of  15),  and  the  lowest  power  was  of  96.9%  (with  larger  imputation 
 window  size  of  100).  This  is  expected  as  small  windows  with  high  levels  of  noise  are  prone  to  false  positive 
 breakpoints.  On  the  other  hand,  large  windows  (especially  if  coupled  with  low  depth  or  marker  density)  may 
 miss  double  recombination  events,  leading  to  false  negatives  (Figure  2  A  and  C).  In  more  realistic  conditions, 
 error  rates  as  high  as  0.05  are  not  typically  observed  in  Illumina  sequencing  and  alignments.  When  removing 
 runs  with  the  0.05  error  rate,  the  average  breakpoint  accuracy  reached  99.9%,  with  a  median  of  100%. 
 Similarly, the average detection power was 99.6%, with a median of 99.5% (Figure 2B). 

 The  data  in  the  VCF  �iles,  such  as  sequencing  depth  or  marker  density  or  species  model,  depend  on  the  model 
 species  or  sequencing  type  and  are  generally  not  under  the  user's  control.  We  thus  looked  for  the  imputation 
 window  size  producing  the  best  results  for  both  breakpoint  detection  accuracy  and  power  with  the  VCF  that 
 mimicked  best  the  real  F  2  rice  data  we  had.  In  both  cases,  the  optimal  results  were  obtained  by  the  imputation 
 half window size of 30. Thus, we used this value of 30 later on when exposing NOISYmputer to real datasets. 
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 Precision of breakpoint position 
 NOISYmputer’s  precision  was  estimated  by  computing  the  difference  between  the  simulated  breakpoints 
 positions  and  the  estimated  ones  by  NOISYmputer.  We  considered  the  size  of  the  support  interval  and  its 
 marker density to estimate discrepancy (in number of SNPs) with the actual breakpoint position. 

 Across  all  420  VCFs,  a  difference  of  1,427  bp  on  average  (equivalent  to  a  discrepancy  of  ~2  SNPs)  was 
 observed.  The  median  difference  was  even  lower,  with  only  245  bp  (<  1  SNP  discrepancy).  This  disparity 
 between  the  median  and  mean  is  mainly  due  to  extreme  combinations,  particularly  low  depth  combined  with 
 high  error  rate.  Notably,  variance  is  higher  in  0.5X  coverage  VCFs,  becoming  more  homogeneous  at  1X 
 coverage. 

 Regarding  the  imputation  window,  smaller  half-windows  resulted  in  lower  average  differences  between 
 NOISYmputer  and  simulated  positions  but  increased  the  median  difference.  Consequently,  smaller  windows 
 enhanced overall precision while potentially increasing the occurrence of extreme discrepancies. 

 Error rate estimations 
 Error  rates  (  and  ),  are  recalculated  after  a  �irst  iteration  of  imputation  step  1.  NOISYmputer  correctly  𝑒 

 𝐴 
 𝑒 

 𝐵 
 estimated  the  error  rates  in  100%  of  the  cases,  with  an  average  difference  between  simulated  and  estimated 
 error  rates  of  9.8  10  -7  (standard  deviation  4.8  10  -5  )  (Supplementary  Table  S1).  This  re�lects  the  accuracy  of  the 
 imputation, even with starting values for error rates far from the true values. 

