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Haplotype-aware realignment of reads

Mapped reads are preprocessed using an error-tolerant, local De-Bruijn-graph-based read
assembly procedure which realigns them according to their most likely derived haplotype.
Candidate windows across the genome are selected for reassembly by looking for any evidence



Poplin et al. Supplementary materials for "Creating a universal SNP and small indel variant
caller with deep neural networks"

of possible genetic variation such as mismatching or soft clipped bases. The selection criteria
for a candidate window are very permissive so that true variation is unlikely to be missed. All
candidate windows across the genome are considered independently. De-Bruijn graphs are
constructed using multiple fixed k-mer sizes (from 20 to 75, inclusive, with increments of 5) out
of the reference genome bases for the candidate window as well as all overlapping reads.
Edges are given a weight determined by how many times they are observed in the reads. We
trim any edges with weight less than three, except edges found in the reference are never
trimmed. Candidate haplotypes are generated by traversing the assembly graphs and the top
two most likely haplotypes are selected which best explain the read evidence. The likelihood
function used to score haplotypes is a traditional pair HMM with fixed parameters that do not
depend on base quality scores. This likelihood function assumes that each read is independent.
Finally, each read is then realigned to its most likely haplotype using a Smith-Waterman-like
algorithm with an additional affine gap penalty score for homopolymer indels. This procedure
updates both the position and the CIGAR string for each read.

Finding candidate variants

Candidate variants for evaluation with the deep learning model are identified with the following
algorithm. We consider each position in the reference genome independently. For each site in
the genome we collect all the reads that overlap that site. The CIGAR string of each read is
decoded and the corresponding allele aligned to that site is determined, which are classified into
either a reference-matching base, a reference-mismatching base, an insertion with a specific
sequence, or a deletion with a specific length. We count the number of occurrences of each
distinct allele across all reads. An allele is considered a candidate if it satisfies:

def is_candidate(counts, allele):
allele_count = counts[allele]
total_counts = sum(counts.values())
return not is_reference_base(allele)
and allele_count >= min_count
and allele count / total_count >= min_fraction

If any candidates pass our calling thresholds at a site in the genome, we emit a VCF-like record
with chromosome, start, reference bases and alternate bases, where reference bases and
alternate bases are the VCF-compatible representation of all of the passing alleles.

We filter away any unusable reads (see is_usable_read() below) if it is marked as a duplicate,
as failing vendor quality checks, isn't aligned or if this isn't the primary alignment, mapping
quality is less than 10, or the read is paired and not marked as properly placed. We further only
include read bases as potential alleles if all of the bases in the alleles have a base quality >= 10.
We only emit variant calls at standard (ACGT) bases in the reference genome. It is possible to
force candidate variants to be emitted (randomly with probability of p) at sites with no alternate
alleles, which are used homozygous reference training sites. There's no constraint on the size of
indels emitted, so long as the exact position and bases are present in the cigar string and they
are consistent across multiple reads.
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Creating images around candidate variants

The second phase of DeepVariant encodes the reference and read support for each candidate
variant into an RGB image. The pseudo-code for this component is shown below; it contains all
of the key operations to build the image, leaving out for clarity error handling, code to deal with
edge cases like when variants occur close to the start or end of the chromosome, and the
implementation of non-essential and/or obvious functions.

WIDTH = 221
HEIGHT = 100;

def create_pileup_images(candidate_variants):
for candidate in candidate_variants:
for biallelic_variant in split_into_biallelics(candidate):
start = biallelic_variant.start - (WIDTH-1) / 2
end = WIDTH - span_start
ref_bases = reference.get_bases(start, end)
image = Image(WIDTH, HEIGHT)
row_i = fill_reference_pixels(ref, image)
for read in reads.get_overlapping(start, end):
if row_i < HEIGHT and is_usable_read(read):
add_read(image, read, row_i)
row_i += 1
yield image

def fill_reference_pixels(ref, image):
for row in range(5):
for col in range(WIDTH):

alpha = 0.4
ref_base = ref[col]
red = get_base_color(ref_base)
green = get_quality color(60) # The reference is high quality
blue = get_strand_color(True) # The reference is on the positive strand
image[row, col] = make_pixel(red, green, blue, alpha)

return 5

def add_read(image, read, row_i):
# Don't incorporate reads with a low quality base at the call position. This
# function still returns true because the image isn't yet full.
# base_quality at_call position() returns the quality of the base aligned to
# our call.start, or 255 if no bases are aligned there.
if base_quality_at_call position(read) < MINIMUM_BASE_QUALITY:
return

for ref_pos, read_pos, cigar_elt in per_base_alignment(ref, read):
read_base = None
if cigar_elt in {'D', 'I'}:
col = ref pos - 1
read_base = INDEL_ANCHORING BASE
elif cigar_elt == 'M':
col = ref_pos
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read_base = read.bases[read_pos]

