
SUPPLEMENTARY INFORMATION FOR KRAKENHLL (BREITWIESER AND SALZBERG,
2018)

1. HyperLogLog algorithm ... 1

2. Database building and reanalysis of the patient data (Salzberg, et al., 2016) 7

3. Enabling strain and plasmid mappings by storing assembly project and sequence accessions 11

4. Integrating viral strain genomes in the database ... 12

5. Switching from Kraken to KrakenHLL ... 13

6. New taxonomy database format .. 13

7. References for the Supplement ... 14

1. HyperLogLog algorithm

HyperLogLog is a probabilistic unique count (cardinality) estimator of streams of values with duplicates.

It stores a sketch of the data in a concise structure and is very accurate for small cardinalities, keeps

constant accuracy rates for up to very high cardinalities.

Intuition. A random bit-string of length n can be seen as the outcome of n independent binomial trials

with p = 0.5. Let k be the position of the first 1-bit, i.e. the bit string starts with (k-1) 0-bits before the first

1-bit. Since the bits are independent, the probability of k is the product of the probabilities, 0.5k. For

example, k = 6 means that the bit string starts with 000012, and the probability of a random bit-string

conforming to the pattern is 0.56 or 1/64 (Suppl. Table 1).

k Patternk Pk Ek

1 1xxxxxxxxxx..x 0.5 2

2 01xxxxxxxxx..x 0.25 4

3 001xxxxxxxx..x 0.125 8

4 0001xxxxxxx..x 0.0625 16

l 0l-11xn-l 2-l 2l

Supplementary Table 1: The probabilities observing the first 1-bit at position k in a random bit string. Ek

shows the expected number of bit-strings we have to observe until seeing one with Patternk, and is 1/Pk.

Inversely, the expected number of independent bit-strings until we see k, Ek is 2k. If we knew only the

maximum number of k, kmax, in a stream of independent random bit strings, the best guess at the cardinality

of the stream is 2kmax. Note that this statistic discounts duplicates, as duplicates have the same value. To

achieve high precision, HyperLogLog first distributes the stream hashes into 2p=m registers based on the

first p bits. The latter 64-p bits are used to determine kmax of that register (assuming 64-bit hashes). The

final estimate is calculated as harmonic mean of the estimates of all registers. The relative error of the

estimate is about 2-p/2 (see Figure 2).

Algorithm and Implementation. Using 2-bits per base, k-mers up to 31 base pairs can be stored in 64

bits. As k-mers are neither random, nor independently distributed, we hash the k-mers to distribute them

uniformly. Good hash functions (a) distribute the input evenly across the output range, and (b) create very

different outputs for close inputs (avalanche effect). If both properties are fulfilled for the input (k-mers

from different genomes), then we can expect to see precise estimates.

KrakenHLL implements a version of HyperLogLog with the following modifications:

• 64-bit hashes are created by the fast finalizer of the MurMurHash3 algorithm (Appleby, 2017)

• For smaller cardinalities (up to 2p-2) we use a sparse representation that encodes hashes with a

much higher precision (Heule, et al., 2013)

• The final estimate is calculated form the register values based on an improved formula (Ertl, 2017)

• The counters can be easily merged for parallel execution. KrakenHLL gives sets of reads to

workers, which return HLL sketches in addition to the classification results. The sketches of each

taxon are merged into their master sketches by taking the maximum of all register values

Computing the estimate. KrakenHLL implements the recently derived improved estimator for

HyperLogLog sketches (Ertl, 2017). Previously proposed methods, including (Flajolet, et al., 2007) and

(Heule, et al., 2013), require empirically determined thresholds to account for biases and switching

between linear counting and HLL estimator. However, as (Ertl, 2017) shows, the empiric bias correction

does not always work.

The raw estimate �̂�#$% of Flajolet is based on the harmonic mean of the estimates of the individual

registers, times a bias correction factor 𝛼'. Following the notation of (Ertl, 2017), C:=(C0, …, Cq+1) is

the register histogram, where Ck is the number of registers in M that have the value k.