 Figure  2.  Most  impacting  parameters  and  data  characteristics  on  NOISYmputer  results  based  on  420  simulated  F  2  populations.  A) 
 Representation  of  NOISYmputer’s  detection  accuracy  (proportion  of  NOISYmputer  breakpoints  being  actual  breakpoints  from 
 simulated  data)  in  function  of  NOISYmputer’s  detection  power  (proportion  of  simulated  breakpoints  correctly  found  by 
 NOISYmputer).  NOISYmputer  shows  excellent  power  detection  and  accuracy  with  at  least  72.3%  and  96.9%  respectively.  B)  Zoom 
 on  the  upper  part  of  the  A  plot  of  detection  accuracy  and  power,  ignoring  the  error  rate  of  0.05.  C)  PCA  Biplot  of  NOISYmputer 
 showing  VCFs  characteristics  and  imputation  window  size  influencing  detection  accuracy  and  precision  with  simulated  VCFs.  The 
 lowest  detection  powers  are  observed  when  high  error  rates  are  coupled  with  a  small  imputation  half-window  size  in 
 NOISYmputer.  The  lowest  accuracies  correspond  to  VCFs  imputed  with  a  large  imputation  half-window  size  in  NOISYmputer  and 
 can be accentuated by very low depth (≤ 1X) and/or low marker density (< 66,000 sites / 44 Mb). 
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 Con�irmed ef�iciency on real data and comparison with other methods 
 We  assessed  the  performance  of  NOISYmputer  on  two  real  datasets:  i)  a  maize  F  2  population  in  GBS  with  91 
 samples,  including  the  parents,  and  ii)  a  rice  F  2  population  with  3X  coverage  in  whole-genome  sequencing 
 (WGS)  comprising  222  samples,  including  the  parents  sequenced  at  ~30X.  Details  of  how  the  real  dataset  for 
 rice  was  generated  are  summarized  in  the  Supplementary  Data.  The  maize  dataset  is  described  in  the 
 LB-Impute publication  (Fragoso  et al.  2016)  . 

 In  real  data,  direct  estimation  of  imputation  accuracy  may  be  challenging  due  to  the  unknown  true  state  at 
 each  locus.  However,  it  is  possible  to  assess  the  quality  of  the  imputation  indirectly  by  comparing  the  �inal 
 genetic  map  to,  for  instance,  existing  high-quality  maps.  A  correctly  imputed  dataset  should  yield  a  map  size  – 
 in  centimorgans  (cM)  –  consistent  with  those  derived  from  high-quality  marker  data.  Conversely,  datasets  with 
 a  high  rate  of  genotyping  errors  will  exhibit  map  expansion,  resulting  in  a  longer  genetic  map  due  to  falsely 
 imputed recombination breakpoints. 

 Using  map  size  estimates  in  centimorgans  (cM)  of  chromosome  1  of  these  datasets,  we  compared  the  results  of 
 NOISYmputer  to  those  of  LB-Impute  and  FSFhap  (Figure  3  and  Table  2).  Concerning  the  maize  GBS  dataset, 
 LB-Impute  and  FSFhap  strongly  overestimated  the  map  size  expected  from  high-quality  datasets  (respectively 
 633  cM  and  13,271  cM),  whereas  NOISYmputer’s  map  was  in  range  with  the  expected  map  size  (203  cM). 
 Regarding  the  Rice  WGS  dataset,  while  both  LB-Impute  and  FSFhap  yielded  maps  much  larger  than  expected 
 (23,436  cM  and  337,750  cM  respectively),  NOISYmputer  estimated  a  map  size  close  to  the  expected  value  (213 
 cM).  Also,  results  from  FSFhap  on  PopSimul  data  produced  very  large  map  size  estimations  for  high  error  rates 
 (5%) VCF, while they were qualitatively similar to NOISYmputer’s for lower (1% and .5%) error rates. 

 To  further  estimate  the  performance  of  NOISYmputer  on  real  datasets  we  also  performed  comparisons  on 
 breakpoint  detection  accuracy,  detection  power,  and  position  estimate  in  the  222  F  2  Rice  population.  This 
 dataset  includes  20  samples  sequenced  at  ~20X  depth,  and  arti�icially  subsetted  to  3X  (that  we  call 
 pseudo-3X).  These  20  samples  allow  for  a  more  robust  evaluation  as  their  breakpoints  are  well  estimated 
 thanks  to  their  better  depth.  We  processed  similarly  to  the  simulated  analyses  and  compared  breakpoint 
 detection  accuracy,  power,  and  precision  of  breakpoint  estimates  for  NOISYmputer  against  the  accurately 
 estimated  breakpoints  at  20X  coverage.  Unfortunately,  we  were  not  able  to  compare  NOISYmputer  results  to 
 those  of  FSFHap  and  LB-impute  as,  even  if  we  managed  to  retrieve  each  breakpoint  position  estimate,  we 
 could  not  easily  check  which  were  actual  breakpoints  and  which  were  false  positives,  as  TASSEL  FSFHap  and 
 LB-impute do not provide support intervals for breakpoints. 

