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Abstract  23 
 24 
Current estimates of wetland contributions to the global methane budget carry high uncertainty, 25 
particularly in accurately predicting emissions from high methane-emitting wetlands. 26 
Microorganisms mediate methane cycling, yet knowledge of their conservation across wetlands 27 
remains scarce. To address this, we integrated 1,118 16S rRNA amplicon datasets (116 new), 28 
305 metagenomes (20 new) that yielded 4,745 medium and high-quality metagenome assembled 29 
genomes (MAGs; 617 new), 133 metatranscriptomes, and annual methane flux data across 9 30 
wetlands to create the Multi-Omics for Understanding Climate Change (MUCC) v2.0.0 database. 31 
This new resource was leveraged to link microbiome compositional profiles to encoded functions 32 
and emissions, with specific focus on methane-cycling populations and the microbial carbon 33 
decomposition networks that fuel them. We identified eight methane-cycling genera that were 34 
conserved across wetlands, and deciphered wetland specific metabolic interactions across 35 
marshes, revealing low methanogen-methanotroph connectivity in high-emitting wetlands. 36 
Methanoregula emerged as a hub methanogen across networks and was a strong predictor of 37 
methane flux, demonstrating the potential broad relevance of methylotrophic methanogenesis in 38 
these ecosystems. Collectively, our findings illuminate trends between microbial decomposition 39 
networks and methane flux and provide an extensive publicly available database to advance 40 
future wetland research. 41 
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INTRODUCTION 50 
Methane (CH4) is a potent greenhouse gas (GHG) contributing to current atmospheric warming1. 51 
Despite accounting for less than 8% of the land coverage, natural wetlands represent the largest 52 
natural source of CH4 and contribute between 20-50% of natural global CH4 emissions2–4. 53 
Forecasting CH4 flux from wetlands remains challenging due to complex interactions between 54 
environmental variables such as temperature, soil moisture, and vegetation type, as well as the 55 
spatial and temporal variability of CH4 emissions from wetlands3,5,6. Furthermore, the wide array 56 
of wetland ecosystems, encompassing peatlands, marshes, swamps, and floodplains, adds 57 
complexity to the accurate quantification of CH4 emissions at a global scale, as each wetland 58 
potentially harbors distinct CH4 production processes and emission rates.  59 
 60 
In the saturated soil conditions typical of wetlands, CH4 generation occurs through an interactive 61 
microbial decomposition network that hydrolyzes and ferments plant polymeric material into 62 
smaller molecular weight compounds (Figure 1B). These compounds serve as substrates for 63 
methanogenic archaea, which utilize three distinct metabolic pathways defined by their substrate 64 
preference - hydrogenotrophic, acetoclastic, and methylotrophic - for CH4 production7. 65 
Microbially derived soil CH4 can subsequently be emitted to the atmosphere or undergo further 66 
microbial oxidation by aerobic or anaerobic methanotrophic bacteria8. While this decomposition 67 
framework is well-theorized9,10, the extent to which these microbial members, functional guilds, 68 
and overall trophic structure are conserved across different wetlands and their relationships to 69 
CH4 emissions remain unclear. 70 
 71 
To bridge this knowledge gap, genome-resolved metagenomics has begun to unveil the identity 72 
and metabolic capabilities of microbial communities in wetland soils. This information has 73 
uncovered new methanogen and methanotroph genera11–14, pinpointed relevant functional 74 
pathways15–19, and provided insights into their spatial and temporal relevance20. Moreover, 75 
metagenomic data from three distinct wetlands9,10,21 was leveraged to construct microbial carbon 76 
decomposition networks, highlighting the microbial guilds and their constituent members 77 
involved in CH4 cycling withing these specific sites. While these studies laid valuable 78 
groundwork, it is imperative to complement site-specific knowledge with broader-scale analyses 79 
for a more comprehensive understanding of wetland microbiomes.  80 
 81 
To address this broader sampling need, 16S rRNA gene amplicon sequencing characterizes 82 
bacterial and archaeal taxonomy and distribution across wetlands, albeit without providing 83 
functional content. This high throughput method allows for more extensive microbial sampling 84 
across wetland gradients, capturing microbial dynamics across wetland land coverage types, 85 
depth, and seasons17,22–24. Integrating knowledge from both marker gene analyses and 86 
metagenomics presents a unique opportunity to achieve comprehensive sampling of microbial 87 
conserved features, such as functional potential and network architecture across sites. Linking 88 
amplicon sequences to genomes from sampled wetland lineages would enable functional 89 
prediction, revealing the blueprints of complex wetland microbiomes at scale and transcending 90 
individual wetland boundaries.   91 
 92 
We adopted this integrated approach for enabling genomic functional predictions for marker 93 
gene identified taxa, to uncover features of soil wetland communities and their association to 94 
CH4 flux across an array of freshwater wetlands. We first analyzed paired amplicon and CH4 flux 95 
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data obtained from over a thousand samples collected across nine wetlands, representing a 96 
spectrum of CH4 flux rates as well as ecological and climatic conditions. From this analysis, 97 
conserved wetland-wide microbial indicators were linked to a curated genomic catalog 98 
encompassing thousands of new and existing metagenome-assembled genomes (MAGS) from 99 
wetland soils. This cross-site endeavor revealed a core set of conserved wetland microorganisms, 100 
allowing us to elucidate the functional decomposition networks supporting their activity, and 101 
delve into the physiological drivers of specific methanogenic taxa associated with high CH4-102 
emitting wetlands. This study offers a comprehensive, multi-site perspective on the 103 
microorganisms and processes dictating CH4 dynamics in wetlands, thereby furnishing actionable 104 
insights for advancing scientific understanding and facilitating their translation and integration 105 
into climate-scale models. 106 
 107 
RESULTS AND DISCUSSION 108 
Models that rely on abiotic factors have increased uncertainty in high methane-emitting 109 
wetlands 110 
Estimates of wetland contributions to the global methane (CH4) budget often rely on ecosystem-111 
scale models, which do not represent soil microbial metabolism, but instead use abiotic variables 112 
(like mean annual air temperature) to approximate environmental states conducive for soil 113 
carbon decomposition, methanogenesis, and methanotrophy20. A robust meta-analysis from 42 114 
freshwater wetlands showed that air temperature partially accounted for mean annual CH4 fluxes, 115 
explaining 51% of the variance across sites25. This discrepancy between CH4 flux predictions and 116 
observations for many wetlands hints at a potential role for microbial contributions in explaining 117 
these variations, a feature we sought to examine in more detail in this study.  118 
 119 
To understand unifying microbial features across wetlands and how microbial and geochemical 120 
properties relate to CH4 flux, we conducted a meta-analysis using data from both published and 121 
unpublished wetland soil samples. To qualify for inclusion in our study, sites had to have 122 
amplicon sequencing data from at least 12 samples obtained from a minimum of 2 sampling 123 
depths and have CH4 flux measurements. From the original 42 wetlands25 in the noted earlier 124 
study, we identified 16S rRNA gene amplicon microbial data for three of the sites (OWC, TW1, 125 
LA2), of which the amplicon data from LA2 is newly released in this study while OWC and TWI 126 
utilize previously published data10,27. We also expanded the dataset to include CH4 flux, 16S 127 
rRNA gene amplicon, and temperature data from an additional 6 freshwater wetland sites (JLA, 128 
PPR7, PPR8, STM-fen, STM-bog, SPRUCE) (Supplemental Data 1). The incorporation of these 129 
additional sites reduced the predictive power of mean annual air temperature to explain 37% of 130 