�̂�#$% =
𝛼'𝑚*

∑ 𝐶-2/-
012
-34

While this works well when the true cardinality λ is in the range 2p << λ << 2p+q, the estimator is severely

biased outside of this range. To account for small range errors, the Flajolet estimator uses linear counting

(Whang, et al., 1990) below a threshold of 2.5 ∙ 28:

�̂�9:$;; = 𝑚 log𝑚 𝐶4⁄

While the linear counting estimate is very accurate up to that threshold, the raw estimate that is used above

the threshold is still very biased. This can be seen in a big spike in errors in the Flajolet estimate (Suppl.

Fig. 1). Heule et al. propose empirically determined bias tables to get rid of the bias. Using observed biases

in big amount of random data, they provide correction factors along 200 interpolation points when the raw

estimator is in range ~28 < �̂�#$% < 5 ∙ 28 . Mostly this correction manages to get rid of the bias (Suppl.

Fig. 2), however in some ranges the bias persists (Suppl. Fig. 2).

For large range errors, Flajolet proposes a correction factor when hitting raw estimates above 1 30⁄ 2E*

(with 32-bit hashes). That factor, however, does not solve the problem but just flips the bias in the opposite

direction (Ertl, 2017). When using 64-bit hashes and counting way below 264, though this bias can be

largely ignored (Heule, et al., 2013).

(Ertl, 2017) describes how the biases occur due to not accounting for the fact that the register values are

censored at 0 and q+1. Based on the expectation of the censored registers C0 and Cq+1, Ertl derives an

improved formula for the estimator without bias:

�̂�F#G; =
𝛼H𝑚*

∑ 𝐶-2/-
0
-32 + 	𝑚𝜎(𝐶4	𝑚) + 𝑚2/0𝜏(1 − 𝐶012/𝑚)	

,

with

𝜎(𝑥) ≔ 𝑥 +T 𝑥*U
H

-32
2-/2	,	

𝜏(𝑥) ≔ 1 − 𝑥 −T V1− 𝑥*WUX
H

-32
2/-,	

𝛼H: = 1 2 log2⁄

As seen in Suppl. Figures 1 and 2, the improved estimator of Ertl does not demonstrate any bias.

Furthermore, using the sparse representation of Heule et al. for smaller cardinalities gives great precision

for lower cardinalities.

Supplementary Figure 1: Comparison of relative errors with Flajolet, Heule and Ertl estimators with

varying values of p. Black line: median relative error, orange lines 68.2% percentiles, yellow lines 95%

percentiles. As expected, the relative error goes down with higher precision values. For both Heule’s and

Ertl’s estimator we use sparse representation for cardinalities up to 2p-2 (p’= 25). Note that the empirical

flajolet heule ertl

precision p = 10
precision p = 12

precision p = 14
precision p = 16

precision p = 18

102 103 104 105 106 107 102 103 104 105 106 107 102 103 104 105 106 107

−0.05

0.00

0.05

−0.05

0.00

0.05

−0.05

0.00

0.05

−0.05

0.00

0.05

−0.05

0.00

0.05

Cardinality

R
el

at
ive

 e
rro

r

bias correction of Heule and the mathematical correction of Ertl both get rid of the big spike apparent for

Flajolet, when the estimator switches between linear counting and HLL counting. Data from 100 simulated

random number runs (64-bit Mersenne Twister seeded with system entropy).

heule ertl

precision p = 10
precision p = 12

precision p = 14
precision p = 16

precision p = 18

102 103 104 105 106 107 102 103 104 105 106 107

−0.05

0.00

0.05

−0.04

−0.02

0.00

0.02

0.04

−0.02

−0.01

0.00

0.01

0.02

−0.005

0.000

0.005

0.010

−0.0025

0.0000

0.0025

0.0050

Cardinality

R
el

at
ive

 e
rro

r

Supplementary Figure 2: Comparison of Heule and Ertl estimators with sparse representation and variable

y-axis. At certain precisions and cardinalities, the empirical bias correction values of Heule are not

working well. For precision 16, bias is present around cardinalities of 15,000, and for precision 18, bias

is present around cardinalities of 150,000 to 1,000,000. Legend: Black line is median relative error, orange

lines encompass 68.2% of the estimate errors, yellow lines encompass 95% of the estimate errors. Data

from 100 randomly simulated runs of numbers.