if read_base:
quality = min(read.quals[read_pos], read.mapping_quality)
alpha = get_base_alpha(read_base, ref[col], read, call)
red = get_base_color(read_base)
green = get_quality_color(quality)
blue = get_strand_color(read.is_on_positive_strand)
image[row_i, col] = make_pixel(red, green, blue, alpha)

def make_pixel(red, green, blue, alpha):
return RGB(int(alpha * red), int(alpha * green), int(alpha * blue))

def get_base_alpha(read_base, ref_base, read, call):
# read _supports_alt allele() returns True if the read supports the alt _allele.
# This is implemented by associating each alternative allele in our candidate
# variants with a list of the names of the reads that contained that allele.
alphal = 1.0 if read_supports_alt_allele(read, call.alt_allele) else 0.6
alpha2 = 0.2 if read_base == ref_base else 1.0
return alphal * alpha2

def get_base_color(base):
base_to_color = {'A"': 250, 'G': 180, 'T': 100, 'C': 30}
return base_to_color.get(base, 0)

def get_quality_color(quality):
return int(254.0 * (min(40, quality) / 40.9))

def get_strand_color(on_positive_strand):
return 70 if on_positive_strand else 240

def is_usable_read(read):
return (read.has_alignment and
not (read.is_duplicate or read.failed_vendor_quality_ checks or
read.is_secondary or read.is_supplementary) and
(not read.is_paired or read.is_properly placed) and
read.mapping_quality >= 10)

The actual implementation of this code uses a reservoir sampler to randomly remove reads at
locations where there's excessive coverage. This downsampling occurs conceptually within the
reads.get_overlapping() function but occurs in our implementation anywhere where there's more
than 10,000 reads in a tiling of 300 bp intervals on the chromosome.

Deep learning

DistBelief' was used to represent models, train models on labeled images, export trained
models, and evaluate trained models on unlabeled images. We adapted the inception v2
architecture to our input images and our three-state (hom-ref, het, hom-alt) genotype
classification problem. Specifically, we created an input image layer that rescales our input
images to 299 x 299 pixels without shifting or scaling of our pixel values. This input layer is
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attached to the ConvNetJuly2015v22 CNN with 9 partitions and weight decay of 0.00004. The
final output layer of the CNN is a three-class Softmax layer with fully-connected inputs to the
preceding layer initialized with Gaussian random weights and stddev of 0.001 and a weight
decay of 0.00004.

The CNN was trained using stochastic gradient descent in batches of 32 images with 8
replicated models and RMS decay of 0.9. For the the Platinum Genomes, Precision FDA,
NA12878 replicates, mouse and genome build experiments multiple models were trained (using
the product of learning rates of [0.00095, 0.001, 0.0015] and momenta [0.8, 0.85, 0.9]) for 80
hrs or until training accuracy converged, and the model with the highest accuracy on the training
set selected as the final model. For the multiple sequencing technologies experiment, a single
model was trained with learning rate 0.0015 and momentum 0.8 for 250,000 update steps. In all
experiments unless otherwise noted the CNN was initialized with weights from the imagenet
model ConvNetJuly2015v22.

DeepVariant inference client and allele merging

At inference time each biallelic candidate variant site represented as a pileup image is
presented as input to the trained CNN. After a forward pass through the network a three-state
probability distribution is returned. These probabilities correspond to the biallelic genotype
likelihood states of {P(homozygous reference), P(heterozygous), P(homozygous variant)} and
are encoded directly in the output VCF record as the phred scaled GL field. Variant calls are
emitted for all sites where the most likely genotype is either het or hom-alt with at least a Q4
genotype confidence. Finally all biallelic records at the same starting position are merged into
multiallelic records to facilitate comparisons with other datasets.

Genome in a Bottle human reference datasets

We used version 3.2.1 of the Genome in a Bottle reference data®. We downloaded calls in VCF
format and confident called intervals in BED format from:

o NA12878:
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878 HGO01/NISTv3.2.1/
o NA24385:;
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv
3.2.1/

The VCF files were converted to Global Alliance for Global Health (GA4GH) protocol buffer
format but otherwise were used without further modification.

Evaluating variant calls

Truth variants and confident reference intervals were parsed from the Genome in a Bottle or
other ground standard datasets from the VCF and BED files for their respective samples. Truth
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variants outside the confident intervals were removed. The evaluation variants were loaded and
variants marked as filtered or assigned homozygous reference genotypes were removed.
Metrics such as the number of SNPs, number of Indels, insertion / deletion ratio, heterozygous /
homozygous non-reference ratio, and transition / transversion ratio (Ti/Tv) were calculated from
all remaining evaluation variants.