 Overall,  NOISYmputer  demonstrated  excellent  results  with,  on  average,  99%  accuracy  and  97%  detection 
 power.  Regarding  precision,  on  average  the  difference  in  position  was  of  10,219  bp,  while  the  median  was  of 
 only  415  bp.  The  large  difference  between  the  average  and  the  median  is  due  to  a  few  breakpoints  estimated 
 far  from  their  true  position.  Indeed,  80%  of  the  breakpoints  were  still  estimated  at  less  than  1,669  bp  from 
 their  true  position.  In  terms  of  number  of  SNPs,  the  discrepancy  was  of  2  SNPs  on  average  (median:  1) 
 (Supplementary Table S2). 

 Overestimation  of  map  sizes  was  mostly  due  to  misinterpretation  of  noisy  data  by  FSFHap  and  LB-Impute. 
 These  discrepancies  frequently  arise  in  regions  corresponding  to  structural  variations  between  parental 
 genomes.  Such  variations  can  occur,  for  instance,  when  attempting  to  map  onto  regions  found  exclusively  in 
 the  Parent  A  genome,  which  serves  as  the  reference.  In  such  cases,  reads  from  B  regions  might  map  to  the  most 
 similar  A  regions  available  resulting  in  false  recombination  events  according  to  imputation  softwares.  This 
 phenomenon  is  accentuated  in  WGS  data  compared  to  GBS  data  as  the  complete  genome  is  sequenced  and 
 mapped,  thus  increasing  the  number  of  markers.  Including  more  sites,  inducing  sites  belonging  to  peculiar 
 genomic  structures,  can  hinder  the  quality  of  imputation  if  the  software  does  not  take  into  account  the 
 coherence  of  a  marker  with  its  surrounding  environment  in  the  population.  Though  FSFHap  and  LB-impute 
 might  be  precise  in  the  estimated  breakpoints  positions,  their  lack  of  accuracy  in  breakpoints  detection  leads 
 to  results,  on  whole  genome  datasets,  dif�icult  to  use  without  the  help  of  complex  �iltering  steps.  NOISYmputer, 
 on  the  contrary,  is  very  ef�icient  at  correcting  mapping  issues  or  divergence  between  parental  genome 
 structures. 
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 Table  2.  Comparison  of  estimated  and  expected  map  sizes  for  three  different  datasets  using  NOISYmputer,  FSFHap  and 
 LB-Impute.  The  84  VCFs  generated  using  PopSimul  have  varying  numbers  of  markers  (66,000,  100,000,  180,000  or  220,000), 
 depending  on  the  settings  used  to  generate  the  VCFs.  Overall,  NOISYmputer  is  showing  considerably  higher  accuracy  in  map  size 
 estimation compared to FSFHap and LB-Impute. 

 Dataset  Software  Estimated map 
 size (cM) 

 Expected map 
 size (cM) 

 Initial number of 
 markers in VCF 

 F  2  Maize GBS 
 n  = 91 samples including 
 parents 

 NOISYmputer  203 

 ~200  17,945  FSFHap  13,271 

 LB-Impute  633 

 F  2  Rice WGS 
 n  = 222 samples including 
 30X parents 

 NOISYmputer  213 

 183  254,095  FSFHap  337,750 

 LB-Impute  23,436 

 84 PopSimul F  2  s 
 n  = 300 samples each 
 including parents 

 NOISYmputer  180 

 180 
 Different number of 
 markers depending on 
 the simulation settings 

 FSFHap  479,399 

 LB-Impute  N/A 

 A resource-optimized software, CPU- and RAM-ef�icient 
 In  our  comparative  analysis  of  the  NOISYmputer  with  established  counterparts,  we  conducted  comprehensive 
 benchmarks,  focusing  on  execution  time  and  RAM  usage  (Table  3  and  Figure  3).  To  do  so,  we  ran  NOISYmputer, 
 FSFHap  and  LB-Impute  on  simulated  and  real  datasets.  We  then  retrieved  their  CPU  time,  “wall  clock” 
 execution time and RAM usage using the  seff  command on the IFB computing cluster. 