2. Database building and reanalysis of patient and test datasets

KrakenHLL includes the new krakenhll-download script to download and dust genomes from specific

domains from RefSeq and Genbank. For example, the following command downloads the genomic and

rna sequences for all chromosome-level assembled genomes in the category ‘vertebrate_mammalian’ with

taxID 9606 - which gives two human genomes in RefSeq, GRCh38.p11 and CHM1_1.1.1:

krakenhll-download --db DB_DIR --fna rna,genomic refseq/vertebrate_mammalian/Chromosome/taxid9606

For the reanalysis of the data, we made a database including artificial sequences from UniVec and EmVec,

complete viral, archaeal and bacterial genomes, the two human genomes mentioned above, and viral strain

sequences (downloaded October 2017). All microbial sequences were dusted:

krakenhll-download --db DB_DIR taxonomy contaminants

krakenhll-download --db DB_DIR --dust --include-viral-neighbors refseq/viral/Any

krakenhll-download --db DB_DIR --dust refseq/archaea refseq/bacteria

krakenhll-download --db DB_DIR --fna rna,genomic refseq/vertebrate_mammalian/Chromosome/taxid9606

krakenhll-build --db DB_DIR --build --taxids-for-genomes --taxids-for-sequences --threads 10

The database contains 8341 genomes from 3087 prokaryotic species and 139601 sequences from 7295

viral or viroid species. The full database was constructed with 10 threads in 18 hours and is 172GB +

8.1GB for the index. For a performant run a computer with at least 256GB of RAM is required. The

samples were run on a machine with four Intel Xeon CPUs E7- 4830 with eight cores each, and 1TB of

RAM. The database was built on October 26, 2017. Prior to Kraken and KrakenHLL runs we preloaded

the database with krakenhll --preload.

The following command line was used for KrakenHLL:

krakenhll --db DB_DIR --threads 10 --report-file SAMPLE.krakenhll.report.tsv --fastq --gzip SAMPLE.fq.gz

> SAMPLE.krakenhll.tsv

and Kraken v1.0 was run on the same database with:

kraken --db DB_DIR --threads 10 --fastq --gzip SAMPLE.fq.gz > SAMPLE.kraken.tsv

kraken-report --db DB_DIR --threads 10 --report-file SAMPLE.report.tsv --fastq --gzip SAMPLE.fq.gz >
SAMPLE.kraken.tsv

Sample
Number of
reads

Speed (Mbp/m) Wall time (m:s) Max memory (GB)