the variability across sites (Figure 1A). Notably, the addition of sites with the highest CH4 fluxes 131 
(PPR8, PPR7) (Fig. 1A & 1D) reveals the limitations of mean annual air temperature as a 132 
predictor of CH4 flux in high emitting wetlands, such as Old Woman Creek (OWC) and those 133 
within the Prairie Pothole Regional complex (PPR).  134 
 135 
We collated and analyzed microbial data from 1,112 samples (10% is newly released in this 136 
study) from 9 wetlands to demonstrate how incorporating knowledge of CH4-cycling 137 
microorganisms can contribute to improved predictive understanding of these ecosystems (Table 138 
S1, Table S2).  Included data was derived from 5 marshes: Old Woman Creek (OWC), Prairie 139 
Potholes Region (PPR 7, PPR 8), AmeriFlux site US-LA2 (LA2), and AmeriFlux, site-ID US-140 
Twt (TWI); 1 swamp: Jean Lafitte National Historical Park and Preserve (JLA); 2 bogs: Marcell 141 
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Experimental Forest (SPRUCE) and Stordalen Mire (STM-bog); and 1 fen: Stordalen Mire 142 
(STM-fen). To account for inter-study variability in depth fractions, we binned these samples 143 
into three categories: shallow (0-9 cm), mid (10-19 cm), and deep (20-39 cm) (Fig. 1C).  144 
 145 
Additionally, we supplemented these data with genomic information creating a cross-wetland 146 
genomic catalog, Multi-omics for Understanding Climate Change (MUCC) v2.0.0 database. 147 
Here we expanded the original MUCC v1.0.0 genomic catalog, which was composed of 42 148 
metagenome and 133 metatranscriptome samples obtained from a single, high CH4 emitting 149 
marsh (OWC) (Figure 1A)10. The 2,507 medium and high-quality MAGs recovered from this 150 
wetland sampling were combined with 1,529 additional MAGS from previously published palsa, 151 
bog, and fen metagenomes from a permafrost thaw gradient at Stordalen mire (STM, Figure 152 
1A)9. Additionally, we added 50 publicly available MAGs derived from the PPR complex28 and 153 
43 publicly available MAGs from TWI27. Finally, we included 20 new metagenomes from the 154 
PPR complex, LA2, and JLA (349 Gbp of new sequencing), resulting in 617 MAGs released as 155 
new data as part of this study. In total MUCC 2.0 contains 3,634 high and medium quality, 156 
dereplicated (99% genome identity) MAGs derived from six wetland complexes totaling 8.9 Tb 157 
of sequence data (Table S3). MUCCv2.0.0 compiles previous wetland genomic datasets and 158 
expands genome representation across wetland soils spanning diverse geographies, ultimately 159 
increasing database read recruitment and reducing the computational requirements for translating 160 
reads to functional content. This wetland specific genomic resource database was used to connect 161 
microbial community profiles with functional potential.  162 
 163 
 164 
High CH4-emitting wetlands share microbial community composition and structure  165 
Analyses across wetland sites revealed that wetland type, not geographical location, 166 
corresponded to microbial community composition and diversity. As might be expected by 167 
ecological wetland differences, bog samples derived from Sweden (STM) and Minnesota 168 
(SPRUCE), were more alike one another than bog and fen samples collected within the same 169 
wetland complex (STM). Wetlands categorized as marshes or swamps had higher bacterial and 170 
archaeal alpha diversity, higher pH, and higher CH4 flux than bog and fen sites (Fig. S1. 171 
Additionally, wetland type had a significant impact on community composition, and separation 172 
of communities was linked to pH (Figure 2A & S2, PERMANOVA, p<0.001). Notably, 173 
communities in bogs with the lowest pH and CH4 flux were most distinct from marsh/swamp 174 
communities with the highest pH and CH4 fluxes. Fens, with intermediate characteristics of bogs 175 
and marshes/swamps such as pH, vegetation, and nutrient levels, hosted microbial communities 176 
that were similarly intermediate of the bog and marsh communities29.  177 
 178 
CH4 flux was loosely correlated with temperature across wetland types but this trend was absent 179 
at the level of individual wetland types. In marshes and swamps – the highest CH4 emitting 180 
wetland types – no correlation to temperature was observed (R2=0.17, p=0.16) (Fig. S3A), 181 
suggesting that other factors may be important for predicting CH4 flux3,30. We next assessed the 182 
relationships between CH4 flux and CH4-cycling microbial community members including 183 
methanogens and methanotrophs across sites. Bog and marsh sites hosted different methanogen 184 
communities (Fig. S4), with bog sites characterized by dominance of a few methanogens and low 185 
relative abundances of acetoclastic methanogens 3,31,32. For example, Methanothrix, an obligate 186 
acetoclastic methanogen was significantly more enriched in fen, marsh, and swamp samples than 187 
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in bog samples. Overall, marsh and swamp sites contained a higher diversity and evenness of 188 
methanogen taxa and functional types. Collectively, the functional potential to utilize more 189 
diverse methanogenic substrates in high CH4 emitting marsh sites could contribute to higher CH4 190 
fluxes.  191 
 192 
To fully understand microbial contributions to the methane cycle, we also assessed the 193 
distribution of methanotroph communities across wetland types. Across all sites aerobic 194 
methanotrophs were dominant, while the anaerobic methanotrophs assigned to the genus 195 
Methanoperedens were enriched only in the three highest methane emitting sites (OWC, PP7, 196 
PP8) (Figure S4). We found that the diversity of methanogens (R2=0.5, p=0.034), but not 197 
methanotrophs (R2=0.22, p=0.2), was significantly correlated to CH4 flux (Fig S3B). 198 
Additionally, the ratio of methanogen to methanotroph relative abundances was correlated to 199 
flux (R2=0.45, p=0.047) (Fig S3C), but the relative abundance of methanogens and 200 
methanotrophs alone was not. This suggests the coupling of methanogens and methanotrophs act 201 
as a control over CH4 flux in wetland environments, highlighting how the balance between these 202 
microbial groups likely influences net methane emissions. 203 
 204 
Identification of a widespread, core group of CH4 cycling organisms  205 
Given more consistent sampling methodology (i.e., similar sequencing protocols), as well as the 206 
higher measured CH4 fluxes, we focused on understanding trends in microbial dynamics across 5 207 
marsh and swamp sites (JLA, LA2, OWC, PPR7, and PPR8) (see methods). We first assessed 208 
occupancy patterns across sites to identify if there were core methanogens and methanotrophs for 209 
these marsh samples, identifying five methanogens and four methanotrophs detected in at least 210 
one sample from each site33 (Fig. 2B). Despite wetland differences in site, depth, and time of 211 
year sampling (Figure 1), five core methanogen genera were found in a majority of samples: 212 
Methanothrix (79.7%), Fen 33 (order Methanomassiliicoccales) (72.6%), Methanobacterium B 213 
(50.9%), Methanolinea (55.5%), and Methanoregula (93.9%). Interestingly, each methanogenic 214 
pathway (hydrogenotrophic, acetoclastic, methylotrophic methanogenesis) was represented 215 
within the core community, indicating that all three pathways are consistently important and 216 
likely utilized for wetland CH4 production in high emitting marsh and swamp ecosystems (Fig. 217 
2B). Three methanotrophs were identified as core but were found in a lower percentage of 218 
samples: Methylomonas (60.3%), Methylobacter (39.8%), and Methylomonadaceae KS41 219 
(85.4%). However, because the core methanotrophs require oxygen for methane oxidation, these 220 
methanotrophs may not be as detectable in the deeper anoxic samples sampled here. 221 
Constraining our analyses to only the top 10 centimeters of sediment where oxygen might be 222 
more available, we found Methylomonas present in 75.1%, Methylobacter in 57.1%, and KS41 in 223 
95.2% of samples. Core microbiomes have become increasingly viewed as important because of 224 
their assumed role as critical to a given ecosystems’ functioning34,35. Collectively, these 225 
discoveries underscore the pivotal role of select organisms in actively shaping the methane cycle 226 
within freshwater marsh ecosystems. These insights carry implications for forthcoming research 227 
activities, highlighting these organisms as candidates for more thorough physiological validation 228 