 Concerning  the  F  2  Maize  GBS  dataset,  NOISYmputer  ran  ~10  and  ~45  times  faster  than  FSFhap  and  LB-Impute, 
 respectively. It also used less RAM (~3.4 GB), ~3 times less than FSFHap and ~21 times less than LB-Impute. 

 Regarding  the  F  2  Rice  WGS  dataset,  NOISYmputer  used  slightly  less  RAM  than  FSFHap  and  was  ~13  times 
 faster  (<  6  min  vs.  1h19m).  LB-Impute  showed  poor  CPU  and  RAM  ef�iciency  as  NOISYmputer  used  ~9  times 
 less RAM and ran ~145 times faster. 

 Due  to  the  excessive  computation  time  on  this  single  smaller  dataset,  LB-Impute  was  excluded  from  the 
 remaining  comparisons  with  the  84  PopSimul  VCFs  with  300  samples.  It  is  interesting  to  note  that  FSFHap 
 resource  ef�iciency  is  better  on  simulated  than  on  real  datasets  even  though  they  have  more  samples.  Indeed, 
 FSFHap  used  on  average  1.93  GB  of  RAM,  whereas  NOISYmputer  was  stable  at  3.61  GB.  NOISYmputer  was  still 
 faster  than  FSFHap  on  average,  with  ~5  min,  while  FSFHap  ran  in  ~9  min.  This  underlies  the  dif�iculty  that 
 FSFHap  has  to  impute  noisy  data,  partly  due  to  structural  variants  and  calling  errors.  These  results  underscore 
 NOISYmputer’s  ef�iciency  improvement  in  processing  imputation  tasks,  especially  compared  to  existing 
 software for bi-parental population imputation. 
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 Figure  3.  Barplot  of  CPU  time  and  RAM  resource  usage  for  NOISYmputer  (orange),  LB-Impute  (gray)  and  FSFHap  (blue)  on  three 
 datasets.  Rice_WGS  is  an  F  2  Rice  WGS  dataset  with  samples  including  parents;  PopSimul_84  values  are  averages  across  𝑛 =  222 
 84  VCFs  generated  with  PopSimul,  each  VCF  containing  samples  including  parents,  simulated  using  ranges  of  depth,  𝑛 =  300 
 marker  density  and  error  rate  to  mimic  different  characteristics  of  F  2  VCFs;  Maize_GBS  is  an  F  2  Maize  GBS  dataset  with  𝑛 =  91 
 samples  including  parents  (with  a  lower  marker  density  than  Rice_WGS).  NOISYmputer  is  overly  faster  and  more  RAM-efficient  in 
 all  conditions  than  FSFHap  and  LB-Impute,  with  the  exception  for  RAM  usage  on  simulated  VCF  files  of  PopSimul.  No  data  is 
 shown for PopSimul_84/LB-Impute, as LB-Impute was not benchmarked due to excessive CPU time. 

 Availability and Future Directions 
 Availability 
 NOISYmputer  is  available  as  a  multiplatform  (Linux,  macOS,  Windows)  Java  executable  at  the  URL 
 https://gitlab.cirad.fr/noisymputer/noisymputerstandalone/-/tree/1.0.0-RELEASE?ref_type=tags  .  The 
 source  code  and  the  documentation  are  available  at  the  same  URL.  A  Quarto  markdown  companion 
 (compatible  with  R  markdown  and  Jupyter  notebooks  IDE)  that  allows  to  display  graphics  of  statistics  (e.g., 
 genotypic  frequencies  on  SNPs  and  samples)  and  graphical  genotypes  from  NOISYmputer  output  �iles  was 
 developed and is also available. 

 NOISYmputer and its companion are distributed under the GNU Affero General Public License V3.0. 