Evaluation variants were matched to truth variants if they start at the same position on
the same chromosome. To compute genotype concordance, we added to the list of matched
pairs of evaluation / truth variants all of the unmatched evaluation variants that overlap the
confidence intervals with a "virtual" homozygous reference genotype sample. The number of
matching genotype is defined as the number of pairs where the genotype alleles of the
evaluation variant and truth variant are equal, independent of order. From this we compute the
genotyping concordance as:

Genotype concordance = # matching genotypes / # of paired evaluation and truth
variants

The number of matched pairs is counted as the number of truth positives. Any truth
variants without a matched evaluation variant are counted as false negatives. Any unmatched
evaluation variants that occur within the confident intervals are counted as false positives. From
the number of true positives (TP), false negatives (FN), and false positives (TP) we compute the
sensitivity, PPV, and F1 as:

Sensitivity = TP / (TP + FN)
PPV =TP/ (TP + FP)
F1=2TP/(2TP + FN + FP)

Our evaluation metrics fall between the tolerant hapdip metric* and the strict vcfeval® metrics. In
particular, our sensitivity and PPV metrics emphasize discriminating between variant and
reference sites, allowing errors in the determination of the exact variant alleles and genotypes.
These errors are tallied separately as an allelic error rate and a genotyping error rate. Though
we believe this separation is informative and valuable for understanding the types of errors that
occur in a variant callset, we appreciate the approaches pursued by other evaluation methods.

GATK pipeline

For all GATK® analyses (except the Platinum Genomes analysis, see below) we used the Verily
production GATK pipeline:

Versions

Reference: hg38.genome.fa

dbSNP: v146 on b38 downloaded from NCBI

1000 Genomes Phase 3 callset:
1000G_ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.hg38.vcf downloaded
from 1000G FTP


https://paperpile.com/c/M2rhlP/5yrl
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https://paperpile.com/c/M2rhlP/brPQ
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BWA version: 0.7.12
Samtools version: 1.1
Picard version: 2.1.0
GATK version: 3.5

BWA

bwa mem -t 32 fastql.gz fastq2.gz
| samtools view -u -
| samtools sort -@ 12 -0 bam -T sorted.bam.sort_tmp -o sorted.bam -

Mark Duplicates

java -Xmx12G -jar picard.jar MarkDuplicates INPUT=sorted.bam
OUTPUT=sorted.deduped.bam ASSUME_SORTED=true CREATE_INDEX=true
MAX_RECORDS_IN_RAM=2000000 METRICS_FILE=MarkDuplicates_metrics.txt
REMOVE_DUPLICATES=false

After MarkDuplicates, all lanes for the sample are merged into a single BAM file with
MergeSampFiles in picard.

Indel realignment

java -jar CommandLineGATK deploy.jar -Xmx4G -R hg38.genome.fa -ip 50 -T
RealignerTargetCreator -I sorted.deduped.merged.bam -known
1000G_ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.hg38.vcf -0
realignment_targets.interval_list -nt 8 -mismatch 0.0

java -jar CommandLineGATK deploy.jar -Xmx4G -R hg38.genome.fa -ip 50 -T
IndelRealigner -I sorted.deduped.merged.bam -targetIntervals
realignment_targets.chrl.interval_list -known
1000G_ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.hg38.vcf
--consensusDeterminationModel KNOWNS_ONLY -o sorted.deduped.merged.realigned.bam

Base recalibration

java -jar CommandLineGATK deploy.jar -Xmx4G -R hg38.genome.fa -T BaseRecalibrator -I
sorted.deduped.merged.realigned.bam -knownSites dbsnp_146.hg38.vcf -o
base_recalibration.table -nct 32 --useOriginalQualities --disable_indel _quals -cov
ReadGroupCovariate -cov QualityScoreCovariate -cov CycleCovariate -cov
ContextCovariate

java -jar CommandLineGATK_ deploy.jar -Xmx4G -R hg38.genome.fa -T PrintReads -nct 8 -I
sorted.deduped.merged.realigned.bam -BQSR base_recalibration.table
--disable_indel_quals --emit_original_quals -o
sorted.deduped.merged.realigned.recalibrated.bam
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HaplotypeCaller

java -jar CommandLineGATK_deploy.jar -Xmx4G -R hg38.genome.fa -ip 50 -T
HaplotypeCaller -I sorted.deduped.merged.realigned.recalibrated.bam -ERC GVCF -o
g.vcf --annotation QualByDepth

java -jar CommandLineGATK_deploy.jar -Xmx4G -R hg38.genome.fa -T GenotypeGVCFs -o
raw_calls.vcf -nt 8 -D dbsnp_146.hg38.vcf --variant g.vcf