kraken krakenhll
speed-
up kraken

kraken-
report krakenhll

speed-
up * kraken krakenhll increase

PT1 12022284 487.89 730.99 49.83% 4:35.75 0:55.40 3:11.18 42.27% 122.74 123.07 0.27%

PT2 8294101 483.66 602 24.47% 8:02.34 1:23.18 5:21.21 43.20% 113.16 113.50 0.30%

PT3 17669644 508.34 698.39 37.39% 5:20.30 0:49.66 4:20.68 29.54% 132.56 132.93 0.27%

PT4 29101779 467.33 812.55 73.87% 8:09.75 1:15.19 5:57.75 36.67% 117.43 117.78 0.29%

PT5 26919065 467.43 798.05 70.73% 8:29.84 1:38.30 4:56.05 51.32% 119.61 119.97 0.30%

PT6 27261739 450.36 776.24 72.36% 8:31.67 1:32.81 5:13.75 48.10% 119.68 120.04 0.29%

PT7 19065574 558.09 819.82 46.90% 8:24.83 1:32.52 5:12.86 47.63% 116.45 116.82 0.31%

PT8-S1 6385699 436.51 725.32 66.16% 3:07.28 0:43.75 2:02.68 46.90% 104.54 104.87 0.32%

PT8-S2 7661802 430.89 726.14 68.52% 2:23.71 0:38.51 1:37.75 46.36% 109.25 109.58 0.31%

PT9 26500914 436.63 722.26 65.42% 2:51.90 0:41.73 2:00.31 43.68% 124.42 124.78 0.28%

PT10 21319274 411.94 656.13 59.28% 9:09.45 1:33.31 5:44.53 46.40% 118.19 118.53 0.28%

Supplementary Table 3: Test datasets from McIntyre et al. (2017)

Supplementary Table 2: Runtime and memory usage for Kraken and KrakenHLL on patient samples (Sazlberg et

al., 2016) running with 10 threads. * For kraken, kraken-report was run after classification, and their summed time

was compared. KrakenHLL generates the report with the classification binary.

 A: Human polyomavirus 2 in PT5

 B: Elizabethkingia genomosp. 3 in PT7

 C: Mycobacterium tuberculosis in PT8

 D: Human gammaherpesvirus 4 in PT10

Supplementary Figure 4: Coverage of genomes after re-alignment of patient reads. The reads were

extracted with krakenhll-extract-reads, aligned against the reference genome with bowtie2(Langmead and

Salzberg, 2012), processed with samtools (Li, et al., 2009), and visualized with Pavian (Breitwieser and

Salzberg, 2016).

3. Enabling strain and plasmid mappings by storing assembly project and

sequence accessions

On the patient samples from (Salzberg, et al., 2016) we how the additional information can also be useful

to identify the specific sequences in the database that lead to false positives: In the reanalysis of the

samples, Salmonella enterica is detected in every sample with up to 233 reads. This species was not

detected in the original analysis, and its ubiquity hints that it is a contaminant. However, there are 349

complete genomes in RefSeq for Salmonella enterica (taxonomy ID 28901) – and thus in the database,

and 23 complete genomes just for Salmonella enterica subsp. enterica serovar Typhimurium (taxonomy

ID 90371), which is the taxon that is hit most often. Supplementary Table 2 shows a part of the report

KrakenHLL generated for PT8. The first indication that it is a false positive identification is the fact that

less than 50 k-mers are hit by the 233 reads. Having additional nodes for the assembly and sequence, we

find the source of most of the hits: The plasmid pRM9437 of a specific strain. With standard Kraken,

neither of this would be known, and additional investigation such as re-alignment of the reads would have

been required.

Reads Taxon Reads Kmers TaxID Rank Name

233 0 41 590 genus Salmonella

233 0 41 28901 species Salmonella enterica

232 0 33 59201 subspecies Salmonella enterica subsp. enterica

204 0 19 90371 no rank Salmonella enterica subsp. enterica serovar Typhimurium

203 0 8 10000148
50

assembly GCF_001617585.1 Salmonella enterica subsp. enterica
serovar Typhimurium strain=RM9437

203 203 8 10000148
52

sequence NZ_CP014577.1 Salmonella enterica subsp. enterica
serovar Typhimurium strain RM9437 plasmid pRM9437,
complete sequence

Supplementary Table 3: Part of KrakenHLL output for PT8 of (Salzberg, et al., 2016). Salmonella enterica

is a false positive identification, and this is indicated by two factors: (1) the distinct k-mer count is very

low. (2) The majority of reads hit just the plasmid of one specific strain. Both of these data are provided

by KrakenHLL, but would not be available from a standard Kraken search.

To enable both features, call krakenhll-build with the options --taxids-for-genomes and --taxids-

for-sequences. There is important drawback to enabling these options: These pseudo-taxonomy IDs -

e.g. 1000014850 in Suppl. Table 2 - are unique to the database build. Special precautions have to be taken

when results from different databases are compared or hierarchical matching is used, see next section.