and study, as well as focus organisms for scaling to modeling endeavors.  229 
 230 
MUCC database enables deeper insight into trophic patterns from co-occurrence networks 231 
For each of the 5 marsh sites, we performed network analysis based on co-occurrence patterns to 232 
help unravel possible microbial interactions within these complex, methanogen-oriented 233 
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communities. We hypothesized that methanogen network structure in wetland communities 234 
would act as a predictor of CH4 flux. To test this hypothesis, we built 16S rRNA gene positive 235 
co-occurrence networks at each site using both the community-wide amplicon data and only the 236 
methanogen community data (Figure S5).  237 
 238 
Although network structure of the entire community did not relate to CH4 flux (Figure 3K), a 239 
more constrained network comprising the significant co-occurrences that included a methanogen 240 
member did uncover important trends (Figure 3L). These networks revealed a negative 241 
correlation between the number of methanogen-related network nodes and CH4 flux, indicating a 242 
relationship between less complex methanogen networks and higher annual CH4 emissions. 243 
Furthermore, the number of methanotrophs associated with methanogens in these networks was 244 
greater in the lower methane emitting sites (JLA, LA2), indicating that lower CH4 fluxes are 245 
associated with communities where methanotrophs and methanogens co-occur. In contrast, while 246 
high CH4-emitting sites (OWC, PPR7, PPR8) host methanotrophs and methanogens, they were 247 
generally linked by fewer connections (Figure 3M). Methanotrophs can act as a filter, oxidizing 248 
anywhere from 20-60% of the CH4 before it is released into the atmosphere3,36,37 and these 249 
results indicate that their absence in wetland samples where methanogens are present could 250 
contribute to greater CH4 fluxes. 251 
 252 
To determine potential metabolic interactions that underpin CH4 production across these sites, 253 
we developed metabolic profiles for methanogen-connected taxa in our 16S rRNA gene 254 
networks. Utilizing the MUCC 2.0.0 database, we linked microbes present in the networks with 255 
MAG representatives and assigned them functional categories: obligate fermenter, 256 
homoacetogen, demethylating, or none of these three criteria (Fig. 3A-E, 4 & Table S4. We 257 
selected these criteria, as they are thought to cross feed methanogens (Figure S1, Data Table) and 258 
are traits that can be inferred from genomes clearly. Methanogen networks were composed of 259 
699 unique co-associated genera, of which 131 genera had a genome representative in the 260 
MUCC database (Figure 4). Summarizing these genome representatives within the methanogen 261 
networks, 12 were categorized as methanogens, 7 as methanotrophs, 23 as obligate fermenters, 8 262 
as homoacetogens, 1 as both obligate fermenter and homoacetogen, and 75 demethylating 263 
(methyl-x), and 4 did not meet these criteria (Rules for assignment are found in Table S4). 264 
Additionally, 6 methanogens and 10 methanotrophs identified based on 16S rRNA gene 265 
taxonomy alone (no matches to MUCC, but metabolism is defined in literature) were included in 266 
the networks (Fig. 4, Table S5).  267 
 268 
Specifically, obligate fermenters have the potential to produce acetate, formate, and H2,  which 269 
we hypothesized would directly promote methanogen activity38,39 and thus be positively 270 
associated with our methanogen networks. As we expected, obligate fermenters were highly 271 
connected to hydrogenotrophic and acetoclastic methanogens, likely supporting cross feeding. In 272 
total, obligate fermenters had 99 significant interactions with methanogens of which 73% were to 273 
hydrogenotrophic or acetoclastic methanogens (Fig. 3F-J). Additionally, obligate fermenters 274 
were found to highly co-occur with certain methylotrophic methanogens such as 275 
Methanofastidiosum, which requires H2 to reduce methylated thiol to form methane. Compared 276 
to hydrogenotrophic methanogenesis, this form of methanogenesis is more thermodynamically 277 
favorable under low H2 conditions and has been proposed to support H2 producing syntrophs and 278 
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fermenters by preventing accumulation of H212. In summary, anoxic carbon exchanges between 279 
obligate fermenters and methanogens appear vital to carbon cycling in wetlands. 280 
 281 
Syntrophy denotes a symbiotic interaction among diverse microorganisms, wherein the exchange 282 
of metabolic byproducts mutually supports each organism's metabolism. This phenomenon is 283 
particularly prominent in methanogenic environments, where methanogens play a crucial role in 284 
regulating product concentrations, thereby rendering otherwise endergonic processes 285 
thermodynamically favorable40. In our study, we investigated obligate fermenters to uncover 286 
evidence of secondary fermentative syntrophs, identifying two prevalent syntrophic genera 287 
across methanogen networks: Smithella, present in four marshes except PPR8, and 288 
Syntrophorhabdus, found across all five marsh networks. Previous research has demonstrated the 289 
capacity for acetate and hydrogen production by Syntrophorhabdus, aligning with our genome-290 
based characterization of these 7 MAGs in MUCC. Notably, in our networks, Syntrophorhabdus 291 
exhibited multiple (8) connections to hydrogenotrophs and acetoclasts, further emphasizing its 292 
role in metabolic exchanges. These genomic metabolic insights highlight the intricate 293 
connections harbored within these co-association networks, exchanges essential for maintaining 294 
metabolic efficiency in methanogenic environments. 295 
 296 
Homoacetogens are also interacting with methanogens, as these microorganisms grow on 297 
H2/CO2/CO and produce acetate as the main metabolic product. We hypothesized that these 298 
organisms could cross-feed acetoclastic methanogens15 and or could compete with 299 
hydrogenotrophic methanogens for substrates41. The 9 homoacetogen MAGs identified in the 300 
methanogen networks comprised 15 nodes and were closely related across sites, belonging to 301 
two main phyla, Desulfobacterota and Chloroflexota despite many other acetogens across other 302 
phyla existing in the MUCC database. We observed 32 associations between these acetogens and 303 
methanogens, with 50% to hydrogenotrophic, 28% to acetoclastic and 22% to methylotrophic 304 
methanogens. Additionally, 6 of the 8 acetoclastic methanogens had at least one connection to an 305 
acetogen, supporting our hypothesis that acetogens were cross-feeding methanogens. While our 306 
finding does not preclude competition between hydrogenotrophs and other acetogens, these 307 
identified positive associations may reflect sufficient hydrogen production within the soil profile 308 
to support co-existence of both guilds, or the separation of guilds across microsites.  309 
 310 
Finally, demethylating microorganisms, whether bacteria or archaea, are capable of removing 311 
methyl groups from oxygen, sulfur, and nitrogen (O, S, N) containing compounds. Unlike 312 
methylotrophic methanogens, these taxa do not produce methane directly; however, they may 313 
engage in cross-feeding or competition dynamics with methylotrophic methanogens. Depending 314 
on the enzymatic systems they encode, these microorganisms can lead to several outcomes: (i) 315 
production of trimethylamine (TMA), a substrate for certain methanogens; (ii) formation of 316 
quaternary amines (QA), which can could be utilized by select methylotrophic methanogens; or 317 
(iii) direct utilization of methylated O, N, or S compounds, which may (iiia) compete with 318 
methylotrophic methanogens or (iiib) generate acetate and hydrogen to support hydrogenotrophic 319 
or acetoclastic methanogens. The methyl-metabolism category exhibited substantial connectivity 320 
with methanogens, comprising nearly half of the connections across sites. Notably, 68% of these 321 
connections (comprised mostly of type iii demethylating microorganisms) were linked to 322 
acetoclastic and hydrogenotrophic methanogens not methylotrophs suggesting that 323 
demethylating metabolisms in soils could indirectly bolster non-methylotrophic methane 324 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.15.589101doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.15.589101


