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Note 1: Normalized Relative Similarity (NRS)

The problem of quantifying the complexity (information, algorithmic entropy) [1, 2, 3, 4] contained in

arbitrary sequences was deeply considered by Kolmogorov [5], who addressed three ways of measuring it:

the combinatorial, the probabilistic and the algorithmic approaches [6].

The Kolmogorov complexity of a sequence x, represented by K(x), is the size (l) of a shortest program

that runs on a universal computer (or Turing machine [7]), prints x and halts. Fixing the machine, we can

write

K(x) = min
p=x

l(p), (1)

reading p = x as “p prints x and halts”.

In the conditional Kolmogorov complexity of x given y, denoted by K(x|y), there is a second sequence

y which is also made available to the program. In this case,

K(x|y) = min
p(y)=x

l(p), (2)

reading p(y) = x as “p, knowing y, prints x and stops”. When y is the empty sequence λ, we have

K(x|λ) = K(x).

The conjoint Kolmogorov complexity of x and y, K(x, y), is the size of a shortest program that prints

(x, y) and stops:

K(x, y) = min
p=(x,y)

l(p). (3)

Since the halting problem is undecidable, none of the previous definitions is computable. The chain rule

[8]

K(x, y) = K(x) +K(y|x), (4)

and the symmetry ofK(x, y) = K(y, x) led to the definition of the algorithmic mutual information, I(x : y).

Notice that we have included equalities assuming an asymptotic nature.

The Kolmogorov complexity has given rise to the information distance introduced by [9], normalized

by [10] and algorithmically implemented by [11]. The Kolmogorov complexity has also been extended

to the quantum field [12]. Moreover, other measures based on pure algorithmic measures have been

proposed and made available online, namely the Online Algorithmic Complexity Calculator (http://

complexitycalculator.com/) [13, 14].

The need for a computational measure able to assess the complexity of a string given exclusively other

has led to a new concept, that of relative algorithmic entropy [15, 16, 11, 17, 18, 19]. We follow this

view and propose a notion of algorithmic relative entropy and, further, algorithmic relative similarity. To
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compute it, we define and use a specific genomic relative compressor, namely because genomic sequences

have specific properties and can only be efficiently modelled using specific compressors.

We define the relative algorithmic entropy of x given y, K(x‖y), by the number of bits (or length) of

a shortest program, Ξ, that computes x, using exclusively a static model of y, namely

K(x‖y) = min
Ξ(y)=x

l(Ξ), (5)

and then halts.

This means that the program starts by learning y, building a model that represents y, within a certain

finite time. Then, the program stops learning, i.e., the model is frozen. The efficiency of the model depends

on how well it collects and organizes the information of y, so that questions about x can be quickly answered

(without any prior knowledge about x). Every bit that is spent on representing x accounts for the relative

algorithmic entropy.

The relative algorithmic entropy is non-computable, mostly because of the halting problem [20], there-

fore, we have to rely on an approximation, such as that provided by a relative compressor C(x‖y).

Accordingly, we define the Relative Similarity as

RS(x‖y) = |x| log2 |Θ| − C(x‖y) (6)

where |x| is the number of symbols in x and Θ the cardinality of the alphabet. Finally, the Normalized

Relative Similarity is defined as

NRS(x‖y) =
|x| log2 |Θ| − C(x‖y)

|x| log2 |Θ|
= 1− C(x‖y)

|x| log2 |Θ|
. (7)

Note that, when x is equal to y, the NRS is approximately one and, when x has completely different nature

from y, the NRS is approximately zero.

Relative compression bounds

We call C(x‖y) a relative compressor because y and only y is used to represent x. In other words, this

compressor cannot use self-similarities that might occur in x. A relative compressor needs to respect the

following conditions:

1. C(x‖x) ≈ 0;

2. C(x‖π) ≈ |x|, where π is a random string;

3. C(x|y) ≤ C(x‖y);

4. C(xn‖y) ≈ nC(x‖y), where xn is the concatenation of all n copies of x;

where the expressions ignore constants (as usual when dealing with algorithmic complexity) that depend

only on the underlying Turing machine and that become asymptotically irrelevant as |x| grows.
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Relative compressor computation

In order to compute C(x‖y) we need to calculate the probabilities according to

C(x‖y) =

|x|∑
i=1

− log2 P (xi|xi−1
i−k, y), (8)

where k is the context size of elements from x that can be used in order to search for regularities in y. For

i ≤ k we assume a uniform distribution.

Both Ziv-Merhav dictionary-based models [15, 21, 18] and Markov models [22, 23, 24, 19] have been

successfully used in diverse data type applications. Specifically, for DNA sequences, Markov models proved

to have better efficiency [25].

Markov models (MMs), also known as context models, are statistical models. An MM of an information

source assigns probability estimates to the symbols of an alphabet, Θ, according to a conditioning context

computed over a finite and fixed number, k, of past outcomes (order-k MM) [26]. At element i, these

conditioning outcomes are represented by xi−1
i−k+1 = xi−k+1, . . . , xi−1. A non relative MM can store each

outcome of the past in memory, while an MM working in relative mode can only store the outcomes seen

in y. The number of conditioning states of a model in DNA sequences is 4k. The cooperation between

MMs of different orders has proven to have better efficiency for representing DNA sequences, instead of

competition [27].

High order MM, typically with k ≥ 13, for |Θ| = 4, proved to be one of the most important models

for DNA sequence representation [28], as well as to address other applications [29, 30, 31]. However, when

substitutional mutations occur between two identical sequences, high order MM fall short to represent the

data. This happens because, if, for example, we use an order-20 MM and we have a probability of one

random substitution for each 20 bases, the probability that the same context is seen again is low. The DNA

data between close species is frequently of this nature, because they share a common ancestral. Moreover,

the majority of the editions in the DNA sequences are of substitutional nature.

Aware of these characteristics, we have recently proposed a preliminary approach to deal with substitu-

tional mutations in DNA sequences [25, 32]. A substitutional tolerant Markov model (STMM), also known

as extended finite-context model, is a probabilistic-algorithmic model. It assigns probabilities according to

a conditioning context that considers the last symbol, from the sequence to occur, as the most probable

symbol, given the occurrences stored in the memory, such as those from y, instead of the true occurring

symbol.

For a symbol s ∈ Θ, the estimator of an STMM, working in relative mode, is given by

P (s|x′i−1
i−k, y) =

N(s|x′i−1
i−k, y) + α

N(x′i−1
i−k, y) + α|Θ|

, (9)

where function N accounts for the memory counts regarding the model and x′ is a copy of x, edited

according to

x′i = argmax
∀s∈Θ

P (s|x′i−1
i−k, y). (10)
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For both MMs and STMMs, the parameter α allows balancing between the maximum likelihood esti-

mator and a uniform distribution. For deeper orders, α should be generally lower than one.

When an STMM is cooperating with another model, it can be both probabilistic and algorithmic,

since they can be switched on or off given its performance, according to a threshold, t, defined before the

computation, that enables or disables the model, according to the number of times that the context has

been seen [32].

The relative compressor, C(x‖y), uses a soft blending of both MMs and STMMs [33]. Its computation

is performed in two phases: training and estimation. In the first phase, the models accumulate statistical

information regarding the y sequence. After processing the entire y sequence, the models are kept frozen

and the second phase starts. At this point, the x sequence starts to be compressed using the models

computed during the first phase. Here, the probability of the next symbol, xi+1, is given by

P (xi+1|y) =
∑
m∈S

P (xi+1|xii−k, y) wm,i (11)

where k is the order of the model and P (xi+1|xii−k, y) is the probability assigned to the next symbol by a

model of the set, and where wm,i denotes the corresponding weighting factors, with

wm,i ∝ (wm,i−1)γP (xi|xii−k, y). (12)

The first term acts as a forgetting factor, with γ ∈ [0, 1). The weights are constrained by∑
m∈S

wm,i = 1. (13)

The reason why we use this mechanism of cooperation instead of simply selecting the best model is discussed

in the next section.

Reason to consider the information for choosing the best model

In genomic data compression, the combination of multiple models can be mainly addressed using two

schemes: competition [34, 35, 28] and cooperation (or mixture) [27, 25].

In competition, the models compete to represent a certain number of contig bases, although there is

the need to use extra information, called side information [36], to describe which model has been used.

In a mixture, instead of having competition, each model cooperates according to weights attributed.

The weights are continuously adapted during compression, depending on the performance of each individual

probabilistic model.

Independently of the approach, we have to consider the information for choosing the best model, because

the information transits from the model prediction to the side information. To prove this, we can build a
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compressor using four models, from the classM, as

M1(xi‖y) = A, (14a)

M2(xi‖y) = C, (14b)

M3(xi‖y) = G, (14c)

M4(xi‖y) = T. (14d)

These models give a static outcome and, for any xi, one of them is correct. Therefore, if we do not consider

side information, we have C(x‖y) ≈ 0. When we consider side information we need to spend bits for

describing the model that we used, and, since it is a direct attribution, the side information will contain

the same information as to represent C(x‖y). Accordingly, models that do not consider side information,

such as simple alignment-based models, are overestimating the normalized relative similarity.