VQSR

java -jar CommandLineGATK_deploy.jar -Xmx20G -R hg38.genome.fa -T VariantRecalibrator
--max_attempts 4 -input raw_calls.vcf

-resource:ALL_1000G_phase3, known=false,training=true,truth=true,prior=12.0
1000G_ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.hg38.vcf
-resource:dbsnp, known=true,training=false, truth=false,prior=2.0 dbsnp_146.hg38.vcf
-an DP -an QD -an FS -an SOR -an MQ -an MQRankSum -an ReadPosRankSum -mode SNP -nt 4
-tranche 99.5 -recalFile snps.recal -tranchesFile snps.tranches -allPoly

java -jar CommandLineGATK_ deploy.jar -Xmx20G -R hg38.genome.fa -T ApplyRecalibration
-input raw_calls.vcf -mode SNP --ts_filter_level 99.5 -recalFile snps.recal
-tranchesFile snps.tranches -o recal.snps.raw.indels.vcf

java -jar CommandLineGATK_deploy.jar -Xmx20G -R hg38.genome.fa -T VariantRecalibrator
--max_attempts 4 -input recal.snps.raw.indels.vcf

-resource:ALL_1000G_phase3, known=false,training=true,truth=true,prior=12.0
1000G_ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.hg38.vcf
-resource:dbsnp, known=true,training=false, truth=false,prior=2.0 dbsnp_146.hg38.vcf
-an QD -an DP -an FS -an SOR -an MQRankSum -an ReadPosRankSum -mode INDEL -nt 4
-tranche 99.0 -recalFile indels.recal -tranchesFile indels.tranches -allPoly

java -jar CommandLineGATK_ deploy.jar -Xmx20G -R hg38.genome.fa -T ApplyRecalibration
-input recal.snps.raw.indels.vcf -mode INDEL -ts_filter_level 99.0 -recalFile
indels.recal -tranchesFile indels.tranches -o final.vcf

DeepVariant and GATK on Platinum Genomes NA12878

We trained a deep learning model as described above using only the reads aligned to
chromosomes 1 through 18 and evaluated variant calling accuracy on chromosomes 20 to 22
using both our algorithm and the community gold standard GATK best practices pipeline. We
reserved chromosome 19 for hyperparameter optimization of the deep learning model. We
created a non-overfitted GATK callset in which training does not see the data from chr20-22 by
excluding that data during the GATK VQSR step.

For a comparison, we ran GATK v3.3 following Broad best practices as implemented by Google
Cloud Genomics + Broad in the alpha version (see https://cloud.google.com/genomics/), run in
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January 2016 on the NA12878 Platinum Genomes BAM file from
https://cloud.google.com/genomics/data/platinum-genomes.

Figure 2A details and additional analyses

In both Figure 2A and Figure S1, DeepVariant and GATK calling performance is shown for the
Genome in the Bottle benchmark sample NA12878 using 2x101 lllumina HiSeq data from the
Platinum Genomes project. The GATK was run in two ways. In the first, GATK best-practices
were followed and the variant filtering step (VQSR) was provided data for known variants on
both the training and test chromosomes, allowing VQSR to use population variation information
to better call variants on the test chromosomes. In the second, we removed all population
variation information for the test chromosomes chr20-22, relying on the VQSR model learned
only on the training chromosomes, which is more representative of the GATK's calling
performance on novel variation. Variants were sorted by QUAL score for DeepVariant and
VQSLOD for GATK. Variants that are filtered out in the VCF files are included in the ranking to
give a more complete picture of the effectiveness of these ranking methods. This means that
the curve includes all candidate variants seen by DeepVariant except those with a
homozygous-reference genotype according to the CNN and everything emitted by GATK,
including those filtered with LOW_VQSLOD (which, by definition, have a low VQSLOD score).
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Figure S1: Receiver operating characteristic (ROC) curve for DeepVariant (red) and GATK
(green, blue) calls for the Genome in the Bottle benchmark sample NA12878.

Figure 2A and S1 are similar but emphasize different things. The precision-recall plot in Figure
2A gives a better sense of how the end-to-end assay (variant calling) is performing, while the
ROC curve in Figure S1 emphasizes the effectiveness of the ranking of true positives relative to
false positives, independent of the number of true and false positive variants in each SNP and
indel class. In NGS variant calling, a traditional ROC curve can be misleading and is shown
here only for completeness. The first of two issues is that the set of false positives is defined as
variant calls made into confidently homozygous reference regions by a specific calling method,
and so usually differs between calling methods. The second issue is that there is no clear
definition of specificity since every allele at every position is a potential true negative. As a
consequence, ROC curves across methods are not directly comparable, and so cannot be used
to assess the quality of a callset produced by one method relative to another. Precision-recall
plot, on the other hand, can be safely compared across methods despite differences in their
total number of false positives.