 

 8 

production. These findings underscore the complexity of microbial interactions beyond methane 325 
production and oxidation, thereby contributing to a more comprehensive understanding of 326 
microbial cross-feeding and its broader implications for methane emissions.  327 
 328 
Methanoregula is critical for CH4 production in wetlands 329 
Two core methanogens (Figure 2), Methanothrix and Methanoregula, were found in networks 330 
across every marsh indicating global importance in the wetland CH4 cycle. Methanothrix is an 331 
obligate acetoclastic methanogen already shown to be globally distributed and an important 332 
contributor to CH4 emissions in wetlands16. Methanoregula has been found in wetlands and other 333 
habitats around the world, and like at many of our sites, is a prominent member of methanogenic 334 
networks and consistently a dominant methanogen42,43. We found that its dominance (proportion 335 
of methanogens that are Methanoregula) was related to CH4 flux, such that percent of 336 
methanogens that are Methanoregula significantly correlated to CH4 flux and the residual values 337 
that were not well predicted from the temperature- CH4 flux correlation in Figure 1 (Figure 5A). 338 
Additionally, we tested how well temperature, Methanoregula dominance, and the two combined 339 
explained methane flux. When looking at the 9 study sites, CH4 flux was not predicted by 340 
temperature alone (R2=0.15, p=0.30,), was predicted by Methanoregula dominance (R2=0.54, 341 
p=0.02,), but that temperature combined with Methanoregula dominance was the best predictor 342 
(R2=0.84, p=0.02). This is one example of how incorporating biological insights with already 343 
existing abiotic data could improve the predictive power of climate models. 344 
 345 
To understand potential physiological drivers that link Methanoregula and predications of CH4 346 
flux, we conducted a genomic analysis of 107 dereplicated MUCC-derived and publicly 347 
available (i.e., GTDB, JGI) MAGs. Methanoregula encoded diverse metabolic strategies, the 348 
capacity for fixing nitrogen (nitrogenase), viral defense (CRISPR-Cas), and mechanisms to 349 
respond to fluctuating redox conditions (reactive oxygen species) (Figure 5B). Methanoregula 350 
are classically designated hydrogenotrophic44, which we broadly confirmed here (Figure 5B). 351 
We also report that some Methanoregula genomes encode genes for methylotrophic 352 
methanogenesis, specifically for the demethylation of methylated sulfides45 and methoxylated19 353 
compounds, compounds prevalent in wetlands10,15. Although hydrogenotrophic methanogenesis 354 
is generally recognized as the dominant CH4 -generating pathway in wetlands, recent studies 355 
have indicated that methylotrophic methanogenesis contributes more to CH4 flux than previously 356 
realized17,21,46. Therefore, the apparent significance of Methanoregula in contributing to CH4 357 
emissions across diverse wetlands and within wetland gradients could partly be explained by a 358 
broader than previously understood ecological niche.  359 
 360 
To investigate the role of Methanoregula within a high CH4 emitting wetland, we mined a 361 
previously undefined role for Methanoregula from 39 paired metatranscriptome and metabolome 362 
datasets across spatial and temporal gradients from a single mudflat at OWC10 (Figure S6A). At 363 
this mud-type site, a Methanoregula MAG (OWC-0053) was one of the transcriptionally most 364 
active methanogens throughout the entire soil column across 3 months of peak CH4 production 365 
(Figure 5C). This genome was also one of the 9 genomes that predicted 78% of soil porewater 366 
CH4 concentration (Figure S6B). In summary, our comprehensive analysis reveals 367 
Methanoregula's substantial contribution to CH4 dynamics within a high-emission wetland, 368 
highlighting its prominent role as a key player in CH4 production across spatial and temporal 369 
scales. 370 
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 371 
These findings help in part explain the significant correlation between Methanoregula abundance 372 
and CH4 flux across wetlands, and its role in marsh CH4 networks. Our results suggest that 373 
Methanoregula may possess a broader physiological capacity to produce CH4 and adapt to 374 
various abiotic and biotic constraints present in marsh soils. By shedding light on the functional 375 
significance of Methanoregula, a core taxon across wetlands, our study contributes to advancing 376 
our understanding of wetland CH4 emissions. Our findings use a cross-site analysis to identify 377 
core lineages, like Methanoregula, warranting further physiological exploration, as the metabolic 378 
assumptions may be constrained by prior strict substrate and redox capabilities. Ultimately our 379 
results show promise for biological knowledge to enhance predictive models of wetland 380 
emissions, ultimately facilitating more effective management and mitigation strategies. 381 
 382 
Conclusions 383 
Microbial processes related to CH4 flux have been well-characterized at a handful of individual 384 
sites. However, site-specific knowledge of wetland microbiomes suffers from limited 385 
generalizability, as wetland ecosystems vary widely. Therefore, insights gained from studying 386 
microbiomes in one wetland may not necessarily apply to others, restricting the broader 387 
understanding of wetland microbial communities and their roles in ecosystem processes. Here, 388 
we build on existing single-site studies by building a multisite wetlands database, and 389 
synthesizing decomposer and CH4-cycling networks and their relation to CH4 flux data across 390 
multiple wetland ecosystems. Linking 16S rRNA gene data to genomes from the MUCC 391 
database, we developed metabolic profiles for methanogen-connected taxa. We found microbial 392 
cross-feeding has broad implications for CH4 emissions across wetland environments. 393 
Additionally, the highest CH4 emitting wetlands had the fewest methanogen network 394 
connections, suggesting streamlined metabolic circuits may contribute to enhanced CH4 395 
production across wetland soils. Finally, we revealed that Methanoregula is a key contributor to 396 
CH4 flux in wetland environments, potentially due in part to previously unknown metabolic 397 
versatility. Ultimately, MUCC is a powerful microbiome tool enabling us to decode microbial 398 
organismal and metabolic patterns across multiple environments, with the goal of improving 399 
predictive modeling frameworks. 400 
 401 
 402 
Methods 403 
 404 
Multi-Omics for Understanding Climate Change (MUCC) v2.0.0 Database  405 
Data was compiled from 9 different wetlands (5 marshes, 1 swamp, 1 fen, and 2 bogs), including 406 
both previously published and unpublished datasets. Published data were sourced from Old 407 
Woman Creek (OWC), AmeriFlux site-ID US-Twt (TWI), and SPRUCE; both published and 408 
unpublished data was compiled from Prairie Potholes Region (PPR 7, PPR 8) and Stordalen Mire 409 
(STM-fen and STM-bog); and unpublished data were collected from Jean Lafitte National 410 
Historical Park and Preserve (JLA) and AmeriFlux site US-LA2 (LA2). The Multi-Omics for 411 
Understanding Climate Change (MUCC) v2.0.0 database combines 997 16S rRNA, 284 412 
metagenomic, and 133 metatranscriptomic datasets from PPR, STM, OWC, TWI, and SPRUCE, 413 
along with 115 newly analyzed 16S rRNA and 20 metagenomic samples from PPR, JLA, and 414 
LA2. DNA extraction and amplicon sequencing info for all sites can be found in Table S7. 415 
Accession numbers for all samples can be found in Table S1, while sample IDs and GTDBk 416 
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v207 taxonomy for 16S rRNA data are in Table S2, and the details of 4,745 medium and high-417 
quality Metagenome Assembled Genomes (MAGs) are listed in Table S3. The MAGs and 16S 418 
rRNA data from MUCC v2.0.0 are available on Zenodo (https://zenodo.org/records/10822869) 419 
and NCBI (PRJNA1007388). 420 
 421 
Old Woman Creek (OWC)  422 
OWC National Estuarine Research Reserve (41° 22’N 82°30’W) is located on the southern shore 423 
of Lake Erie in Ohio. It is composed of a permanently flooded channel surrounded by marsh, 424 
occasional mud flats (which are inundated most of the time), and an upland forested habitat16. In 425 
brief, sediment cores were collected from sites representing distinct eco-hydrological patch types 426 
(cattail plant, mud, and open water) in triplicate in May, June, July, August, and September of 427 
2018 using a modified Mooring System soil corer16. Cores, sampled to a depth of 35cm, were 428 