Note 2: Experience setup

In the following sections, we provide a description of the architecture, how to build the database, cleaning

and trimming, parameters and computing environment for the inference of metagenomic composition, such

as in hominid ancient whole genomes.

Notice that there are other frameworks for a general metagenomic identification purpose, such as

those mentioned in the manuscript and, for example, CLARCK [37] (fast and accurate classification of

metagenomic and genomic sequences using discriminative k-mers), CSSSCL [38] (a python package that

uses combined sequence similarity scores for accurate taxonomic classification of long and short sequence

reads), QIIME [39] (analysis of high-throughput community sequencing data). However, these are not

suitable for ancient DNA, namely because they rely on 16S or in default parameter aligning methods. The

reason why 16S analysis is not suitable, is mainly given by distinguishability problems and ambiguity on

similar organisms, mostly because PCR amplification biases can confound standard metabarcoding analyses

[40]. Regarding the default aligning parameters, quantifying somewhat dissimilar sequences by alignment

methods is problematic, due to the need of fine-tuned thresholds, considering relaxed edit distances and

consequent need of very high computational resources [41] (See Supplementary Note 4). Aware of this

need, the PALEOMIX [42] and MALT [43] methods have been proposed using the BWA [44] and MEGAN

[45] alignment algorithms, respectively, with custom parameters for metagenomic aDNA analysis.

Architecture

The pipeline is conducted according to Figure S1, where several databases, namely viral, bacterial, archaeal

and fungi are downloaded from the NCBI and combined into a single multi-FASTA file.

For downloading, extracting reads by patterns, getting unique species sequences and building the

database, we have used our home-made framework GOOSE (https://github.com/pratas/goose). GOOSE

is a framework for DNA sequence analysis and manipulation. See subsection “Creating the Database” to

get instructions on how to get and build the database.

Cleaning the reads is important, mostly to prevent reads with a short size, sequencing errors and

low quality data, that may confuse statistical analysis. Moreover, it is necessary to trim the data. The

sequencing of libraries containing molecules shorter than the read length may result in the production of

reads that include adaptors or overlapping in paired end reads. The characteristics of aDNA catalyze the

concerns on how to efficiently clean and trimming the reads. See Subsection “Cleaning and trimming the

reads” to follow our protocol.
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Figure S1: Setup for inference of metagenomic sample composition by FALCON. In the first phase, the database is built using
GOOSE (https://github.com/pratas/goose), given the databases of several organism types (virus, bacteria, etc). In the second phase,
FALCON runs by inferring the metagenomic sample composition. Then, FALCON-FILTER evaluates the similarity of segmented regions
(outputting TOP) and, finally, FALCON-EYE outputs the results into an image. Cleaning and trimming is optional, although the authors
strongly advise it.

Then, FALCON infers the composition using the FASTQ file containing the ancient genome and the

combined database. After, FALCON creates a TOP file containing, sorted from higher to lower similarity,

the information (name, size, ID) of the combined database containing higher similarity relatively to the

ancient genome. Additionally, FALCON creates a (compressed) file containing the local relative similarity

for each sequence that appears on TOP. Then, the FALCON-FILTER filters and segments the local relative

similarity of each sequence, given a threshold, and writes the corresponding segmented coordinates in an

output file. Finally, FALCON-EYE plots the coordinates, as well as the information from the TOP

sequences, in a compact image. See Supplementary Note 12 for more information on using FALCON.

Creating the Database

For building the database (DB), we have downloaded the entire NCBI database for viruses, bacteria,

archaea and fungi, resulting in four datasets of several gigabytes (GB). For each dataset, we have extracted

only the sequences labeled as “complete genomes”. The full experiment (install, download, build, compute)

can be replicated using the following steps.
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First, install FALCON using the following script:

#!/ bin/bash

git clone https :// github.com/pratas/falcon.git

cd falcon/src/

cmake .

make

cp FALCON ../../

cp FALCON -FILTER ../../

cp FALCON -EYE ../../

cd ../../

cp falcon/scripts /*.pl .

Then, install GOOSE, using the following script:

#!/ bin/bash

git clone https :// github.com/pratas/goose.git

cd goose/src/

make

cp goose -* ../../

cd ../../

Finally, run the following script to dowload and build the database (it will take a while):

#!/ bin/bash

perl DownloadArchaea.pl

perl DownloadBacteria.pl

perl DownloadFungi.pl

perl DownloadViruses.pl

cat bacteria.fa \

| grep -v -e "ERROR" -e "eFetchResult" -e "DOCTYPE" -e "xml version" -e "Unable to obtain" \

| grep -v -x ">" > bacteria.fna

mv bacteria.fna bacteria.fa

cat viruses.fa bacteria.fa archaea.fa fungi.fa \

| tr ’ ’ ’_’ \

| ./goose -extractreadbypattern complete_genome \

| ./goose -getunique > DB.fa

The final output will be a FASTA file, named DB.fa (the database), which contains the reference genomes.

Cleaning and trimming the reads

For cleaning and trimming the reads we use our home-made software GOOSE (https://github.com/

pratas/goose) (installation guide on previous section). For removing adaptors we use leeHom [46].

The following description provides a guide on how to filter and trim the ancient DNA reads, assuming

that there is a Paired-End FASTQ file with name Org.fq.

Since the file is Paired-End there is the need to split it into two files, according to the strand direction

(forward → Org.fw.fq and reverse → Org.rv.fq):
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./goose -FastqSplit Org.fw.fq Org.rv.fq < Org.fq

If the files are not trimmed, it is possible to trim them using the respective sequencing adaptors [47]

and leeHom [46] using the following:

./ leeHom -f AGATCGGAAGAGCACACGTCTGAACTCCAG \

-s GGAAGAGCGTCGTGTAGGGAAAGAGTGTAG \

--ancientdna \

-fq1 Org.fw.fq \

-fq2 Org.rv.fq \

-fqo out.fq

The output of leeHom merges the file, therefore, to continue there is the need to split the file again as

previously done (use out.fq instead of Org.fq).

Then, for trimming by quality-scores, namely average quality-scores below 15 in a window of 5, to filter

reads shorter than 35 bases and to merge back the files, proceed as:

# Forward:

cat Org.fw.fq \

| ./goose -FastqMinimumLocalQualityScoreForward -k 5 -w 15 -m 33 \

| ./goose -FastqMinimumReadSize 35 > Org.fw.filt.fq;

# Reverse:

cat Org.rv.fq \

| ./goose -FastqMinimumLocalQualityScoreReverse -k 5 -w 15 -m 33 \

| ./goose -FastqMinimumReadSize 35 > Org.rv.filt.fq;

# Merge:

cat Org.fw.filt.fq Org.rv.filt.fq > Org.filt.fq;

Finally, for excluding reads with more than a certain number of “N”, use:

./goose -FastqExcludeN 5 < Org.filt.fq > final.fq

In this case we have removed reads with more than 5 “N”.

For more details of sample preparation in ancient DNA see [48]. For another tool to trim Illumina NGS

data (not built specifically to ancient DNA) see [49].

Parameters and computing environment

The amount of RAM required from computing hominid complete genomes is approximately 26 GB, while

for smaller genomes, namely mitogenomes, it is substantially decreased (0.5 GB). For lower RAM use “-c”

with lower values, such as “-c 100”. Here, much less computational resources are used at the expense of a

small payoff in precision. The general parameters used are: “-v -n 8 -t 1000 -F -Z -m 20:200:1:5/20

-c 200”. The machine used 8 threads for the computation.

All experiments were carried out on an Ubuntu Linux v16.04 LTS, with gcc v5.3.1, 4 Intel Core i7-6700K

3.4 GHz CPUs (with hyperthreading) and 32 GB of RAM. 1.
1To replicate all the experiments, make sure the machine has 1.5 TB of free disk and 32 GB of RAM



Note 3: Evaluation on synthetic and ancient data

Similarity estimation methods (MUMMER, GREEN, FALCON)

The Figures corresponding to the evaluation of several methods on synthetic data (Fig. 1 of the paper)

can be replicated using the following scripts:

• https://raw.githubusercontent.com/pratas/falcon/master/simulation/runSubs.sh;

• https://raw.githubusercontent.com/pratas/falcon/master/simulation/runPerm.sh;

• https://raw.githubusercontent.com/pratas/falcon/master/simulation/runTime.sh.

The data has been simulated using XS [50] and properly managed with GOOSE (http://pratas.

github.io/goose/). For a comparison of tools for the simulation of genomic next-generation sequencing

data, see [51]. We have included GREEN [52] for a control, namely because GREEN is also a relative

compressor. We have estimated exhaustively its parameters for a better performance: “-i -f 10 -k 15”.

However, since GREEN is not prepared to handle large genomes (very high RAM for the case), we have

only used it in these small synthetic sequences.