DeepVariant vs. GATK on NA12878 replicates

Libraries were prepared from 35 independent replicates of 1ug aliquots of purified genomic DNA
isolated from GM12878. During the library preparation process, samples were acoustically

10
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sheared to target fragment lengths of 400bp before proceeding through SPRI-based size
selection, end repair, a-tailing, adapter ligation, and a final SPRI-based cleanup. The resultant
libraries were quantified by Picogreen, Fragment Analyzer, and qPCR. Sequencing was
performed using a 2x150 paired-end runs on lllumina HiSeq X sequencers with a targeted
sequencing depth of 30x per sample.

Chromosomes 1-18 of the first eight sequenced replicates were used to train a single
DeepVariant model by concatenating the labeled pileup images from each replicate into a single
training set for DistBelief as previously described. Due to the timing of this experiment, version
2.19 of the Genome in a Bottle reference intervals and variant calls were used to label the
genotypes in the training images and to evaluate the quality of the resulting variant calls on held
out chromosomes 20-22. The previously described Verily GATK pipeline was used to process
each NA12878 sample independently.

Training and generalization of DeepVariant models across
genome builds

DeepVariant was trained on data from human genome builds b37 and applied to b38. 80 hours
of training was performed using data from chromosomes chr1-19 of the human NA12878
sample and evaluated on the held out human chromosomes chr20-22 (Table S1). The model
trained with read data aligned to b37 of the human reference and applied to b38 data had
similar performance (overall F1 = 99.45) to one trained on b38 and then applied to b38 (overall
F1 =99.53) thereby demonstrating the generalizability of the model (Table S1).

Supplementary Table S1: DeepVariant calling across genome builds

Variants Training data | Evaluation data PPV Sensitivity F1
SNPs + indels b37 chr1-19 b38 chr20-22 | 99.93% 98.98% 99.45%
b38 chr1-19 b38 chr20-22 99.87% 99.21% 99.53%
SNPs b37 chr1-19 b38 chr20-22 | 99.98% 99.23% 99.60%
b38 chr1-19 b38 chr20-22 99.93% 99.35% 99.64%
Indels b37 chr1-19 b38 chr20-22 | 99.60% 97.35% 98.46%
b38 chr1-19 b38 chr20-22 | 99.42% 98.22% 98.81%

Training and generalization of DeepVariant models across

species

11
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In order to evaluate the transferability of a DeepVariant model across species we devised the
following experiment. We trained a model using the Platinum Genomes NA12878 read set
(aligned to b38) and Genome in a Bottle ground truth labels as described previously. We then
applied that model to call variants in the synthetic mouse strain 129S1_SvimJ from the Mouse
Genome Project (MGP)'. For the sake of comparison we also trained models from the mouse
read set using as ground truth the genotypes as provided by MGP.

We downloaded the read files (BAM) and variant calls (VCF) for the synthetic mouse strain
129S1_SvimJ from the MGP website (Table S2).

Supplementary Table S2: Mouse dataset sources

Sample Data Location

129S1_SvimJ | BAM ftp://ftp-mouse.sanger.ac.uk/REL-1502-BAM/129S1_SvimJ.bam

VCF A combed VCF of
ftp://ftp-mouse.sanger.ac.uk/REL-1505-SNPs_Indels/mgp.v5.merg

ed.indels.dbSNP142.normed.vcf.gz and
ftp://ftp-mouse.sanger.ac.uk/REL-1505-SNPs_Indels/mgp.v5.merg

ed.snps all.dbSNP142.vcf.qz

REF GRCm38 from ftp://fip-mouse.sanger.ac.uk/reffGRCm38_68.fa

The v5 of the mouse callset was created, according to this README, with the following
procedure:

Reads were aligned to the reference genome (GRCm138) using BWA-MEM v0.7.5-r406

(Li and Durbin, 2009; Li, 2013). Reads were realigned around indels using GATK
realignment tool v3.0.0 (McKenna et al., 2010) with default parameters. SNP and indel
discovery was performed with the SAMtools v1.1 with parameters:

Samtools mpileup -t DP,DV,DP4,SP,DPR,INFO/DPR -E -Q 0 -pm3 -F0.25 —d500

and calling was performed with BCFtools call v1.1 with parameters:

Bcftools call -mv -f GQ,GP -p 0.99

Indels were then left-aligned and normalized using bcftools norm v1.1 with parameters:

bcftools norm -D -s -m+indels

The vcf-annotate function in the VCFtools package was used to soft-filter the SNP

and indel calls. SNP calling was performed for each strain independently. A single list of

all polymorphic sites across the genome was then produced from all of the 36 strains'’
SNP calls. This list was then used to call SNPs again, this time across all 36 strains

simultaneously, using the 'samtools mpileup -I' option. The calls from all 36 strains were

12
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then merged into a single VCF file. All strain specific information was retained in the
sample columns for each strain. For indels, the same approach was taken with the
addition of the indel normalisation step after the initial variant calling. Information
regarding the filtering of SNP and indel calls can be found in the VCF file

headers in the ##FILTER' and '##source’ lines.