sub-sectioned into six depths using a hydraulic extruder: 0-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 429 
20-25 cm, 25-30 cm. Microbiome data from 626 samples included bacterial and archaeal 16S 430 
rRNA amplicon sequence data, metagenomes, and metatranscriptomes10,16. Meteorological and 431 
eddy-covariance flux data for the site are available through AmeriFlux, site-ID US-OWC47. Gap-432 
filled and averaged data used in this analysis were obtained from FLUXNET-CH430. 433 
 434 
Prairie Pothole Region (PPR) 435 
Cottonwood Lake Study Area (47° 05’N: 99° 06’W), located northwest of Jamestown, North 436 
Dakota, is a protected area owned by U. S. Fish and Wildlife Service and is a long-term research 437 
site (>30 years) for the U. S. Geological Survey (USGS). The 92-ha site consists of 17 distinct 438 
wetlands with permanent-to-temporary inundation. Samples were collected from two permanent 439 
wetlands: P8 (47° 05’55.8”N 99°06’14.1”W) and 2 sub-locations within P7 - Location 1 440 
(47°05’43.7”N 99°06’00.8”W) and Location 2 (47°05’46.7”N 99°05’57.9”W). Cores were 441 
collected in triplicate at each location in March, May, and September of 2015 using a modified 442 
Mooring System soil corer. Cores, sampled to a depth of 30 cm, were sub-sectioned using 443 
hydraulic extrudation in 3-cm increments. MUCC v 2.0.0 included 214 16S rRNA sequencing 444 
samples and 18 previously published metagenomes24 combined with 18 new metagenomes from 445 
PPR. 446 
 447 
Annual CH4 flux data was averaged from 2011-201648. Methane fluxes were measured using the 448 
static chamber method49 every two weeks during the growing season (defined as soil temperature 449 
≥5 °C). During each sampling event, chambers were floated in open waters of P7 and P8 for 30 450 
minutes after which headspace gas samples were collected through a rubber septa and stored in 451 
evacuated 10-ml serum vials. Sample gases were analyzed for methane concentrations on a gas 452 
chromatograph equipped with electron capture and flame ionization detectors (SRI Model 8610, 453 
California) located at the USGS Northern Prairie Wildlife Research Center. Methane flux rates 454 
were calculated using the linear change in CH4 concentration during the deployment, chamber 455 
dimensions and temperature, and the Ideal Gas Law. Biweekly flux rates were scaled to annual 456 
cumulative CH4 flux by summing the mean flux rates between consecutive sampling events and 457 
multiplying by the time between events. 458 
 459 
Louisiana Wetlands (JLA and LA2) 460 
Two distinct sites were sampled in Louisiana in October 2021. Jean Lafitte National Historical 461 
Park and Preserve (JLA) (29°80’18″ N 90°11’02″ W) and AmeriFlux site-ID US-LA250 (LA2) 462 
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(29°51’31.4″ N, 90°17’11.3″ W) on the Salvador Wildlife Management Area are located in 463 
coastal Louisiana. The JLA wetland is a Cypress-Tupello swamp with distinct hollow and 464 
hummock features, and the LA2 wetland is a fresh flotant marsh vegetated by a mix of Typha sp. 465 
and Sagittaria sp. In JLA, triplicate soil cores were collected using a Russian Peat Corer, and 0-466 
10 cm and 30-40 cm intervals were sampled. In LA2, triplicate slurry samples from 0-10 cm and 467 
20-30 cm were collected using a sipper.   468 
 469 
Samples were kept on dry ice after processing. DNA was extracted using Zymo Research Quick-470 
DNA™ Fecal/Soil Microbe Microprep Kit, following the manufacturer’s protocol. Amplicon 471 
libraries were prepared using a single step PCR to amplify the V4 region of the 16S rRNA gene 472 
with the primers 515F/806R 51 following the Earth Microbiome Project (EMP) PCR protocol. 473 
Pooled DNA products were sequenced on the Illumina MiSeq Platform using 251 bp paired-end 474 
sequencing chemistry at the Microbial Community Sequencing Lab (University of Colorado 475 
Boulder).  476 
 477 
Gap-filled and averaged flux data for LA2 that were used here, were downloaded from 478 
FLUXNET-CH430, while JLA flux was measured in four field campaigns in June, August, 479 
October, and December of 2021. Measurements were conducted using a trace gas analyzer 480 
(LICOR 7810) coupled to a custom-made chamber in triplicate 2-minute deployments in three 481 
hollow and three hummock locations. Flux was calculated following procedures described in 482 
Villa et al. 202152.  483 
 484 
Twitchell 485 
Twitchell Island (121.65°W, 38.11°N), located in the Sacramento-San Joaquin River Delta, CA, 486 
hosts a USGS wetland restoration site. Meteorological and flux data for the site are available 487 
through AmeriFlux, site-ID US-Twt53. The Twitchell experimental wetlands are categorized as 488 
freshwater marsh. All data used from the Twitchell site were previously published in He et al27. 489 
Flux data was downloaded from FLUXNET-CH430. 490 
 491 
SPRUCE 492 
The SPRUCE experiment (47°30.4760N; 93°27.1620W), located in the S1 bog of the US 493 
Department Agriculture (USDA) Forest Service’s Marcell Experimental Forest, is located 494 
northeast of Grand Rapids, Minnesota. All data used was published in Wilson et al 202122. In 495 
this study, only data from samples collected from +0 and ambient treatments were used.  496 
 497 
Stordalen Mire (Stm) 498 
Stordalen Mire (0°34’25.7”N; 37°34’30.1”E) located near Abisko, Sweden is an Arctic 499 
permafrost peatland that covers three main habitats across a discontinuous thaw gradient: palsa, 500 
bog, and fen. Palsa overlays intact permafrost and is well-drained and dominated by woody and 501 
ericaceous shrubs. Bog overlays partially thawed permafrost, with a perched water table and 502 
Sphagnum moss dominance. Fen is fully thawed, inundated, and sedge-dominated. The Mire was 503 
surveyed in 2015 at a range of distributed palsas, bogs and fens; only bog and fen 16S rRNA 504 
gene amplicon data are used in this study. A serrated knife was used to cut vertically into the 505 
peat, and microbial samples were collected to fill 2ml Eppendorf tubes from each depth: 506 
“shallow” (median of 2cm, range 1-3cm); “middle” (median of 12cm, range 10-12cm); and 507 
“deep” m(edian of 20cm, range 18-20cm). Sample tubes were stored on ice in the field and 508 
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transferred to -80C within 10 hours of collection. DNA was extracted with the PowerSoil 96-509 
Well Soil DNA Isolation kit (MO BIO cat# 12955-4) following the manufacturer’s protocol. 16S 510 
rRNA gene amplicon sequencing were performed by Argonne National Laboratory using the 511 
Earth Microbiome Project barcoded 515F-806R primer set and protocol, and on an Illumina 512 
MiSeq sequencer. MAGs from 214 previously published metagenomes were also used9. Methane 513 
flux data for Stordalen bogs and fens were annual averages from 2012-2018 of autochamber 514 
measurements (static, closed systems) that include three replicate measurements per cover type54.  515 
 516 
16S rRNA Gene Sequencing and Analysis 517 
All raw amplicon sequence data were processed using the QIIME2 (v2021.2) pipeline55. Data 518 
from OWC, PPR, LA2, JLA, STM-f, STM-b, and Spruce sites were independently processed 519 
through QIIME2 to account for sequencing run biases. Datasets were uniformly trimmed to the 520 
same length (195 bp), paired end read were merged, and ASVs assigned using the naïve Bayes 521 
sklearn classifier trained with the GTDB-Tk (v2.1.1 r207)56 , prior to merging at the ASV level 522 
across datasets. Because Twitchell was sequenced using a different primer set, sites were merged 523 
at the genus level. Due to a wide range in sequencing depth across sites, all samples were 524 
rarefied to 5000 reads resulting in a final dataset of 1118samples (Figure 1C). 43 samples were 525 
not retained because they fell below the minimum read depth. Across the 9 wetlands included in 526 
this study, core depth and interval sections varied. The compiled studies had different depth 527 
thresholds used to categorize shallow, middle, and deep sediments. To standardize depth 528 
measurements, we created 3 categories that encompassed the categories across studies: shallow 529 
included samples in the 0-9 cm horizon, middle included samples collected from 10-19 cm, and 530 
deep for samples collected from 20-40 cm.   531 
 532 
 533 
Genome assembly and binning 534 
Previously published metagenomic samples were combined with newly analyzed samples in this 535 
release of MUCC. 20 newly analyzed samples contributed 617 MAGs (Table S1 & S3). MAGs 536 
were recovered from: 537 