 Future directions 

 NOISYmputer’s strengths 
 Although  previous  methods  have  made  signi�icant  advances  in  addressing  the  challenges  listed  above,  the 
 noisiness  of  imputed  datasets  are  still  producing  expanded  genetic  maps,  excess  heterozygosity,  and 
 probabilistically  unlikely  recombination  events  contained  within  a  short  physical  interval.  Here,  we  introduce 
 an  algorithm  which,  in  a  series  of  steps,  addresses  each  source  of  error  to  create  higher-quality  datasets  for 
 improved  trait  mapping  and  genomics-assisted  breeding.  Our  algorithm  represents  a  step  to  systematically 
 address  all  sources  of  NGS  genotyping  error  and  even  errors  in  the  reference  genome,  and  hopefully  the 
 corrections  brought  here  will  be  integrated  into  future  algorithm  development.  Indeed,  key  features  of 
 NOISYmputer  are  its  pre-  and  post-�iltering  steps  that  other  currently  available  software  does  not  perform.  In 
 �iltering  SNPs  and  segments  that  are  incoherent  with  their  environment  and  with  the  population  local 
 recombination  landscape,  NOISYmputer  ef�iciently  eliminates  errors  of  genotype  calling,  sequencing  errors,  or 
 errors  generated  by  structural  variants.  The  pre-imputation  and  post-imputation  stages  of  NOISYmputer,  in 
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 Table  3.  CPU  and  RAM  usage  of  NOISYmputer,  FSFHap  and  LB-Impute  for  three  datasets  based  on  the  output  of  the  seff 
 command  on  the  IFB  cluster.  NOISYmputer  1st  and  2nd  Runs  are  displayed  as  NOISYmputer  shows  better  CPU  time  usage  for  the 
 second  run  since  the  conversion  of  the  raw  VCF  file  has  already  been  done.  For  LB-Impute,  as  imputation  is  processed  in  two 
 steps,  CPU  time  and  execution  time  results  are  the  sum  of  the  two  steps;  RAM  usage  corresponds  to  the  highest  RAM  usage  of 
 the  two  steps  (offspring  imputation).  For  the  84  PopSimul  VCFs  section,  results  correspond  to  the  average  of  resource  usage  for 
 each  of  the  84  PopSimul  VCFs  for  an  imputation  half-window  of  30  SNPs  with  NOISYmputer  and  the  default  window  size  (50)  of 
 FSFHap.  All  tests  were  conducted  on  the  IFB  Core  cluster.  *As  LB-impute  showed  excessive  time  and  RAM  consumption  on  the 
 Rice_WGS dataset, we did not benchmark the 84 PopSimul VCFs with LB-impute. 

 Datasets  Software  CPU time 
 (h:m:s) 

 Total execution time 
 (h:m:s) 

 RAM 
 (GB) 

 F2 Maize GBS 
 n = 91 samples 
 including parents 

 NOISYmputer 
 2nd Run  00:00:07  00:00:09  1.00 

 1st Run  00:00:27  00:00:28  1.00 

 FSFHap  00:06:49  00:04:35  3.42 

 LB-Impute  00:20:59  00:21:04  21.61 

 F2 Rice WGS 
 n = 222 samples 
 including 30X parents 

 NOISYmputer 
 2nd Run  00:06:49  00:04:35  3.42 

 1st Run  00:09:47  00:06:44  3.36 

 FSFHap  01:19:00  01:19:06  4.02 

 LB-Impute  16:18:52  16:19:21  31.48 

 84 PopSimul VCFs 
 with n = 300 samples 
 each including parents 

 NOISYmputer  1st Run  00:05:18  00:05:39  3.61 

 FSFHap  00:09:20  00:09:24  1.93 

 LB-Impute*  NA  NA  NA 

 particular,  address  artifacts  of  imputation  caused  by  presence-absence  variation  misrepresented  by  the 
 reference  assembly  and  assembly  errors  from  inaccurate  or  misordered  contigs.  These  imputation  artifacts, 
 such  as  those  caused  by  collapsed  structural  variants  (incoherent  sites  or  false  heterozygosity)  or 
 misassembled  “chunks”,  are  not  systematically  addressed  by  other  imputation  methods,  such  as  LB-Impute 
 (Fragoso  et al.  2016)  , and otherwise must be parsed through manual �iltering of the imputed dataset. 