Comparison of CPU times between FALCON, BOWTIE and BWA

The following experience describes the comparison of CPU times between FALCON and two well known

alignment/mapping methods (BOWTIE [53] and BWA [44]), in the case of mapping reads from the Ne-

anderthal, according to a Escherichia coli reference. BOWTIE and BWA used two approaches: standard

and estimated ancient parameters (AP). The latter is for efficiently dealing with ancestral data (BOWTIE:

“-v 2”, BWA: “-L 16500 -N 0.01 -O 2”). FALCON used the parameters “-v -n 8 -t 400 -F -Z -m

20:200:1:5/20 -c 200”). The following scripts are able to replicate the comparison and generate the

plots:

• https://raw.githubusercontent.com/pratas/falcon/master/ancient/runRCTimes.sh;

• https://raw.githubusercontent.com/pratas/falcon/master/ancient/runRCTimesPlots.sh.

Note that we have used the complete Neanderthal FASTQ reads (631 GB), after filtering them according

to Supplementary Note 1.
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Note 4: Upper bounds on the Normalized Relative

Similarity

In this note, we give upper bounds on the Normalized Relative Similarity (NRS) for two cases: substitu-

tional mutated and block-permutated strings.

Mutated strings

Consider a string, x, on an alphabet, Θ, and denote by |x| the length of x, i.e., the number of symbols of

Θ in x. The notation |Θ| is also used to indicate the size of Θ. Logarithms are base two.

Consider a process that, uniformely and independently, randomly mutates the symbols of x with prob-

ability p. We denote the mutated string by xp, with |xp| = |x|.
We intend to give an upper bound on the Normalized Relative Similarity (NRS) between x and xp,

defined as

NRS(xp‖x) = 1− C(xp‖x)

|xp| log |Θ|
,

where C(xp‖x) denotes the number of bits that the best possible compressor would require to represent

xp using exclusively information from x. A possible representation of xp based on x can be viewed as a

two-part code, where the first part indicates where the mutations occurred, encoded in a binary string l,

and the second part lists the new symbols at the mutated positions. To describe l, on average we need

|l|H(p) bits, where

H(p) = −p log p− (1− p) log(1− p).

On the other hand, to describe the list of mutated symbols, on average we need p|x| log(|Θ| − 1) bits.

Therefore, most often,2 and noting that |l| = |x|, we have

C(xp‖x) ≥ |x|(H(p) + p log(|Θ| − 1).

We may now establish an upper bound on the NRS,

NRS(xp‖x) ≤ 1− H(p) + p log(|Θ| − 1)

log |Θ|
, (15)

2There are sequences l that can be algorithmically represented in less than k = |l|H(p) bits, i.e., those for which K(l) < k,

where K(l) denotes the Kolmogorov complexity of l. However, this happens only for a very tiny fraction of them. In fact, it

can be shown that there are less than 2k of those strings. Because the total number of possible length-n strings having k ones

is
(
n
k

)
≥

(
n
k

)k, then the fraction of those low-complexity strings is upper-bounded by
(
2k
n

)k. For example, for n = 1000 and

k = 100 this fraction is less than 2× 10−70. Similar arguments also apply to the list of changed symbols.
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Figure S2: Curve of the NRS upper bound, for |Θ| = 4.

Figure S2 shows the value of the NRS upper bound defined in (15), for |Θ| = 4.

Block-permutated strings

Consider now a partition of x into blocks of b consecutive symbols. For simplicity, we assume that the

partition is sequential, starting from the left-hand side of the string and ending with a block possibly with

less than b symbols. Therefore, there will be d|x|/be blocks in the partition. Let us represent by xb the

string built using a certain permutation of the blocks resulting from the partition of x just described. Note

that |xb| = |x|.
We intend to give an upper bound on the Normalized Relative Similarity (NRS) between x and xb,

defined as

NRS(xb‖x) = 1− C(xb‖x)

|xb| log |Θ|
,

where C(xb‖x) denotes the number of bits that the best possible compressor would require to represent xb
using exclusively information from x. Note that, in general, C(xb‖x) requires at least to produce bits that

represent a permutation of n = d|x|/be integers. Hence,

C(xb‖x) ≥ log n!.

Using the well-known Stirling’s approximation,

log n! = n log n− n log e+O(log n),

we have

C(xb‖x) ≥
⌈
|x|
b

⌉(
log

⌈
|x|
b

⌉
− log e

)
≥ |x|

b

(
log
|x|
b
− log e

)
.
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Figure S3: Curves of the NRS upper bound, for several values of |x| and for |Θ| = 4.

We may now establish an upper bound on the NRS,

NRS(xb‖x) ≤ 1−

|x|
b

(
log
|x|
b
− log e

)
|xb| log |Θ|

,

and, since |xb| = |x|,

NRS(xb‖x) ≤ 1−
log
|x|
b
− log e

b log |Θ|
. (16)

Figure S3 shows the value of the NRS upper bound defined in (16), for several values of |x| and for |Θ| = 4.



Note 5: Database intra-similarity

Rough assumptions regarding the presence of organisms in a metagenomic composition must be avoided

without proper analysis, mainly because the database contains intra-similarities that can interfere with

the interpretation For this purpose, we use the tool GULL (https://github.com/pratas/GULL), which is

able to measure the similarity between genomes contained in the database, more precisely, those genomes

that have been previously identified as a composition by the FALCON tool.

Figure S4: An hypothetical example of the GULL output showing the Normalized Relative Similarity (NRS) between seven sequences,
where numbers stand for identification labels.

This analysis should be made to identify organisms that have high Normalized Relative Similarity

(NRS) values according to other organisms (from the database), rather than being actually on the samples.

For example, bacteria Escherichia coli and Salmonella spp. share high similarity [54], therefore, if an

Escherichia coli is identified, it is very likely that a Salmonella is also identified. This doesn’t mean the

Salmonella is in the sample, but that it will appear by cross-similarity. Thus, using GULL as a complement

to the FALCON tool is a major improvement for filtering misleading results. Additionally, we estimate

the similarity within the database the same way as in FALCON, using the Normalized Relative Similarity

(NRS), providing a way to compare final overall results.

Figure S4 shows an example of the GULL output after measuring the NRS between seven sequences.

The numbers stand for identification labels (from 1 to 7). As shown, we are able to identify a cluster (from

2 to 5) indicating that these species share high similarity. Accordingly, the presence of sequence 3, 4 and

5 might be justified by cross-similarity, rather than being present in the samples.

The matrix is not symmetric (a particularity of the NRS). This enables, for example, to identify a high

similarity when using reference sequence 2 and, as target sequence 7. These non-symmetric high similarities

reveal a very important feature: a sequence that is very similar to some part or parts of a bigger sequence

(a sequence containing a shorter sequence) that can indicate the presence of, for example, retroviruses.

16



Note 6: Composition analysis of the human, chim-

panzee and gorilla reference genomes

In order to have a control while using FALCON, we have used several reference genomes and the same

database, as described in Supplementary Note 2, to compute the metagenomic sample composition.

The reference genomes are:

• human (GRC and CHM assemblies),

• chimpanzee,

• gorilla.

We have also included the respective non-assembled sequences (unplaced and unlocalized sequences).

As it can be seen in Figure S5 and S6, the sequences with the highest similarity detected are the

human endogenous retroviruses. Retrovirus are known to be one of the major factors in chromosomal

rearrangements [55]. The degrees of similarity observed seem to be in accordance to the split between

human, chimp and gorila ancestors [56, 57, 58, 59].

Regarding other sequences with some degree of similarity, with the exception of the baboon endogenous

retrovirus and RD114 retrovirus, the number of sequences is low and with low values reporting similarity.

Once more, this shows that FALCON does not overestimate, reporting only consistent results. For the

sequences found with lower levels of similarity, the cause is probably given by the non-assembled sequences

(unplaced and unlocalized) that have also been considered.

Relatively to the experience setup, the Human GRC and CHM top results, with the characteristics

mentioned in Parameters and computing environment (Supplementary Note 2), have been computed

in 46 and 42 minutes, respectively. On the other hand, the Chimpanzee and Gorilla top results, with the

characteristics mentioned in Parameters and computing environment (Supplementary Note 2), have

been computed in 47 and 43 minutes, respectively.

17
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Figure S5: Metagenomic sample composition of Human reference genome GRCv38 and CHMv1.1 inferred by FALCON. (a) Rela-
tive similarity between the complete genomes of the database that shared some degree of similarity with the Human references. (b)
Relative similarity between Human whole genome, using the full genome (including non-assembled non-localized and mtDNA se-
quences), and multiple NCBI databases. (c) Local similarity of filtered regions with relative similarity above 0.5. The Figure
can be replicated using the script: https://raw.githubusercontent.com/pratas/falcon/master/human/runHumanGRC.sh for GRC and
https://raw.githubusercontent.com/pratas/falcon/master/human/runHumanCHM.sh for CHM reference assemblies.