DeepVariant was run using the computational pipeline described above with all default settings.
SNP and Indel mutations that were identified in the MGP ground truth set with genotype as 0/0
for this specific mouse were given the hom-ref label and likewise for heterozygous and
homozygous variants. No-called sites were ignored during model training.

In order to protect against model overfitting, we divided our human and mouse genomes into a
training set of chromosomes and an independent, held-out set of chromosomes (Table S3):

Supplementary Table S3: Training and evaluation chromosomes

Training chromosomes Evaluation chromosomes

Human NA12878 chr1-19 chr20-22

Mouse 129S1_SvimJ chr1-17 chr18-19

80 hours of training was performed using images prepared from the training chromosomes.
After training the model was frozen and applied to call the variants from the read set. The
resulting callsets were evaluated on variants on the held out chromosomes only (Table S4). As
the Mouse project did not provide confident regions like the Genome in a Bottle project for
NA12878, only non-reference variant calls that occur at a site present in the MGP with a
genotype of homozygous reference are counted as false positives.

Supplementary Table S4: Calling performance of DeepVariant on human and mouse datasets

Variants Training data Evaluation data | PPV Sensitivity F1
SNPs + indels Human chr1-19 Mouse chr18-19 | 99.53% 97.07% 98.29%
Mouse chr1-17 Mouse chr18-19 | 99.90% 95.85% 97.84%
SNPs Human chr1-19 Mouse chr18-19 | 99.98% 97.86% 98.91%
Mouse chr1-17 Mouse chr18-19 | 99.99% 99.10% 99.54%
Indels Human chr1-19 Mouse chr18-19 | 96.41% 91.75% 94.02%
Mouse chr1-17 Mouse chr18-19 | 99.15% 73.80% 84.62%
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DeepVariant training on multiple sequencing technologies

BAM files were downloaded from the Genome in a Bottle project FTP server (Table S5). After
downloading the BAM files are fixed up as indicated and converted to GA4GH protocol buffer
format for processing with DeepVariant. The conversion preserves all of the essential read
information in the BAM.

Supplementary Table S5: Multiple sequence technologies datasets

Dataset Sample BAM FTP location Notes

TruSeq exome NA12878 | Nebraska_NA12878 HGO001_TruSeq_Exome/NIST-hg | Exome
001-7001-ready.bam

10X GemCode NA12878 10XGenomics/NA12878_phased_possorted_bam.bam | Fixed BAM header
34x WGS

10X Chromium NA12878 10Xgenomics_ChromiumGenome/NA12878_GRCh37. | Fixed BAM header
75x WGS bam

PacBio raw reads | NA12878 | NA12878_PacBio_MtSinai/sorted_final_merged.bam Fixed BAM header
40x WGS

lon AmpliSeq NA24385 | ion_exome/HG002_NA24385 SRR1767409 lonXpres | Exome; Fixed BAM

exome s_020_rawlib_24038.bam header; Trimmed
unneeded BAM tags

HiSeq 60x WGS NA24385 | NIST_HiSeq_HG002_Homogeneity-10953946/NHGRI
_Nlumina300X_AJtrio_novoalign_bams/HG002.hs37d
5.60x.1.bam

HiSeq 31x WGS NA24385 NIST_lllumina_2x250bps/novoalign_bams/HG002.hs3
7d5.2x250.bam

SOLID 85x WGS | NA24385 | NIST_SOLiD5500W/alignment/5500W_HG002_merge | Trimmed unneeded
d.b37.bam BAM tags

FTP paths are given relative to:
e For NA12878: ftp://ftp-trace.ncbi.nim.nih.gov/giab/ftp/data/NA12878/
e For NA24385:
ftp://ftp-trace.ncbi.nlm.nih.gov/qgiab/ftp/data/AshkenazimTrio/HG002_NA24385_son/

Once converted to GA4GH format, candidate variants are identified using the read bases,
qualities, QC flags, and mapping information in the original BAM file. The optional local
assembly step was skipped for all datasets, as the assembler is tuned for lllumina data. The two
exome datasets were trained and evaluated using confident intervals derived from the
intersection of the Genome in a Bottle confident intervals and the RefSeq® exon intervals.