4. Integrating viral strain genomes in the database

The RefSeq project curates viral genomes (Brister, et al., 2015), which are included in the default

databases of many metagenomics classifiers. RefSeq includes only one reference genome per viral species,

and classifiers that use RefSeq (Kraken and others) therefore only consider those genomes. However,

there are thousands of viral strain sequences in GenBank, and the chosen reference genome is often an

established but old strain. For example, for HIV-1 the reference is a genome assembly from 1999 (AC

GCF_000864765.1), and for JC polyomavirus the reference is the strain Mad1 (AC GCF_000863805.1)

assembled in 1993. As viral strain often have higher variability than living organisms, including just the

reference genomes in the Kraken database leads to a loss of sensitivity in the detection of strains.

KrakenHLL's database-building script includes the viral strain genomes from the NCBI viral genome

resource (Brister, et al., 2015), which maintains a list of ‘neighbors’ to the viral reference genomes. This

list has 112,148 sequences from viral strains, as compared to the 7497 viral genomes in RefSeq (as of

October 2017). For example there are over 2500 additional sequences for HIV-1, and over 640 for JC

Polyomavirus. In total, these sequences add 100 million (+33%) novel k-mers to the database with k=31.

Based on simulated reads from these viral sequences, 21.2% of the reads would not be classified when

searching against a database which includes only the RefSeq viral reference genomes.

5. Switching from Kraken to KrakenHLL

KrakenHLL can be used as drop-in replacement to Kraken on a Kraken database. The first run will take

longer as KrakenHLL builds its own taxonomy index and counts all k-mers in the database. Note that

certain features, such as assembly and sequence identifications, require a full database download and build

using KrakenHLL, but the unique k-mer counting works out of the box with a standard Kraken database.

Note that –report-file on the command line is a required option. To run:

krakenhll --db DB --report-file REPORT_FILE --output KRAKEN_FILE

6. New taxonomy database format

KrakenHLL has a new taxonomy format based on code from k-SLAM (Ainsworth, et al., 2017). The

taxDB file lists the taxa in the following form:

Taxonomy ID<tab>Parent Taxonomy ID<tab>Rank<tab>Scientific Name

KrakenHLL reports all 27 ranks defined in the NCBI taxonomy, instead of just five abbreviated ranks in

Kraken (‘D’ for superkingdom, ‘O’ for order, ‘P’ for phylum, ‘F’ for family, ‘G’ for genus, ‘S’ for

species). For example, there are species groups and subgroups, subfamilies and varietas.

7. References for the Supplement

Ainsworth, D., et al. k-SLAM: accurate and ultra-fast taxonomic classification and gene identification for

large metagenomic data sets. Nucleic Acids Res. 2017;45(4):1649-1656.

Breitwieser, F.P. and Salzberg, S.L. Pavian: Interactive analysis of metagenomics data for microbiomics

and pathogen identification. BioRxiv 2016.

Brister, J.R., et al. NCBI viral genomes resource. Nucleic Acids Res 2015;43(Database issue):D571-577.

Ertl, O. New Cardinality Estimation Methods for HyperLogLog Sketches. arXiv:1706.07290 2017.

Flajolet, P., et al. HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm. In, AofA:

Analysis of Algorithms. Juan les Pins, France: Discrete Mathematics and Theoretical Computer Science;

2007. p. 137-156.

Heule, S., Nunkesser, M. and Hall, A. HyperLogLog in practice. 2013:683.

Langmead, B. and Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9(4):357-

359.

Li, H., et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25(16):2078-2079.

Salzberg, S.L., et al. Next-generation sequencing in neuropathologic diagnosis of infections of the

nervous system. Neurology(R) neuroimmunology & neuroinflammation 2016;3(4):e251.

Whang, K.-Y., Vander-Zanden, B.T. and Taylor, H.M. A linear-time probabilistic counting algorithm for

database applications. ACM Trans. Database Syst. 1990;15(2):208-229.