19

Figure S6: Metagenomic sample composition of Chimpanzee (v3.0) and Gorilla (v3.1) reference genomes inferred by FALCON. (a)
Relative similarity between the complete genomes of the database that shared some degree of similarity with the chimpanzee and gorilla
references. (b) Relative similarity between chimpanzee and gorilla whole genomes, using the full genome (including, when available,
non-assembled non-localized and mtDNA sequences), and multiple NCBI databases. (c) Local similarity of filtered regions with relative
similarity above 0.5. The Figure can be replicated using the script: https://raw.githubusercontent.com/pratas/falcon/master/chimp/
runChimp.sh for chimpanzee and https://raw.githubusercontent.com/pratas/falcon/master/gorilla/runGorilla.sh for gorilla.



Note 7: Composition analysis of the Neanderthal

We have inferred the metagenomic sample composition of a Neanderthal [60] using only the unmapped

reads. These reads supposly contain data where the PE did not overlaped, low quality data and exogeneuos

DNA. The data was already trimmed and cleaned. We have converted the data from BAM to FASTQ,

using SAMtools [61],

./ samtools bam2fq Neanderthal.bam > Neanderthal.fq

and from FASTQ to FASTA using GOOSE (https://github.com/pratas/goose). The reads have been

downloaded from: http://cdna.eva.mpg.de/neandertal/altai/AltaiNeandertal/bam/unmapped_qualfail/,

while the database has been built according to Supplementary Note 2 (Creating the Database). For

a script to run the full experience, see https://raw.githubusercontent.com/pratas/falcon/master/

ancient/runNeanderthal.sh.

The Neanderthal results, with the characteristics mentioned in parameters and computing environment

(Supplementary Note 2), have been computed in 22 hours (desktop computer without SSD). The

Neanderthal computation used half a TB (approximately 486 GB) of data.

NRS rankings

Tables S1, S2, S3 and S4 display the information of the genomes with similarity relatively to the Nean-

derthal, namely the ID, percentage (%) of similarity, genome size, GI (genome identifier) and name.

ID Size % Sim GI Name

1 4558287 70.615 1008930592 Shigella sp. PAMC 28760

2 4668621 70.577 1069460419 Escherichia coli strain 210221272

3 9472 70.085 548558394 Human endogenous retrovirus K113 complete genome

4 4574246 62.303 844762407 Shigella boydii strain ATCC 9210

5 4878853 61.327 992379426 Shigella sonnei strain FDAARGOS 90

6 4607196 60.882 344915202 Shigella flexneri 2a str. 301 chromosome

7 4369232 58.307 82775382 Shigella dysenteriae Sd197 chromosome

8 2469997 51.879 983475690 Propionibacterium acnes strain PA 12 1 R1

9 3530409 41.531 1002985342 Clostridium perfringens strain JP838

10 28192 29.810 1030034275 Penicillium polonicum mitochondrion

11 3509795 28.036 972005651 Acinetobacter johnsonii XBB1

Table S1: Information of the genomes with similarity relatively to the Neanderthal (1-11).
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ID Size % Sim GI Name

12 2693398 24.097 1043351086 Staphylococcus equorum strain KM1031

13 2721344 24.034 1039416963 Staphylococcus sp. AntiMn-1

14 4657167 23.242 985817611 Escherichia albertii DNA

15 29908 23.162 849123577 Penicillium roqueforti strain UASWS P1 mitochondrion

16 26918 19.665 849123696 Pseudogymnoascus pannorum strain NN050741 mitochondrion

17 6441449 16.943 1033149375 Pseudomonas antarctica strain PAMC 27494

18 5841722 16.904 1071444414 Pseudomonas fluorescens strain Pt14

19 6859618 16.459 1003709406 Pseudomonas azotoformans strain S4

20 2738313 11.641 1056253829 Acinetobacter sp. NCu2D-2

21 2616530 10.183 57865352 Staphylococcus epidermidis RP62A

22 3263775 9.298 1054792290 Brevundimonas sp. GW460-12-10-14-LB2

23 23743 9.046 1037241235 Zasmidium cellare mitochondrion

24 29347 7.346 1070106186 Propionibacterium phage Enoki

25 2571505 7.311 1061378163 Propionibacterium sp. oral taxon 193 strain F0672

26 4209935 7.157 1068600609 Brevibacterium linens strain SMQ-1335

27 6301761 7.084 1033049601 Pseudomonas koreensis strain D26

28 31602 6.777 813559934 Aspergillus flavus strain TCM2014 mitochondrion

29 30585 6.548 992331403 Fusarium mangiferae mitochondrion

30 4674191 6.323 1055571898 Sporosarcina psychrophila strain DSM 6497

31 55150 6.144 218561636 Escherichia fergusonii ATCC 35469 plasmid pEFER

32 27186 5.284 1011058795 Cairneyella variabilis isolate VPRI 42388 mitochondrion

33 2605518 5.238 971851441 Carnobacterium sp. CP1

34 5096586 5.136 1061913597 Citrobacter freundii strain SL151

35 55973 4.983 1002162993 Didymella pinodes strain 165/T mitochondrion

36 6976764 4.948 983452107 Pseudomonas brassicacearum strain LBUM300

37 4727434 4.902 992381540 Citrobacter sp. FDAARGOS 156

38 4904610 4.901 992391073 Citrobacter amalonaticus strain FDAARGOS 122

39 25615 4.447 558603437 Metacordyceps chlamydosporia strain 170 mitochondrion

40 6124177 4.324 1059918478 Pseudomonas corrugata strain RM1-1-4

41 30892 4.261 836643807 Colletotrichum acutatum strain KC05 mitochondrion

42 4755700 4.254 62178570 Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67

43 30020 4.207 1025806322 Colletotrichum fioriniae mitochondrion

44 2821452 4.171 387149188 Staphylococcus aureus 04-02981

45 3897 4.119 1033027607 Klebsiella oxytoca plasmid pKO JKo3 4 DNA

46 5101809 3.983 984941068 Pseudomonas fragi strain P121

47 2026292 3.952 809277835 Polynucleobacter duraquae strain MWH-MoK4

48 39030 3.878 813423937 Shiraia bambusicola mitochondrion

49 6646309 3.742 798809582 Pseudomonas chlororaphis strain PCL1606

50 29303 3.715 1031917273 Trichoderma gamsii strain KUC1747 mitochondrion

51 4880257 3.655 1068614800 Enterobacter kobei strain DSM 13645

52 30823 3.616 1011056737 Colletotrichum tamarilloi mitochondrion

53 2434688 3.496 1011424644 Moraxella osloensis strain CCUG 350

54 26139 3.490 992330782 Verticillium nonalfalfae mitochondrion

55 47021 3.265 148609382 Phage cdtI DNA

56 25919 3.229 948299288 Lecanicillium saksenae mitochondrion

57 36957 3.119 589144606 Colletotrichum lindemuthianum mitochondrion

58 4232635 3.086 1057114188 Xanthomonas fragariae isolate Fap21

Table S2: Information of the genomes with similarity relatively to the Neanderthal (12-58).
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ID Size % Sim GI Name

59 4178958 3.054 1068582773 Acinetobacter baumannii DU202

60 4724316 3.040 1068589113 Enterobacter hormaechei subsp. oharae strain DSM 16687

61 4661849 2.880 1068585475 Enterobacter xiangfangensis strain LMG27195

62 4551186 2.794 1062553183 Enterobacter sp. HK169

63 4182028 2.783 1059928630 Pantoea agglomerans strain C410P1

64 24565 2.712 1016472806 Acremonium fuci strain 3a34 culture-collection VKM:F-4473 mitochondrion

65 2146611 2.710 289166909 Streptococcus mitis B6

66 2583617 2.684 992332033 Staphylococcus saprophyticus strain FDAARGOS 168

67 2220 2.684 1063656990 Common bean-associated gemycircularvirus isolate 53 2

68 2622031 2.635 1057408040 Turicibacter sp. H121

69 26821 2.612 1043378333 Cladophialophora bantiana mitochondrion

70 103844 2.572 817530248 Fusarium culmorum strain CBS 139512 mitochondrion

71 4748414 2.560 1068593796 Enterobacter cloacae complex ’Hoffmann cluster IV’ strain DSM 16690

72 5280349 2.449 336246508 Enterobacter aerogenes KCTC 2190 chromosome

73 4803917 2.377 976150947 Leclercia adecarboxylata strain USDA-ARS-USMARC-60222

74 4616371 2.312 1032822074 Lelliottia amnigena strain ZB04

75 22376 2.275 761546238 Acremonium implicatum mitochondrion

76 3372992 2.236 1011513961 Limnohabitans sp. 63ED37-2

77 36554 2.232 992330294 Colletotrichum lupini strain CBS 119142 culture-collection CBS:119142 mitochondrion

78 5002 2.180 23334621 Casphalia extranea densovirus

79 2159490 2.172 145588189 Polynucleobacter asymbioticus QLW-P1DMWA-1

80 4902106 2.068 1043354620 Kosakonia sacchari strain BO-1

81 6181873 2.027 1002825811 Pseudomonas putida KT2440 chromosome

82 4902027 1.988 1045495283 Enterobacter sacchari SP1

83 42895 1.958 1037241508 Ilyonectria destructans isolate 2007/P/476 mitochondrion