For training of each dataset, candidate variants were identified using default parameters*
as well as emitting reference "variants" at ~0.1% of randomly selected reference bases. Pileup
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images were created for each candidate variant and labels assigned using Genome in a Bottle
truth variants and intervals for the dataset's sample (see methods for details). These labeled
images were filtered to only variants occurring on chromosomes 1-19, leaving 20-22 as an
independent evaluation set. Training of the deep learning model was carried out for 250,000
steps starting from a model trained against chr1-19 variants from eight NA12878 replicates (see
section DeepVariant vs. GATK on NA12878 replicates for details). After training completed the
model was frozen and used to evaluate genotype likelihoods as the "technology-trained model".

For evaluation, candidate variants were identified using default parameters* and pileup
images were created for each candidate variant on chromosomes 20-22 only. The
technology-trained model for the dataset was applied to these images to compute genotype
likelihoods and the likelihoods were combined with the candidate variants to create final variant
calls (see methods for details). The candidate variants and the final callset were evaluated
again using only chr20-22.

*The RAW PacBio read set was called with a slightly different parameter for the
minimum fraction required for an alternate indel allele; we require a fraction of 0.18 rather than
the default of 0.12 for all other datasets. At 0.12 over ~150M candidates are found, while at 0.18
we only have ~25M variants to consider. Using 0.18 significantly reduces indel sensitivity, from
~60% with 0.12 to around ~40% with 0.18, but is required to make the creation of pileup images
tractable in the current implementation. The SNP threshold remains at 0.12 and produces a
highly sensitive set at >99%.

Comparison of DeepVariant exome calls with technology-specific variant
calls submitted to Genome in a Bottle

We sought to compare the quality of DeepVariant calls to baseline callsets for each technology.
As we already established the relative performance of DeepVariant and GATK on lllumina WGS
data, we focused primarily on non-lllumina WGS and exome datasets. The challenge is that
each technology uses a different data processing pipeline needing dataset-specific settings that
are often not documented to produce optimal results. Therefore, we first sought SNP and indel
variant calls submitted to Genome in a Bottle by the read data depositors as these are likely
already optimized for calling performance on that technology. If not available, we applied the
Verily GATK pipeline or, when that proved impossible, samtools, as an alternative variant calling
option. The dataset and comparison callsets are given in Table S6.

It's important to recognize that these are apples-to-oranges comparisons. There is no way to
ensure information on our evaluation chromosomes were not used to tune the submitters calling
pipelines. Given that many tools, like the GATK, make direct use of population variation
information to aid in filtering variants, we should expect these callsets to be biased towards
higher quality calls. Additionally, in some cases the submitters have used more information than
DeepVariant to make calls, such as lon AmpliSeq exome calls which used four lanes of data
rather than our single lane. Finally, the callsets can differ in what regions of the genome were
called, an acute issue for the exome datasets. To mitigate differences in exome intervals, we
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further intersected our RefSeq intervals down to those overlapping the calling intervals provides
for the two exome datasets. Nevertheless, we feel that these issues are outweighed by the
value of natural comparison points to assess the effectiveness of DeepVariant on these

technologies.

Supplemental Table S6: Comparison datasets for Genome in a Bottle analysis

Dataset

Comparator callset

Comparator notes

TruSeq exome

ftp://ftp-trace.ncbi.nim.nih.gov/giab/ftp/data/NA12878/
Nebraska NA12878 HGO001_TruSeq_Exome/NIST-hg

001-7001-ensemble.vcf and GATK

An ensemble callset that includes
calls from the GATK
HaplotypeCaller,
UnifiedGenotyper, and FreeBayes
over the TruSeq exome targeted
regions (BED).

02016/NA12878 hg19/NA12878 hg19 phased varia
nts.vcf.gz and GATK

10X GemCode None No callset submitted to Genome in

34x WGS a Bottle. Focusing on Chromium
callset from 10x instead.

10X Chromium ftp://ftp-trace.ncbi.nim.nih.gov/giab/ftp/data/NA12878/1

75x WGS 0Xgenomics_ChromiumGenome_LongRanger2.1_093

PacBio raw reads

Samtools; we could not get GATK to run on this

Only structural variant calls were

xome.20141120.NA24385.vcf and GATK

40x WGS dataset. submitted for the Pacific
BioSciences WGS data.

lon AmpliSeq ftp://ftp-trace.ncbi.nim.nih.gov/giab/ftp/data/Ashkenazi | variant calls from the Torrent

exome mTrio/analysis/lonTorrent TVC_03162015/AmpliseqE | Variant Caller (VCF) made on the

lon effective intervals (BED). The
TVC caller used all four lanes of
lon torrent exome data, but
DeepVariant made its call only
one a single lane of data.