(1) 2021 LA Field Sample (n=1) 538 
(2) 2021 JLA Field Sample (n=1) 539 
(3) 2022 PPR Field Sediment Samples (n=7) 540 
(4) 2022 PPR Field Water Samples (n=2) 541 
(5) 2022 PPR Lab Enrichment Samples (n=9) 542 

 543 
LA and JLA metagenomes were processed separately from the PPR metagenomes. Raw 544 
metagenomic reads were trimmed using Sickle (pe)57 and assemblies were generated using 545 
Megahit (v1.2.9)58 with parameters --k-min 31 --k max 121 --k-step 10. Subsampled assemblies 546 
using 25% of sequencing reads were generated using IDBA-UD v 1.1.359 with default 547 
parameters. Reads were mapped to contigs greater than 2500 bp using BBMap (v 38.89)60 and 548 
were subsequently binned using MetaBAT261. Only medium and high-quality bins based on 549 
adapted MIMARKS standards (completeness >=50% and contamination <10%) were retained62. 550 
PPR bins from these assemblies were combined with bins from metagenomic assemblies derived 551 
from earlier sampling of PPR28, were combined with the bins from LA2 and JLA, and with 552 
publicly available bins from OWC10, STM9, and TWI27. This bin pool was dereplicated using 553 
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dRep (v 3.0.0)63 at 99% identity. MAG completeness and contamination was estimated using 554 
CheckM64 and taxonomy  assigned using GTDB-tk v2.3.0 with GDTB database release 20756. 555 
 556 
Community Analysis 557 

To determine the extent to which microbial community structure varied with both wetland type 558 
(marsh, swamp, fen, bog) and sample depth (shallow, mid, deep), we conducted permutational 559 
analysis of variance (PERMANOVA) using Bray-Curtis distances. Results were visualized using 560 
non-metric multidimensional scaling (NMDS). PERMANOVA and NMDS were conducted 561 
using the vegan package 65 and visualized using ggplot266 in R Studio66. We also correlated 562 
environmental parameters including pH, mean annual temperature, mean annual precipitation, 563 
latitude, longitude, and CH4 flux with microbial community structure using the R-function envfit 564 
(as visualized in Figure S2). Alpha diversity of the entire microbial community, of 565 
methanotrophs and methanogens, of the methanogens only, and of the methanotrophs only was 566 
calculated using the Shannon diversity index. Differences in alpha diversity between bogs and 567 
fens were calculated using analysis of variance (ANOVA). Marshes and swamps were grouped 568 
together because they have similar characteristics to each other such as pH while bog and fen 569 
were grouped because they are both types of peatland characterized by low pH and occur in 570 
similar climates67. Shannon diversity was correlated with individual environmental parameters 571 
using a linear regression and corrplot in R. Linear models were used to assess if mean annual 572 
temperature (MAT) and/or relative abundance of Methanoregula was predictive of methane flux 573 
across wetlands using the lm function in R. MAT and Methanoregula relative abundance were 574 
also individually tested using a regression model conducted using the R-function ggpubr68. 575 

To determine if certain methanogens and methanotrophs were widespread (found across all sites) 576 
or restricted to specific wetland types (i.e., marsh), we conducted a core community analysis. 577 
This analysis was conducted across all samples both regardless of sample depth, and within the 578 
depth categorization to understand if core members are more likely to be present in different 579 
depth zones. Because of the wide range of sampling schemes across sites, a microbe was 580 
determined to be a core member if it was present across all sites or all sites within a 581 
categorization (marsh/swamp or bog/fen). Core analysis was preformed using ‘summarise’ and 582 
‘filter’ commands in Tidyverse69. 583 

Co-occurrence Networks 584 
To understand if co-occurrence patterns related to methane flux, we created co-occurrence 585 
networks based on the entire community and significant co-occurrence patterns with 586 
methanogens from JLA, LA2, OWC, PPR 7, PPR 8. We focused on these five marsh sites 587 
because we were interested in patterns within the highest methane producing communities and 588 
because these all used the same amplicon primers. Because networks are sensitive to number of 589 
input samples, each individual site’s network was composed of 12 different community samples 590 
that were randomly sampled. Additionally, samples all came from similar points in the season 591 
(September or October) and represented all sampling depths. 592 
 593 
Network analyses were carried out in R using the packages igraph70, Hmisc71, and Matrix72. To 594 
determine co-occurrence patterns in the microbial communities, we used rarefied genus tables. 595 
Genera with less than 10 read counts were removed from the analysis. We used Spearman 596 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.15.589101doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.15.589101


 

 14 

correlations to determine if genera were significantly correlated with a p-value cutoff of < 0.05 597 
and rho of > 0.5. Gephi (0.10.1)73 was used to visualize networks and calculate network 598 
parameters including number of edges, nodes, average degrees, average path length, and 599 
modularity. Network parameters were correlated to methane flux using corrplot and linear 600 
regressions in R. Given our interest in the metabolic interactions of microbial taxa with 601 
methanogens, we focused downstream analyses on positive interactions. 602 
 603 
To uncover the metabolic interactions patterns of the methanogens, co-occurrence networks were 604 
compared to MAGs in the MUCC database that had been assigned taxonomy using GTDB-Tk 605 
(v2.1.1 r207)56. Every MAG that appeared in the methanogen networks (determined if MAG and 606 
16S ID matched at the genus level) were compiled and annotated using DRAM (v1.4.4)74.  607 
MAGs were further physiologically curated using DRAM curations and manual analyses, and 608 
subsequently put into one of the following categories: Methanogen, methanotroph, fermenter, 609 
acetogen, methyl-x, or other (Table S5). Methanogens, methanotrophs, and fermenters were 610 
defined using the rules set published in Olivero et al10 . Additional methanogens and 611 
methanotrophs were assigned if a MAG was not present for that genus but has been recognized 612 
in the literature. Acetogens were assigned if they had at least 6 out of 10 steps of the Wood-613 
Ljungdahl pathway. Methyl-x were assigned based on the presence of known substrate-specific 614 
methylotrophic genes including both aerobic and anaerobic metabolisms. All rules are outlined 615 
in Table S4. If multiple MAGs existed for each genus, over 50% of the MAGs had to follow the 616 
rules laid out above for it to be classified within a given category.  617 
 618 
Phylogenomic and physiological analysis of Methanoregula 619 
 620 
MAGs in the MUCC database were taxonomically assigned using GTDB-Tk (v2.1.1 r207)56 and 621 
Methanoregula MAGs (n=37) were parsed by genus from the full database. Further, publicly-622 
available Methanoregula MAGs were retrieved from GTDB (n=21 ) and JGI (n=91). These 149 623 
MAGs were dereplicated at 99% using dRep63 in 107 representative MAGs. All MAGs were 624 
annotated using DRAM (v1.3.2) 74.  625 
 626 
Phylogenomic analysis of the 107 dereplicated Methanoregula MAGs was performed using 627 
GTDB-Tk v2.1.1 r20756 run using the de novo workflow. The alignment was based on 53 628 
concatenated archaeal marker genes, and a GTDB-derived genome from the phylum 629 
Undinarchaeota (GCA_002495465.1) was used as an outgroup to root the tree. The generated 630 
tree was read and visually modified, including the representation of physiological potential, in R 631 
using the ggtree package75. Newick tree is available at https://zenodo.org/records/10822869. 632 