84 2549338 1.930 1016088174 Staphylococcus haemolyticus strain S167

85 6555569 1.814 1069642234 Pseudomonas syringae pv. actinidiae ICMP 18884

86 4322479 1.786 1011381500 Arthrobacter alpinus strain ERGS4:06

87 22240 1.769 1070102990 Lactococcus phage M5938

88 6397126 1.748 28867243 [Pseudomonas syringae] pv. tomato str. DC3000 chromosome

89 2191044 1.730 984925192 Streptococcus salivarius strain JF

90 53439 1.730 885000563 Diaporthe longicolla mitochondrion

91 5006 1.619 601447520 Danaus plexippus plexippus iteravirus isolate Granby

92 4702949 1.403 1011934043 Klebsiella sp. G5

93 1818293 1.395 970549833 Streptococcus infantarius strain ICDDRB-NRC-S5

94 5398272 1.352 1051485383 Raoultella ornithinolytica strain A14

95 3862530 1.310 375133618 Acinetobacter pittii PHEA-2 chromosome

96 5303342 1.280 1035732180 Kosakonia oryzae strain Ola 51

97 2199877 1.145 984937715 Aerococcus viridans strain CCUG4311

98 5312744 1.129 1063296287 Klebsiella pneumoniae strain UCLAOXA232KP Pt0

99 2251 1.083 807743884 Mongoose feces-associated gemycircularvirus d strain 478d

100 32745 1.067 90995396 Candida parapsilosis mitochondrion

101 5521203 1.019 1051750068 Klebsiella variicola strain DSM 15968

102 2729848 1.013 1060094849 Propionibacterium avidum strain DPC 6544

103 4294639 0.946 974636588 Cronobacter malonaticus LMG 23826

104 2236 0.945 608055536 Dragonfly-associated circular virus 2 isolate FL2-5X-2010

105 3614992 0.917 257067223 Brachybacterium faecium DSM 4810 chromosome

Table S3: Information of the genomes with similarity relatively to the Neanderthal (59-105).
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ID Size % Sim GI Name

106 5314161 0.855 1008930624 Klebsiella quasipneumoniae strain ATCC 700603

107 2173607 0.778 1049349156 Neisseria meningitidis strain M22772

108 3332539 0.764 1015863798 Psychrobacter alimentarius strain PAMC 27889

109 5178466 0.737 78045556 Xanthomonas campestris pv. vesicatoria complete genome

110 2013339 0.649 984923562 Aerococcus urinaeequi strain CCUG28094

111 3472056 0.522 1011536582 Planococcus kocurii strain ATCC 43650

112 39842 0.460 1025806304 Lecanora strobilina mitochondrion

113 2292716 0.446 985585133 Rothia mucilaginosa DNA

114 41950 0.413 549717265 Xanthomonas fuscans subsp. fuscans str. 4834-R

115 4313264 0.390 973251686 Cedecea neteri strain ND02

116 5011796 0.352 1004716966 Obesumbacterium proteus strain DSM 2777

117 7835 0.333 9626692 Encephalomyocarditis virus

118 4574859 0.324 1060098565 Acidovorax sp. RAC01

119 3305371 0.291 1045836558 Planococcus donghaensis strain DSM 22276

120 59866 0.258 939482425 Stx1 converting phage DNA

121 3424893 0.238 1045837372 Planococcus halocryophilus strain DSM 24743

122 3782009 0.228 1045851098 Planococcus antarcticus DSM 14505

123 60238 0.204 116221992 Stx2-converting phage 86

124 38306 0.196 1043378898 Beauveria caledonica isolate fhr1 mitochondrion

125 62706 0.186 939482426 Stx2 converting phage II DNA

126 4605545 0.126 378764971 Pantoea ananatis LMG 5342 main chromosome complete genome

127 4674684 0.118 1059968446 Hydrogenophaga sp. RAC07

128 6038 0.107 998745912 Piscine myocarditis-like virus isolate Golden shiner/PMCLV/USA/MN/2014

129 4542863 0.092 1025881008 Hafnia alvei strain HUMV-5920

130 5188 0.017 108737103 Y73 sarcoma virus

131 4714359 0.011 982915660 Pseudomonas monteilii strain USDA-ARS-USMARC-56711

132 2802354 0.004 1011690330 Psychrobacter urativorans strain R10.10B

Table S4: Information of the genomes with similarity relatively to the Neanderthal (106-132).

Database intra-similarity

Figure S7 displays, in a compact map, the intra-similarity of the database genomes having similarity

relatively to the Neanderthal. The GIs (genome identifiers) can be linked with the names from Tables S1,

S2, S3 and S4. See Supplementary Note 5 for more information about database intra-similarity.
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Figure S7: Relative similarity between the complete genomes that shared some degree of similarity with the Neanderthal raw data
(ordered by similarity). Numbers stand for GIs. The map has been computed with GULL tool (https://github.com/pratas/GULL).



Note 8: Composition analysis of the Denisova

We have inferred the metagenomic sample composition of a Denisova whole genome [62]. We have down-

loaded the data from http://cdna.eva.mpg.de/denisova/raw_reads/, while the database has been built

according to Supplementary Note 2 (Creating the Database). For a script to run the full experiment,

see: https://raw.githubusercontent.com/pratas/falcon/master/ancient/runDenisova.sh.

The Denisova top results, with the characteristics mentioned in parameters and computing environment

of Supplementary Note 2, have been computed in 42 hours (desktop computer without SSD). The

computation used more than 1 TB (approximately 925 GB) of reading data.

Figure S8 depicts the metagenomic composition result of the FASTQ reads from the Denisova in a

compact map.

Figure S8: Metagenomic sample composition of a Denisova raw data infered by FALCON. (a) Classification of the complete genomes,
where the absense of circle stands for bacterial genomes. (b) Relative similarity between a Denisova whole genome, using the FASTQ
samples, and multiple NCBI databases, where relative similarities below 0.12 have been discarded from the figure. (c) Local similarity of
filtered regions with relative similarity above 0.5.
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NRS rankings

Tables S5 and S6 display the information of the genomes with similarity relatively to the Denisova. All

tables are constituted by the ID, percentage (%) of similarity, size of the genome, GI (genome identifier)

and name.

ID Size % Sim GI Name

1 9472 92.597 548558394 Human endogenous retrovirus K113

2 4668621 42.184 1069460419 Escherichia coli strain 210221272

3 4558287 42.016 1008930592 Shigella sp. PAMC 28760

4 4574246 36.661 844762407 Shigella boydii strain ATCC 9210

5 4878853 36.531 992379426 Shigella sonnei strain FDAARGOS 90

6 4607196 35.654 344915202 Shigella flexneri 2a str. 301 chromosome

7 4369232 34.104 82775382 Shigella dysenteriae Sd197 chromosome

8 2693398 29.206 1043351086 Staphylococcus equorum strain KM1031

9 2721344 28.931 1039416963 Staphylococcus sp. AntiMn-1

10 3530409 15.052 1002985342 Clostridium perfringens strain JP838

11 4657167 11.586 985817611 Escherichia albertii DNA

12 4209935 8.981 1068600609 Brevibacterium linens strain SMQ-1335

13 5841722 7.058 1071444414 Pseudomonas fluorescens strain Pt14

14 28192 6.565 1030034275 Penicillium polonicum mitochondrion

15 6441449 6.433 1033149375 Pseudomonas antarctica strain PAMC 27494

16 6859618 6.370 1003709406 Pseudomonas azotoformans strain S4

17 3614992 5.174 257067223 Brachybacterium faecium DSM 4810 chromosome

18 29908 4.797 849123577 Penicillium roqueforti strain UASWS P1 mitochondrion

19 3509795 4.584 972005651 Acinetobacter johnsonii XBB1

20 26918 4.391 849123696 Pseudogymnoascus pannorum strain NN050741 mitochondrion

21 4674684 3.956 1059968446 Hydrogenophaga sp. RAC07

22 2605518 2.525 971851441 Carnobacterium sp. CP1

23 6301761 2.473 1033049601 Pseudomonas koreensis strain D26

24 2469997 2.461 983475690 Propionibacterium acnes strain PA 12 1 R1

25 5096586 2.424 1061913597 Citrobacter freundii strain SL151

26 4574859 2.319 1060098565 Acidovorax sp. RAC01

27 4727434 2.209 992381540 Citrobacter sp. FDAARGOS 156

28 4904610 2.184 992391073 Citrobacter amalonaticus strain FDAARGOS 122

29 4674191 2.175 1055571898 Sporosarcina psychrophila strain DSM 6497

30 55150 2.153 218561636 Escherichia fergusonii ATCC 35469 plasmid pEFER

31 47021 1.849 148609382 Phage cdtI DNA

32 4880257 1.794 1068614800 Enterobacter kobei strain DSM 13645

33 4755700 1.736 62178570 Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67

34 6976764 1.394 983452107 Pseudomonas brassicacearum strain LBUM300

35 4551186 1.246 1062553183 Enterobacter sp. HK169

36 4724316 1.203 1068589113 Enterobacter hormaechei subsp. oharae strain DSM 16687