 NOISYmputer  is  a  resource-effective  software  developed  in  Java,  allowing  its  integration  in  bioinformatics 
 pipelines.  NOISYmputer  is  parallelizing  computation  at  the  sample  level  in  several  steps  of  the  algorithm, 
 which  increases  its  speed  considerably.  The  use  of  a  Java  standalone  executable  also  allows  to  simulate 
 parallelization  in  running  each  chromosome  on  a  separate  core  of  a  server/cluster.  Moreover,  NOISYmputer 
 employs  a  maximum  likelihood  method,  instead  of  hidden  Markov  models,  which  considerably  reduces 
 computational  complexity,  compared  to  FSFHap  (Swarts  et  al.  2014)  and  LB-impute  (Fragoso  et  al.  2016)  , 
 while  enhancing  result  accuracy  and  �lexibility  across  diverse  datasets.  Indeed,  NOISYmputer  is  less  sensitive 
 to  noisy  regions  (due  to  mapping  artifacts  for  example)  as  it  can  handle  large  windows  without  being  greedy 
 in RAM and computation time to overpass complex regions. 

 Notably,  NOISYmputer's  speed  allows  iterative  re�inement  of  parameter  settings.  For  example,  the  size  of  the 
 imputation  window  (in  number  of  SNPs),  like  in  other  imputation  programs  (e.g.,  FSFhap,  LB-Impute),  is 
 arbitrarily  �ixed  by  the  user.  The  most  appropriate  value  for  depends  on  several  factors,  including  depth  and  𝑚 
 SNP  density.  A  convenient  way  to  determine  which  value  for  to  use  is  to  run  the  imputation  several  times  𝑚 
 with  different  values  until  reaching  the  expected  distribution  of  the  number  of  recombination  breakpoints  per 
 sample  across  the  population  (if  previously  known).  Often,  saturated  genetic  maps  generated  with  other  types 
 of  markers  are  available  in  the  literature,  from  which  the  expected  distribution  is  easily  derived.  With  our  rice 
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 data,  the  imputation  algorithm  gave  the  best  results  with  ,  so  even  a  few  runs  should  provide  a  𝑚 =  30 
 satisfying window size. 

 Furthermore,  NOISYmputer  generates  a  .json  �ile  from  the  VCF  during  the  initial  run,  that  is  used  by  the 
 consecutive  runs,  eliminating  the  redundant  tasks  of  converting  the  input  VCF  �ile,  thus  enhancing  speed  for 
 subsequent launches on the same dataset. 

 Its  robust  performance  extends  to  various  VCF  characteristics,  accommodating  differences  in  SNP  quality, 
 marker  density,  error  rates,  and  sequencing  depths.  This  is  partly  due  to  its  low  sensitivity  to  the  SNP  calling 
 step  used  to  generate  the  input  VCF,  as  NOISYmputer  is  re-estimating  the  probabilities  of  genotypes  using  the 
 allele  depth  at  each  site,  along  with  information  of  the  surrounding  environment  and  of  the  whole  population. 
 This  results  in  maintenance  of  overall  excellent  detection  accuracy,  detection  power  and  position  precision  on 
 recombination  breakpoints  even  with  very  low  coverage  datasets  (≤1X).  However,  users  should  exercise 
 caution  in  selecting  an  appropriate  imputation  window  size  to  mitigate  the  risk  of  false  positives  and 
 negatives. 

 In  addition  to  its  performance  bene�its,  NOISYmputer  provides  users  with  several  comprehensive  breakpoint 
 con�idence  information  allowing  to  further  �ilter  the  identi�ied  breakpoints.  This  is  a  feature  that  is  innovative 
 and  useful  and  not  available  in  other  software,  to  our  knowledge.  NOISYmputer  also  outputs  statistics  on 
 genotypic/allelic frequencies, samples and genetic map among others. 