 633 
Methanoregula MAGs were screened for physiological potential for methanogenesis (mcrABG), 634 
hydrogenotrophy (genes encoding the Wood-Ljungdahl pathway), nitrogen fixation (nitrogenase) 635 
and CRISPR-Cas associated proteins using DRAM. Meanwhile, to search for possession of 636 
genes encoding reactive oxygen species (ROS) detoxification enzymes, MAGs were searched via 637 
BLAST-P using a FASTA reference file (https://zenodo.org/records/10822869) of Uniprot and 638 
KEGG-derived reference sequences of ROS detox enzymes methanogens are known to 639 
encode76.The BLAST-P output was limited to include only hits with both a bitscore of ³100 and 640 
³30% identity to the target sequence. Last, to curate methylotrophic potential, we carried out the 641 
strategy used by Ellenbogen et al.15. MAGs were searched via BLAST-P using a FASTA 642 
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reference file15 of known methylotrophic genes, namely those encoding substrate-specific 643 
corrinoid-dependent three component methyltransferase systems comprised of a 644 
substrate:corrinoid methyltransferase, a corrinoid-binding protein, a methylcorrinoid:carbon-645 
carrier methyltransferase, and a reductive activase. The BLASTP output was limited to only 646 
include hits with a bitscore >60, and only genes from MAGs found to possess genes for directly 647 
substrate-interacting substrate:corrinoid methyltransferases were retained. Genes meeting these 648 
criteria were phylogenetically analyzed using ProtPipeliner to build RaxML trees 649 
(https://github.com/TheWrightonLab/Protpipeliner/blob/master/protpipeliner.py) relative to 650 
reference genes including those used in the BLAST-P search, plus other homologous sequences 651 
derived from UniProt from physiologically characterized methylotrophic methanogens and 652 
acetogens (Table S2 tab FASTA_reference_for_genes_trees ). Newick trees are available at 653 
https://zenodo.org/records/10822869. Trees were visually inspected in iTOL77, and tree 654 
placement – plus gene synteny, as methylotrophic genes are often co-encoded78,79 - was used to 655 
confirm or refine the specific identification of genes. 656 
 657 
Metatranscriptomic analyses 658 
Metatransciptome analyses was performed using a previously published normalized read count 659 
table10. In brief, raw metatranscriptomic reads were quality trimmed, mapped to MUCC v 1.0.0, 660 
per gene read counts were estimated, and resulting read counts were normalized to gene length 661 
and TMM normalized using log2 normalization80. Mean geTMM values for all genes were 662 
summed for each MAG, to generate a total expression metric for each MAGs activity within the 663 
2018 OWC metatranscriptomes. Only metatranscriptome data from mud type sites are included 664 
in these analyses. These MAG totals were further summed to the level of genus, and the 665 
methanogen data were parsed out of the full data set by taxonomy. It was manually determined 666 
which 5 methanogenic genera were most active in the D1 (0-5 cm), D3 (10-15 cm), and D6 (20-667 
30 cm) samples independent of time. The genus-summed mean total transcription of these 5 668 
methanogenic genera over time was plotted in R using ggplot66. To represent the activity of 669 
individual MAGs over time and depth, the mean MAG-level summed geTMM scores were 670 
plotted as a heatmap using ggplot in R.  671 
 672 
Variable Importance (VIP) scores 673 
Variable importance scores (VIP) are used to estimate a variables contribution to PLS regression, 674 
with predictors assigned high scores considered important for the PLS prediction of the tested 675 
response variable. Here, VIP were calculated as per Chong et al.81 in R to correlate methanogen 676 
MAG activity – or genome expression- and field methane data. To generate methane data, a 677 
numerical model was used to combine chamber and peeper measurements to determine the rates 678 
of methane production as outlined in Angle et al16.  For MAG activity, the aforementioned 679 
summed average MAG activity table (see above) was used. Significant VIP scores (>2) were 680 
plotted using ggplot in R. 681 
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Figures 904 

905 
Figure 1. (A) Figure modified from Delwiche et al. (2021) shows mean annual methane (CH4) 906 
flux from wetlands included in FLUXNET-CH4. The deviation of the predictions from 907 
observations indicates this abiotic variable incompletely represented CH4 flux, especially for the 908 
highest emitting wetlands. Colored points represent sites discussed in this study. (B) Methane 909 
emissions in wetlands result from decomposition networks in which carbon decomposers first 910 
produce methanogenic substrates. These substrates are subsequently utilized by methanogenic 911 
archaea to produce CH4, which can either be consumed by methanotrophic bacteria or released 912 
into the atmosphere. Methanogens produce CH4 through three distinct pathways characterized by 913 
their substrate use: (1) hydrogenotrophic methanogenesis (reduce CO2 using H2, formate, 914 
ethanol, propanol, butanol – given in green and blue), (2) acetoclastic methanogenesis (acetate 915 
given in dark yellow or green), or (3) methylotrophic methanogenesis (CH3 groups cleaved from 916 
methanol or methylated amines, like trimethylamine - given in dark purple) (C) Upset plot 917 
indicates the total number of samples and their distribution across relevant categories including 918 
wetland type, sampling month, sampling depth. (D) Wetlands differ by type, annual methane 919 
flux, and geographic and climatic factors. Circle size approximates annual CH4. Circle area flux 920 
of proposed wetland and geographic location. 921 
 922 
 923 
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 924 
Figure 2. (A) Wetland type is an important control on microbiome membership and structure, 925 
despite differences in sampling strategies and geographic locations. 16S rRNA amplicon data on 926 
soil microbial communities from marsh and swamp samples cluster together (rectangles and 927 
diamonds, most right side) and are statistically distinct from fen (triangle, middle and most left 928 
side) and bog (circle, middle) microbial communities. (B) Core methane cycling members across 929 
distinct wetlands. Heatmap shows the relative abundance of each genus within the methanogen 930 
(blue) or methanotroph (red) community across wetlands. To illuminate the metabolic features of 931 
these core taxa in high methane emitting wetlands, we utilized the Multi-Omics for 932 
Understanding Climate Change (MUCC) v 2.0.0 database, with 140 MAGs assigned to our core 933 
taxa. Genome counts per genus are shown in the bar chart (black).  934 
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 935 

 936 
Figure 3. (A-E) Co-occurrence network analysis revealed network structure of methanogen 937 
associated taxa across wetlands. Networks depicting site specific co-occurrence analysis 938 
uncovered the network of microorganisms coordinated to methanogens across each site, with 939 
nodes representing microbial taxa. Larger nodes represent methanogens, while small nodes 940 
represent bacterial taxa. Nodes are colored by inferred metabolic potential of 16S rRNA linked 941 
MAGs within MUCC. (F-J) Proportion of connections between groups in each network are given 942 
in the bar charts below and show conserved patterns in network connections across sites. Missing 943 
bars indicate no connections. Correlation between network statistics and methane flux 944 
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measurements derived from the Ameriflux network was measured for (K) whole community 945 
networks and (L) methanogen networks. Only number of nodes in the methanogen network was 946 
correlated with methane flux. (M) Additionally, negative correlation between annual methane 947 
residual and methane flux (from Figure 1) to number of methanogens, methanotrophs, and 948 
connections between the two were observed. 949 
 950 
 951 

 952 
 953 
Figure 4. Taxonomy of the 158 genera represented in the networks that are found within the 954 
MUCC database.  Additionally, 6 methanogens and 9 methanotrophs were identified based on 955 
16S rRNA were included in the networks and are shown in the network with reduced opacity at 956 
the genus level. Circles around the edge represent inferred metabolic potential and squares 957 
represent the sites where the genus had significant co-occurrence with a methanogen. 958 
 959 
 960 
 961 
 962 
 963 
 964 
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 965 

 966 
 967 
 968 
Figure 5. (A) Residual values from the methane flux to temperature trend line was significantly 969 
related to the relative abundance of Methanoregula within the methanogen community. (B) 970 
Genome tree of Methanoregula MAGs from MUCC (OWC, PPR, STM), plus available MAGS 971 
from JGI and GTDB. A pangenome-analysis shows the largely conserved encoding of genes for 972 
key physiological features, as well as limited novel metabolic potential (e.g., methylotrophic 973 
genes) which may directly or indirectly support high methane fluxes from Methanoregula in 974 
wetlands. (C) Mean transcription of top five most active methanogenic genera at three depths (0-975 
5 cm, 10-15 cm, 20-30 cm) in the mud site type across the 2018 sampling season. predictive of 976 
CH4 fluxes. 977 
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Supplementary Information 978 

 979 
Figure S1. (A) Alpha diversity measured using the Shannon diversity index of the total 980 
community was significantly higher in swamps and marshes compared to bog and fen (p<0.001). 981 
(B) Total community alpha diversity was significantly correlated with annual CH4 flux.  982 
 983 
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987 
Figure S2. Wetland type and pH are dominant drivers of microbial communities. (A) Nonmetric 988 
multidimensional scaling (NMDS) oridination of wetland communities was overlayed with 989 
significant environmental variables using envfit. (B) Barplot visualizing the relative importance 990 
of environmental factors that explain variation in the microbial communities. (C) Higher pH and 991 
CH4 flux were correlated with microbial communities from marsh sites. 992 
 993 
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 999 
 1000 