37 6124177 1.187 1059918478 Pseudomonas corrugata strain RM1-1-4

38 4661849 1.142 1068585475 Enterobacter xiangfangensis strain LMG27195

39 3372992 1.111 1011513961 Limnohabitans sp. 63ED37-2

40 5101809 1.080 984941068 Pseudomonas fragi strain P121

Table S5: Information of the genomes with similarity relatively to the Denisova (1-40).
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ID Size % Sim GI Name

41 4748414 1.061 1068593796 Enterobacter cloacae complex ’Hoffmann cluster IV’ strain DSM 16690

42 4803917 0.950 976150947 Leclercia adecarboxylata strain USDA-ARS-USMARC-60222

43 4616371 0.847 1032822074 Lelliottia amnigena strain ZB04

44 23743 0.800 1037241235 Zasmidium cellare mitochondrion

45 6646309 0.678 798809582 Pseudomonas chlororaphis strain PCL1606

46 5280349 0.637 336246508 Enterobacter aerogenes KCTC 2190 chromosome

47 4902106 0.635 1043354620 Kosakonia sacchari strain BO-1

48 4902027 0.600 1045495283 Enterobacter sacchari SP1

49 5188 0.525 108737103 Y73 sarcoma virus

50 6181873 0.443 1002825811 Pseudomonas putida KT2440 chromosome

51 4702949 0.358 1011934043 Klebsiella sp. G5

52 4322479 0.285 1011381500 Arthrobacter alpinus strain ERGS4:06

53 5398272 0.260 1051485383 Raoultella ornithinolytica strain A14

54 3897 0.257 1033027607 Klebsiella oxytoca plasmid pKO JKo3 4 DNA

55 5043757 0.240 971864227 Arthrobacter sulfonivorans strain Ar51

56 4294639 0.217 974636588 Cronobacter malonaticus LMG 23826

57 3243537 0.196 1057510000 Gammaproteobacteria bacterium TR3.2

58 5303342 0.141 1035732180 Kosakonia oryzae strain Ola 51

59 5312744 0.135 1063296287 Klebsiella pneumoniae strain UCLAOXA232KP Pt0

60 6570200 0.106 1043091695 Rhodococcus sp. 008

61 4916630 0.089 1004049116 Ramlibacter tataouinensis strain 5-10

62 6555569 0.082 1069642234 Pseudomonas syringae pv. actinidiae ICMP 18884

63 5521203 0.074 1051750068 Klebsiella variicola strain DSM 15968

64 6236862 0.045 972362081 Rhodococcus erythropolis R138

65 6397126 0.017 28867243 [Pseudomonas syringae] pv. tomato str. DC3000 chromosome

66 5314161 0.015 1008930624 Klebsiella quasipneumoniae strain ATCC 700603

67 2583617 0.014 992332033 Staphylococcus saprophyticus strain FDAARGOS 168

Table S6: Information of the genomes with similarity relatively to the Denisova (41-67).

Database intra-similarity

Figure S9 displays, in a compact map, the inter-similarity of the database genomes having top similarity

relatively to the Denisova. The GIs (genome identifiers) can be linked with the names from Supplementary

Tables S5 and S6. See Supplementary Note 5 for more information about database intra-similarity.
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Figure S9: Relative similarity between the complete genomes that shared some degree of similarity with the Denisova raw data
(ordered by similarity). Numbers stand for GIs. The map has been computed with GULL tool (https://github.com/pratas/GULL).



Note 9: Composition analysis of the Mammoth

mitogenome

In this note, we report the inferred metagenomic sample composition of a Columbian mammoth (Mam-

muthus columbi) mitogenome [63], using FALCON. The mammoth inhabited North America from the

northern United States to Costa Rica during the Pleistocene epoch. This genome, with approximately

11,000 years old, has been sequenced using NGS and analyzed in [64], yielding major progress in the

phylogenetic positions of the species.

For the inference, we have used the process described in Supplementary Note 2. The mammoth top

results, with the hardware characteristics mentioned in Parameters and computing environment, using the

parameters “-v -n 8 -t 1000 -F -Z -m 13:1:0:0/0 -m 20:100:1:5/10 -c 150”, has been computed

using approximately 48 minutes.

The complete Columbian mammoth mitogenome [63], including all Illumina sequences in FASTQ for-

mat, has been downloaded from:

• ftp://ftp.cbcb.umd.edu/pub/data/mammoth/c_2_sequence12.txt.gz.

We have also downloaded the entire NCBI database for viruses, bacteria, archaea and fungi, resulting in

four datasets with several GB. For each dataset, we have extracted only the sequences labeled as “complete

genomes”. The database was built according to Supplementary Note 2 (Creating the Database).

The full experience (install, download, build, compute) can be replicated using the following script:

• https://raw.githubusercontent.com/pratas/falcon/master/ancient/runMammoth.sh.

Figure S10 depicts the metagenomic sample composition of the mammoth mitogenome, inferred by

FALCON, and the corresponding relative similarity between the complete genomes that shared some degree

of similarity with the mammoth (database intra-similarity).
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Figure S10: Metagenomic sample composition of mammoth mitogenome (All Illumina sequences in FASTQ format) inferred by FAL-
CON. (a) Relative similarity between the complete genomes that shared some degree of similarity with the mammoth. (b) Relative similar-
ity between mammoth whole genome and multiple NCBI databases. (c) Local similarity of filtered regions with relative similarity above 0.5.
The Figure can be replicated using the script: https://raw.githubusercontent.com/pratas/falcon/master/ancient/runMammoth.sh.



Note 10: Local relative similarity

As an extension to Supplementary Note 1, the local relative similarity, LRS(xi‖y), defines the relative

similarity, RS(x‖y), according to

RS(x‖y) =

|x|∑
i=1

LRS(xi‖y) =

|x|∑
i=1

log2 |Θ| − C(xi‖y). (17)

Therefore, if we plot each value of the local relative similarity, LRS(xi‖y), for each base we have a description

of how similar it seems relatively to y. Moreover, we are able to segment and classify regions [24].

Figure S11 shows the process of creating the local relative similarity maps. These maps identify

regions in sequence x that share similarity with regions of y below a certain threshold T . Then, the filtered

regions are compressed (reference-free) in order to evaluate their self-similarity. This enables to destinguish

repetitive from complex regions.

Figure S11: From local complexity profiles to local relative similarity maps. The complexity profile is segmented using a threshold T .
The segmented regions are individually compressed (without using prior information) and classifyed according to their local self-similarity
[65]. The colors of the regions in the maps are according to the color-scale at bottom left. As an example, C(P1, ..., P2) stands for the
(reference-free) compression of the region starting in position P1 to P2.

In this note we provide some examples of mapped local similarity, namely using Penicillium polonicum

and Human adenovirus, and its correlation with the respective NCBI annotated data.

Penicillium polonicum

In this example we mapped the regions of the Penicillium polonicum mitochondrial genome sequence

having local similarity relatively to the Neanderthal (N) and Denisova (D). Figure S12 provides a map

with those regions and its correlation with the NCBI annotated data.
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Figure S12: Local relative similarity of the Penicillium polonicum mitochondrial genome compared to a Neanderthal (N) and a
Denisova (D) samples. The local similarities have been segmented above 0.5 and evaluated, for each region, given its self-similarity (top
left legend expresses the intervals self-similarity, where ’-’ stands for less). Bottom map depicts the NCBI map aligned with the above
maps.

Human adenovirus

In this example, we used FALCON with more complex models, namely adding an extra model of depth 13

and increasing the deepest model cache-hash to “c=250”. Although it needs more computational resources

it also provides more inferred genomes. One of them, relatively to the Denisova, is the Human adenovirus

C, having relative similarity around 7%. The Human adenovirus C is a dsDNA virus that that is usually

associated with respiratory tract infections in humans.

Figure S13: Local relative similarity of Human adenovirus C (upper map) and Human adenovirus 2 (lower map) viral sequences
relatively to a Denisova genome. Colors indicate the interval sef-similarity of each regions after being filtered and segmented with a
threshold of 1.5. Blue color (+) indicates self-similarity greather than 1.95, while marine blue, green and red (-), respectively 1.6, 1.25,
0. The bottom map depicts the aligned visual information of gene content of the Human adenovirus C provided by the respective NCBI
query.

Specifically, in Figure S13 we have mapped the local similarity of the Human adenovirus C relatively to

the Denisova and we have found, besides several regions of similarity distributed along the viral sequence,

strong similarity concentrated in three genes of the adenovirus, namely L1 (2652993), L2 (265996) and the
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beginning of L3 (2652998).

The Human Adenovirus C cause roughly 5% of symptomatic upper respiratory tract and 15% of lower

respiratory tract infections in children younger than 5 years [66]. Moreover, species C viruses display

prolonged fecal excretion for months, and even years, after the virus is no longer detected in nasopharyngeal

washings [67].

Therefore, the identification of a virus similar to the Human Adenovirus C might indicate that the

Denisova individual was a young child. However, since the virus may persist for some years, the Denisova

may had a few more years. This genetic insights are according to the Denisova bone analysis. Specifically,

the bone growth plates and size led to a prediction of an age between 6 and 13.5 years [68].