 Suggestions for Improvement 
 NOISYmputer  could  bene�it  from  several  improvements.  The  �irst  one  is  including  more  population  types.  In 
 the  next  version,  we  will  implement  F  2  backcross,  or  BC  1  F  1  ,  the  progeny  of  the  F  1  hybrid  crossed  with  one  of 
 the  parents  (BC  1  )  ;  doubled  haploid  of  F  1  gametes  (DH)  ;  F  2  intercross,  that  is,  the  progeny  from  F  1 
 self-fertilization  (F  2  );  recombinant  inbred  lines  by  single  seed  descent  from  the  the  BC  1  F  1  (BCSSD);  the 
 unconventional  mating  design  (UMD)  BC  1  F  3  ,  derived  by  two  generations  of  self-fertilization  of  BC  1  F  1 
 individuals.  For  now,  it  has  been  extensively  tested  and  optimized  for  F  2  crosses  between  distant  parents 
 which  might  be  one  of  the  hardest  designs  to  estimate  breakpoints  from.  We  thus  are  con�ident  that  the 
 algorithm can be adapted to these other types of crosses. 

 Breakpoint  detection  and  accuracy  could  bene�it  from  a  more  complex  modeling  of  the  likelihood.  Currently, 
 we  test  for  the  existence  of  a  single  transition  within  the  loose  support  interval  in  imputation  Step  3.  Testing 
 for  one,  two  or  even  three  transitions  in  a  single  interval  could  increase  the  probability  of  �inding  close  double 
 recombination  events  if  they  happened  to  have  a  higher  probability  in  the  tested  region.  Breakpoint  position 
 estimation,  on  the  other  hand,  might  be  improved  by  using  a  combination  of  NOISYmputer’s  current  algorithm 
 with  a  hidden  markov  model  occurring  in  the  Step  3  of  imputation.  This  way,  a  smaller  window  size  could  be 
 applied  and  the  region  to  scan  would  be  reduced  to  a  very  limited  percentage  of  the  genome  only,  resulting  in  a 
 considerable gain of time. 

 NOISYmputer  is  robust  on  a  broad  range  of  samples  and  its  computation  time  makes  it  very  convenient.  Part  of 
 the  success  of  NOISYmputer  lies  in  the  fact  that  it  performs  pre-  and  post-imputation  �iltering  steps  that 
 remove,  among  other  things,  incoherent  SNPs,  meaning  SNPs  that  do  not  segregate  the  same  way  as  its 
 immediate  environment,  often  indicating  mapping  errors.  This  �iltering  of  incoherent  SNPs  step  uses  a 
 Chi-square  test  to  evaluate  if  the  observed  pattern  is  reasonable.  Unfortunately,  Chi-square  test  thresholds  are 
 dependent  on  sample  sizes.  Thus,  when  imputing  many  samples  (e.g.,  =2000)  with  NOISYmputer,  the  user  𝑚 
 has  to  adapt  the  Chi-square  threshold  to  the  sample  size,  which  is  not  convenient.  A  solution  to  this  would  be 
 to  use  a  “Cramér’s  V”  statistic  instead  (Cramér  1999)  ,  which  would  be  independent  of  the  sample  number  in 
 the VCF. 

 Unlike  FSFHap  or  LB-Impute,  NOISYmputer  does  not  impute  the  parental  genotypes,  which  might  result  in  the 
 loss  of  SNPs,  especially  in  datasets  derived  from  very  low-coverage  sequencing.  Although  we  recommend 
 sequencing  the  parents  at  high  coverage  (>  20X),  it  is  not  always  possible  –  for  instance,  when  re-analyzing 
 historical data. The next version of NOISYmputer will impute the parental genotypes when necessary. 

 Finally,  as  pointed  in  the  Results  section,  the  imputation  half-window  size  can  have  an  impact  on  the  outputs  of 
 NOISYmputer.  NOISYmputer  could  bene�it  from  an  iterative  process  that  would  check  for  different  window 
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 sizes  and  analyze  the  convergence  of  the  results  to  select  the  appropriate  window  size  and  thus  to  achieve  the 
 best compromise between detection accuracy and power, along with precision. 
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