 1001 

 1002 
Figure S3. (A) Temperature alone has relatively low predictive power of CH4 flux in marshes 1003 
and swamps. Mean annual temperature of all marsh and swamp found in Delwiche et al. (2021) 1004 
and in our dataset were compared annual CH4 flux. (B) Correlation plot comparing 1005 
environmental variables to CH4 flux and Shannon diversity. White boxes with no value indicates 1006 
no significant correlation between variables. (C) The ratio of methanogen to methanotroph 1007 
relative abundance is significantly correlated to CH4 flux.  1008 
 1009 
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 1010 
Figure S4. Across 9 wetlands, the highest methane emitting wetlands (PPR P7, OWC) shared 1011 
similar methane microbial communities despite differences in geography. Amplicon taxonomic 1012 
data were mined for known methanogen or methanotroph membership and relative abundance. 1013 
Dominant and prevalent methanogen genera include Methanoregula and Methanothrix. 1014 
Methanogens are colored by pathway where acetoclastic methanogens are given in yellow, 1015 
hydrogenotrophic methanogens in blue and methylotrophic methanogens in purple. Aerobic 1016 
methanotrophs are given in red while anaerobic methanotrophs are given in teal. 1017 
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 1021 
Figure S5. 16S rRNA gene co-occurrence networks at each site were built for the methanogen 1022 
community. Networks were constructed to comprise all significant co-occurrences that included 1023 
a methanogen. 1024 
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Figure S6. (A) Illustration representing our 2018 sampling campaign in OWC, here used as a 1028 
case study for exploring the significance of Methanoregula in a single wetland. (B) Significant 1029 
VIP scores (>2) for methanogen MAGs found predictive of CH4 fluxes in OWC, including a 1030 
member of the Methanoregula (starred, OWC_0053). (B) Mean transcription of Methanoregula 1031 
MAGs across time and depth in OWC in the mud site type. Members of the genus are active 1032 
across the site, with the most active MAG representing the sole one found to be significantly 1033 
predictive of CH4 fluxes. 1034 
 1035 
 1036 
 1037 
 1038 
SI Citations 1039 
1. Oliverio, A. M. et al. Rendering the metabolic wiring powering wetland soil methane 1040 

production. 2024.02.06.579222 Preprint at https://doi.org/10.1101/2024.02.06.579222 1041 

(2024). 1042 

2. Angle, J. C. et al. Methanogenesis in oxygenated soils is a substantial fraction of wetland 1043 

methane emissions. Nat Commun 8, 1567 (2017). 1044 

3. Narrowe, A. B. et al. Uncovering the Diversity and Activity of Methylotrophic Methanogens 1045 

in Freshwater Wetland Soils. mSystems 4, e00320-19 (2019). 1046 

4. Narrowe, A. B. et al. Complex Evolutionary History of Translation Elongation Factor 2 and 1047 

Diphthamide Biosynthesis in Archaea and Parabasalids. Genome Biol Evol 10, 2380–2393 1048 

(2018). 1049 

5. Dalcin Martins, P., Frank, J., Mitchell, H., Markillie, L. M. & Wilkins, M. J. Wetland 1050 

Sediments Host Diverse Microbial Taxa Capable of Cycling Alcohols. Appl Environ 1051 

Microbiol 85, (2019). 1052 

6. He, S. et al. Patterns in wetland microbial community composition and functional gene 1053 

repertoire associated with methane emissions. mBio 6, e00066-00015 (2015). 1054 

7. Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. 1055 

Nature 560, 49–54 (2018). 1056 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.15.589101doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.15.589101


 

 36 

8. Dalcin Martins, P. et al. Abundant carbon substrates drive extremely high sulfate reduction 1057 

rates and methane fluxes in Prairie Pothole Wetlands. Glob Change Biol 23, 3107–3120 1058 

(2017). 1059 

9. Wilson, R. M. et al. Soil metabolome response to whole-ecosystem warming at the Spruce 1060 

and Peatland Responses under Changing Environments experiment. Proceedings of the 1061 

National Academy of Sciences 118, e2004192118 (2021). 1062 

10. Ellenbogen, J. B. et al. Methylotrophy in the Mire: direct and indirect routes for methane 1063 

production in thawing permafrost. mSystems 0, e00698-23 (2023). 1064 

11. Guerrero-Cruz, S. et al. Methanotrophs: Discoveries, Environmental Relevance, and a 1065 

Perspective on Current and Future Applications. Frontiers in Microbiology 12, (2021). 1066 

12. Shin, J., Song, Y., Jeong, Y. & Cho, B.-K. Analysis of the Core Genome and Pan-Genome of 1067 

Autotrophic Acetogenic Bacteria. Front Microbiol 7, 1531 (2016). 1068 

13. Andreesen, J. R. Glycine reductase mechanism. Current Opinion in Chemical Biology 8, 1069 

454–461 (2004). 1070 

14. Rajakovich, L. J., Fu, B., Bollenbach, M. & Balskus, E. P. Elucidation of an anaerobic 1071 

pathway for metabolism of l-carnitine–derived γ-butyrobetaine to trimethylamine in human 1072 

gut bacteria. Proceedings of the National Academy of Sciences 118, e2101498118 (2021). 1073 

15. Massmig, M. et al. Carnitine metabolism in the human gut: characterization of the two-1074 

component carnitine monooxygenase CntAB from Acinetobacter baumannii. J Biol Chem 1075 

295, 13065–13078 (2020). 1076 

16. Koeth, R. A. et al. γ-Butyrobetaine Is a Proatherogenic Intermediate in Gut Microbial 1077 

Metabolism of L-Carnitine to TMAO. Cell Metabolism 20, 799–812 (2014). 1078 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.15.589101doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.15.589101


 

 37 

17. Craciun, S. & Balskus, E. P. Microbial conversion of choline to trimethylamine requires a 1079 

glycyl radical enzyme. Proc Natl Acad Sci U S A 109, 21307–21312 (2012). 1080 

18. Bazire, P. et al. Characterization of l-Carnitine Metabolism in Sinorhizobium meliloti. 1081 

Journal of Bacteriology 201, 10.1128/jb.00772-18 (2019). 1082 

19. Wargo, M. J. & Meadows, J. A. Carnitine in bacterial physiology and metabolism. 1083 

Microbiology 161, 1161–1174 (2015). 1084 

20. Wargo, M. J., Szwergold, B. S. & Hogan, D. A. Identification of Two Gene Clusters and a 1085 

Transcriptional Regulator Required for Pseudomonas aeruginosa Glycine Betaine 1086 

Catabolism. Journal of Bacteriology 190, 2690–2699 (2008). 1087 

21. Kumar, R. et al. Prediction and Biochemical Demonstration of a Catabolic Pathway for the 1088 

Osmoprotectant Proline Betaine. mBio 5, 10.1128/mbio.00933-13 (2014). 1089 

22. Cronin, D. & Institute, N. E. B. I. Metagenome-assembled genomes (MAGs) from Stordalen 1090 

Mire, Sweden. Zenodo https://doi.org/10.5281/zenodo.7596016 (2023). 1091 

23. Kurth, J. M., Op den Camp, H. J. M. & Welte, C. U. Several ways one goal—1092 

methanogenesis from unconventional substrates. Appl Microbiol Biotechnol 104, 6839–6854 1093 

(2020). 1094 

24. Lü, Z. & Lu, Y. Complete Genome Sequence of a Thermophilic Methanogen, Methanocella 1095 

conradii HZ254, Isolated from Chinese Rice Field Soil. Journal of Bacteriology 194, 2398–1096 

2399 (2012). 1097 

25. Borrel, G. et al. Methanomethylophilus alvi gen. nov., sp. nov., a Novel Hydrogenotrophic 1098 

Methyl-Reducing Methanogenic Archaea of the Order Methanomassiliicoccales Isolated 1099 

from the Human Gut and Proposal of the Novel Family Methanomethylophilaceae fam. nov. 1100 

Microorganisms 11, 2794 (2023). 1101 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.15.589101doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.15.589101


 

 38 

26. Theisen, A. R. & Murrell, J. C. Facultative Methanotrophs Revisited. Journal of 1102 

Bacteriology 187, 4303–4305 (2005). 1103 

27. Cozannet, M. et al. New Insights into the Ecology and Physiology of 1104 

Methanomassiliicoccales from Terrestrial and Aquatic Environments. Microorganisms 9, 30 1105 

(2020). 1106 

28. Liu, Y.-F. et al. Anaerobic Degradation of Paraffins by Thermophilic Actinobacteria under 1107 

Methanogenic Conditions. Environ. Sci. Technol. 54, 10610–10620 (2020). 1108 

 1109 
 1110 
 1111 
 1112 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.15.589101doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.15.589101