Note 11: Ancient pathogens authentication

The first aDNA sequences started to appear in the mid-1990s, mainly using mitochondrial DNA (mtDNA)

from a Neanderthal bone [69]. After several years of advances in sequencing technology and in anti-

contamination protocols, the first full high coverage ancient genomes of a Neanderthal [60] and a Denisova

[62] were made available. Other ancient genomes have also been sequenced, such as Tyrolean’s iceman [70],

Egyptian mummies [71], Columbian mammoth [63], among others. Moreover, new projects addressing this

matter are currently on the way and many more are expected in a near future [72].

DNA extracted from ancient samples may contain information beyond genomic data from the individual

[73]. In fact, it has also been shown to harbor preserved signatures of bacteria or archaea, possibly hosted

before the ancient individual’s death [74, 75, 76, 40].

After the identification of the metagenomic composition by FALCON, there is the need to classify each

genome regarding age, for proper authentication of the ancient ones. Most of the genomes come from

present-day’s contamination, while just a few come from ancient-days. Next, we describe a procedure to

authenticate ancient DNA.

Authentication procedure

Ancient genomes reveal several specific characteristics, namely DNA pattern damages [77, 78]. These

patterns are: short sequence length, an excess of cytosine to thymine (C-to-T) misincorporations at 5’

ends of sequences, complementary guanine to adenine (G-to-A) misincorporations at 3’-termini and an

excess of purines at the genomic coordinate located just before the sequencing starts, indicative of post-

mortem depurination, followed by strand fragmentation [77]. Therefore, when the sequences from each

genome reveal some of these characteristics, the genome is authenticated as ancient [79].

For this purpose, we need to identify which genomes have patterns of damage. We follow the pipeline

provided in Figure S14, based on the steps of inference, aligning and classification of pattern damage.

For the measurement and classification of pattern damage there are already available tools, namely

mapDamage [79, 80] and PMDTools [81]. However, they rely on prior alignments.

The aligning of the filtered reads against the reference micro genome may be performed using BOWTIE

[53] or BWA [44]. However, for aligning efficiently, the parameters should be properly set to ancient data

[41], namely turning off the seeding option, allowing more substitutions and gaps, and setting relaxed

thresholds (BWA example: “-I 0 -O 2 -N 0.02 -L 1024 -E 7”).

Assume that, with FALCON, we have found an Escherichia coli (EC) with high similarity relatively
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Figure S14: A pipeline for ancient pathogen authentication and reconstruction. The program BOWTIE and BWA enables to map
the reads with similarity relatively to a refrence, while the MAPDAMAGE and PMDTOOLS enables to measure the pattern damage of
the mapped reads.

to the ancient reads (AR). For aligning the reads with BWA, we use:

bwa index EC.fa

bwa mem -t 8 -I 0 -O 2 -N 0.02 -L 1024 -E 7 EC.fa AR.fq > F-PA -OUT.sam

samtools view -Shb F-EC -OUT.sam > F-EC -OUT.bam

samtools view -b -F4 F-EC-OUT.bam > FIL -EC.bam

After, the aligned reads are analysed according to the reference micro genome for finding pattern

damages using, for example, MAPDAMAGE [79] or PMDTOOLS [81]. Only the ones having characteristics

of pattern damage are authenticated as ancient, and further reconstructed [82]. In the case of using

MAPDAMAGE [79], after aligning the reads, we run:

mapDamage -i FIL -EC.bam -r EC.fa

A few new microbial genomes have already been reconstructed, such as an archaeal genome of the

Methanobrevibacter oralis Neanderthalensis [40]. The reconstruction of the ancient microbial genomes is

also a very complex computational challenge. For this purpose, some alignment-based methods have been

proposed [83, 84].

Ancient Pseudomonas authentication

From the composition analysis of the Mammoth mitogenome (Figure S10), we used the first two Pseu-

domonas to classify them regarding age using MAPDAMAGE. The two Pseudomonas with the highest

NRS are P. antarctica PAMC 27494 [85] and P. fluorescens F113 [86] having genomes with about 6.5 MB

of size. The P. antarctica has been collected in Antarctica: Barton Peninsula, King George Island, in fresh

water (2014.01.19). Its GC content is about 59.8%. The Pseudomonas fluorescens F113 has been isolated

from the sugar-beet rhizosphere in Ireland [87]. Its GC content is about 60.8%.
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The commands used in the authentication of the P. antarctica, were

bwa index PA.fa

bwa mem -t 8 -I 0 -O 2 -N 0.02 -L 1024 -E 7 PA.fa c_2_sequence12.txt > F-PA -OUT.sam

samtools view -Shb F-PA -OUT.sam > F-PA -OUT.bam

samtools view -b -F4 F-PA-OUT.bam > FIL -PA.bam

mapDamage -i FIL -PA.bam -r PA.fa;

while for P. fluorescens, were

bwa index PF.fa

bwa mem -t 8 -I 0 -O 2 -N 0.02 -L 1024 -E 7 PF.fa c_2_sequence12.txt > F-PF -OUT.sam

samtools view -Shb F-PF -OUT.sam > F-PF -OUT.bam

samtools view -b -F4 F-PF-OUT.bam > FIL -PF.bam

mapDamage -i FIL -PF.bam -r PF.fa;

The output of MAPDAMAGE for P. antarctica is depicted is in Figure S15, while for P. fluorescens in

Figure S16. As it can be seen, both patterns of damage are very similar, mostly because the P. fluorescens

and P. antarctica share 40.4314 % of similarity, according to the NCBI. In both maps, the frequency of

the substitutions (C-to-T and A-to-G) increase in the tips of the reads, showing moderate levels of pattern

damage.

There are two reasons for a moderate frequency of damage. The first one is given by the high presence

of GC content, while the second by the lack of similarity between the reference sequence with the ancient

Pseudomonas. From Figure S10-b, we are able to see that, although the ancient reads match the references

in almost 20 %, it has a distribution without being concentrated in a single or in a small number of regions

(Figure S10-c). This means that the alignment methods are not so efficient as FALCON while mapping

similarity, and, therefore, some of the reads might not have been mapped efficiently, partially influencing

the authentication.

Dismissal of correlation between mtDNA and bacterial DNA

The works of Lynn Margulis in the 1960s, attempted to explain the origins of eukaryotic cell organelles such

as mitochondria and chloroplasts. Other authors supported the theory, mostly describing the evolution of

the mitochondria [88, 89].

In order to dismiss correlation between the mtDNA of the Mammoth and bacterial DNA of the P.

antarctica, we compress them relatively to each other. Moreover, we added the mtDNA of the African

savanna elephant (as a control). Any relative similarity between the Mammoth mtDNA and the bacterial

DNA may show a false positive ancient authentication. To assess this possibility, we have manually down-

loaded the assembled version of the Mammoth mtDNA from https://www.ncbi.nlm.nih.gov/nuccore/

333236151?report=fasta. Then, we have renamed the file to Mammoth.fa.

For estimation of the relative similarity, we used the state-of-the-art DNA compressor (GeCo [25]). To

install GeCo, we ran the following:
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Figure S15: Patterns of damage in the reads aligned with the P. antarctica reference genome. The tool used was MAPDAMAGE v2.

git clone https :// github.com/pratas/geco.git

cd geco/src/

cmake .

make

Then, we ran the following

# Download

wget ftp :// ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Pseudomonas_antarctica/all_assembly_vers

ions/GCF_001647715 .1 _ASM164771v1/GCF_001647715 .1 _ASM164771v1_genomic.fna.gz

# Uncompress and Parsing

gunzip GCF_001647715 .1 _ASM164771v1_genomic.fna.gz

mv GCF_001647715 .1 _ASM164771v1_genomic.fna PA.fa

cat PA.fa | grep -v ">" | tr -d -c "ACGT" > PA.dna

cat Elephant.fa | grep -v ">" | tr -d -c "ACGT" > Elephant.dna

cat Mammoth.fa | grep -v ">" | tr -d -c "ACGT" > Mammoth.dna

# Run compression

./GeCo -rm 6:10:0:0/0 -rm 11:20:1:0/0 -rm 14:500:1:3/100 -r Elephant.dna PA.dna

./GeCo -rm 6:10:0:0/0 -rm 11:20:1:0/0 -rm 14:500:1:3/100 -r PA.dna Elephant.dna
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Figure S16: Patterns of damage in the reads aligned with the P. fluorescens reference genome. The tool used was MAPDAMAGE
v2.