HiSeq 60x WGS

None

Not analyzed as DeepVariant
performance already
well-established on lllumina data

HiSeq 31x WGS

None

Not analyzed as DeepVariant
performance already
well-established on lllumina data

SOLID 85x WGS

GATK

No calls submitted to Genome in a
Bottle for NA24385. There appear
to be no maintained variant callers
for SOLID data.

Samtools calling on PacBio raw reads 40x WGS

#!/bin/bash

# Only calling on chromosomes 20, 21, and 22.
CHROMS=("'20:1-20,000,000"
'21:1-20,000,000'
'22:1-20,000,000'

'20:20,000,000-40,000,000'
'21:20,000,000-40,000,000'
'22:20,000,000-40,000,000'

'20:40,000,000-63025520"
'21:40,000,000-48129895"
'22:40,000,000-51304566")
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http://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/IonTorrent_TVC_03162015/AmpliseqExome.20141120.NA24385.vcf
http://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/IonTorrent_TVC_03162015/AmpliseqExome.20141120.NA24385.vcf
http://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/IonTorrent_TVC_03162015/AmpliseqExome.20141120.NA24385.vcf
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/IonTorrent_TVC_03162015/AmpliseqExome.20141120_effective_regions.bed
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# Run calling on each interval separately.
parallel -j ${#CHROMS[@]} "samtools view -u NA12878 PacBio-RAW.bam {} \

| samtools mpileup -ugf GRCh37.genome.fa - \

| bcftools call -vmO z -o NA12878_PacBio-RAW.samtools.calls.{}.vcf.gz" :::
${CHROMS[*]}

# Conconcate parallel calling VCFs.

bcftools concat -a -0 z --rm-dups all \
NA12878 PacBio-RAW.samtools.calls.??\:*.vcf.gz \
-oNA12878_PacBio-RAW.samtools.calls.vcf.gz

tabix NA12878_PacBio-RAW.samtools.calls.vcf.gz

# Filter recommendations taken from bcftools website with depth of 4ex.

bcftools filter -0 z -o NA12878_ PacBio-RAW.samtools.calls.filtered.vcf.gz \
-s FAIL -i'DP < 67 &% QUAL > 10 & DP >= 3' --SnpGap 3 \
NA12878_PacBio-RAW.samtools.calls.vcf.gz

tabix NA12878_PacBio-RAW.samtools.calls.filtered.vcf.gz

Table S7 shows the PPV, sensitivity, and F1 metric of the DeepVariant and comparator callsets

on the previously-indicated regions on the held-out chromosomes 20-22. For exomes the
evaluation interval is the intersection of the targeted regions with the RefSeq intervals on
chromosomes 20-22.

Supplementary Table S7: Comparison of technology specific callsets and DeepVariant for SNPs

+ indels combined

Data Caller | Sensitivity PPV F1
lon AmpliSeq exome DeepVariant 94.12% 99.79% 96.87%
TVC 96.47% 98.11% 97.28%
GATK 93.24% 19.15% 31.78%
lllumina TruSeq exome DeepVariant 93.01% 99.39% 96.09%
Ensemble 92.92% 98.08% 95.43%
GATK 91.02% 99.30% 94.98%
10X Chromium 75x WGS DeepVariant 98.73% 99.91% 99.32%
Long-ranger 98.13% 98.26% 98.19%
GATK 99.08% 94.62% 96.80%
PacBio raw reads 40x WGS DeepVariant 88.51% 97.25% 92.67%
samtools 89.34% 40.89% 56.10%
SOLID 85x DeepVariant 76.62% 99.01% 86.39%
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GATK 73.91% 84.26% 78.75%

As noted in the "evaluation of variants" section, the difference between evaluation methods may
be exaggerated in this multiple sequencing technologies experiment. We intentionally chose to
use the already aligned BAM files as provided by Genome in a Bottle in order to highlight the
robustness of DeepVariant to variation in input alignments without applying local assembly,
which may perform better on lllumina read than other NGS read types. One consequence of this
choice, though, is that DeepVariant will only call alleles present in the CIGAR elements of the
BAMSs, which vary in their accuracy depending on the sophistication of the aligner and
post-alignment cleanup steps performed during processing by each technology's data depositor.
The DeepVariant CNN is sufficiently robust to train accurate genotyping models even with
errorful allele determination, as evident by the high PPV values, but inevitably produces variant
calls with incorrect alleles at any site where the reads have been aligned with an incorrect allele
in their CIGAR elements. As noted in the main text, better pre-processing via tools like the
GATK's IndelRealigner® or technology-agnostic local assembly will improve the alleles emitted
by DeepVariant. Additionally, it is possible that our comparator callsets may use variant
representations that are differentially penalized by our evaluation tool. Because of these
concerns, we ran both our internal evaluation tool and vcfeval (version 3.6.2) and note that the
results are quite concordant between both methods. The full output is available as a
supplementary datafile.
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