./GeCo -rm 6:10:0:0/0 -rm 11:20:1:0/0 -rm 14:500:1:3/100 -r Mammoth.dna PA.dna

./GeCo -rm 6:10:0:0/0 -rm 11:20:1:0/0 -rm 14:500:1:3/100 -r PA.dna Mammoth.dna

that resulted in:

Reference: Elephant.dna , Target: PA.dna

Total bytes: 1619467 (1.5 MB), 2.011 bpb , Normalized Dissimilarity Rate: 1.00565

#

Reference: PA.dna , Target: Elephant.dna

Total bytes: 4423 (4.3 KB), 2.098 bpb , Normalized Dissimilarity Rate: 1.04897

#

Reference: Mammoth.dna , Target: PA.dna

Total bytes: 1654921 (1.6 MB), 2.004 bpb , Normalized Dissimilarity Rate: 1.00191

#

Reference: PA.dna , Target: Mammoth.dna

Total bytes: 4295 (4.2 KB), 2.089 bpb , Normalized Dissimilarity Rate: 1.04444

As it can be seen, the relative similarity of the P. antarctica reference genome relatively to the Mammoth

or Elephant, and vice-versa, is null according to the compressor GeCo (Normalized Dissimilarity Rate
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>= 1 means maximum statistical dissimilarity). Therefore, this supports the possibility of a true positive

ancient authentication, given the absense of correlation between the mtDNA and the bacterial DNA.



Note 12: Software availability and characteristics

All source codes for FALCON are available at:

• https://github.com/pratas/falcon;

• https://pratas.github.io/falcon (secondary link);

To install the complete package, run:

git clone https :// github.com/pratas/falcon.git

cd falcon/src/

cmake .

make

FALCON includes the following programs:

1. FALCON - infers metagenomic composition;

2. FALCON-FILTER - filters local relative similarity of inferred sequences;

3. FALCON-EYE - displays the output from FALCON and FALCON-FILTER in a compact map;

For a common pipeline using these programs see Supplementary Note 2.
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FALCON program

The FALCON program enables to identify and quantify the relative similarity between (usually extant)

reference sequences and the FASTQ reads from ancient genomes. For secure encryption of the FASTA and

FASTQ files, use CRYFA [90]. In the following subsections, we explain the input and output parameters.

Input parameters

The FALCON program needs two files for the computation. The FILE1, with the reads provided from

the NGS platform, and the FILE2, with the multi-FASTA cointaining the sequences of the genomes and

respective headers. These parameters are mandatory arguments. The rest of the parameters are not

mandatory.

Usage: FALCON [OPTION ]... [FILE1] [FILE2]

A compression -based method to infer metagenomic sample composition.

Non -mandatory arguments:

-h give this help ,

-F force mode (overwrites top file),

-V display version number ,

-v verbose mode (more information),

-Z database local similarity ,

-s show compression levels ,

-l <level > compression level [1;44] ,

-p <sample > subsampling (default: 1),

-t <top > top of similarity (default: 20),

-n <nThreads > number of threads (default: 2),

-x <FILE > similarity top filename ,

-y <FILE > local similarities filename ,

Mandatory arguments:

[FILE1] metagenomic filename (FASTA or FASTQ),

[FILE2] database filename (FASTA or Multi -FASTA ).

There are two hidden parameters. One for setting the cache size:

-c <cache > maximum collisions for hash cache. Memory

values are higly dependent of the parameter

specification.

This is a parameter that affects the precision and computational resources needed for the computation.

Lower values use less memory. For a complete description see [25, 65]. The previous parameter is only

needed when the context of the Markov model is higher than 13. For setting, specifically, the models through

the command line, use the following explanation (more information can be found at [25, 65]):
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-m <c>:<d>:<i>:<m/e> context (Markov) model (ex:-m 13:100:0:0/0) ,

-m <c>:<d>:<i>:<m/e> context (Markov) model (ex:-m 18:1000:1:1/500) ,

...

templates use <c> for context -order size , <d> for

alpha (1/<d>), <i> (0 or 1) to set the usage of

inverted repeats (1 to use) and <m> to the

maximum allowed mutation on the context without

being discarded (usefull in deep contexts), under

the estimator <e>.

Although the models might be set directly from the command line, we have already set 44 levels with

multiple combinations of models and memory caches. These levels are the following:

Level 1: -m 12:20:0:0/0

Level 2: -m 12:20:1:0/0

Level 3: -m 13:50:0:0/0

Level 4: -m 13:50:1:0/0

Level 5: -m 14:100:0:0/0

Level 6: -m 14:100:1:0/0

Level 7: -m 14:100:1:1/20

Level 8: -m 18:200:0:1/50 -c 10 -g 0.9

Level 9: -m 18:200:1:1/50 -c 10 -g 0.9

Level 10: -m 18:200:1:1/50 -c 20 -g 0.9

Level 11: -m 18:200:1:1/50 -c 30 -g 0.9

Level 12: -m 18:200:1:1/50 -c 40 -g 0.9

Level 13: -m 20:500:1:1/100 -c 10 -g 0.9

Level 14: -m 20:500:1:1/100 -c 20 -g 0.9

Level 15: -m 20:500:1:1/100 -c 30 -g 0.9

Level 16: -m 20:500:1:1/100 -c 40 -g 0.9

Level 17: -m 20:500:1:1/100 -c 50 -g 0.9

Level 18: -m 20:500:1:2/50 -c 50 -g 0.9

Level 19: -m 20:500:1:2/50 -m 13:100:1:0/0 -c 30 -g 0.9

Level 20: -m 20:500:1:1/100 -m 13:100:1:0/0 -c 35 -g 0.9

Level 21: -m 20:500:1:1/100 -m 13:100:1:0/0 -c 40 -g 0.9

Level 22: -m 20:500:1:1/100 -m 13:100:1:0/0 -c 45 -g 0.9

Level 23: -m 20:500:1:1/100 -m 14:100:1:0/0 -c 20 -g 0.9

Level 24: -m 20:500:1:1/100 -m 14:100:1:0/0 -c 25 -g 0.9

Level 25: -m 20:500:1:1/100 -m 14:100:1:0/0 -c 30 -g 0.9

Level 26: -m 20:500:1:1/100 -m 14:100:1:0/0 -c 35 -g 0.9

Level 27: -m 20:500:1:1/100 -m 14:100:1:0/0 -c 40 -g 0.9

Level 28: -m 20:500:1:1/100 -m 14:100:1:0/0 -c 45 -g 0.9

Level 29: -m 20:500:1:1/100 -m 14:100:1:0/0 -c 50 -g 0.9

Level 30: -m 20:500:1:1/100 -m 14:100:1:0/0 -c 60 -g 0.9

Level 31: -m 20:500:1:1/100 -m 14:100:1:0/0 -c 70 -g 0.9

Level 32: -m 20:500:1:1/100 -m 14:100:1:0/0 -m 12:1:0:0/0 -m 8:1:0:0/0 -c 30

Level 33: -m 20:500:1:1/100 -m 14:100:1:0/0 -m 12:1:0:0/0 -m 8:1:0:0/0 -c 40

Level 34: -m 20:500:1:1/100 -m 14:100:1:0/0 -m 12:1:0:0/0 -m 8:1:0:0/0 -c 50

Level 35: -m 20:500:1:1/100 -m 14:100:1:0/0 -m 12:1:0:0/0 -m 8:1:0:0/0 -m 4:1:0:0/0 -c 50

Level 36: -m 20:500:1:3/20 -m 14:100:1:0/0 -m 12:1:0:0/0 -c 50 -g 0.95

Level 37: -m 20:500:1:3/20 -m 14:100:1:0/0 -c 50 -g 0.95

Level 38: -m 20:500:1:3/20 -m 14:100:1:0/0 -c 70 -g 0.95

Level 39: -m 20:500:1:3/20 -c 50 -g 0.95

Level 40: -m 14:50:1:1/10
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Level 41: -m 8:1:0:0/0 -m 14:50:1:0/0

Level 42: -m 4:1:0:0/0 -m 14:50:1:0/0

Level 43: -m 6:1:0:0/0 -m 14:50:1:0/0

Level 44: -m 11:1:0:0/0 -m 14:50:1:0/0

Output

The output of the FALCON program are two files. One file contains the top-n values with the highest

similarity relatively to the reads. The following output shows an example of a top-5:

1 9472 92.597 548558394 Human endogenous retrovirus K113

2 4668621 42.184 1069460419 Escherichia coli strain 210221272

3 4558287 42.016 1008930592 Shigella sp. PAMC 28760

4 4574246 36.661 844762407 Shigella boydii strain ATCC 9210

5 4878853 36.531 992379426 Shigella sonnei strain FDAARGOS 90

These column values stand for the ranking of higher similarity, the sequence size, the percentage of simi-

larity, the global identifyer (GI) and the name of the FASTA read (genome name), respectively.

The other file contains the relative local similarities (in a compressed format) and it is only available

when FALCON runs with the “-Z” flag. This file is the input of the FALCON-FILTER program that we

will describe later. This file is packed in a compact format in order to not increase the storage, substantially.

FALCON-FILTER program

The FALCON-FILTER program enables to identify and quantify where the relative similarity between

(extant) reference genomes and the FASTQ reads from ancient genomes, below a certain threshold, occurs.

In the following subsections, we explain the input and output paramters.

Input parameters

The FALCON-FILTER program needs only one file for the computation. The file is provided from the

output of the FALCON program (when the flag “-Z” is set on the FALCON program). The non-mandatory

arguments are mostly to parameterize filters and the threshold options.

Usage: FALCON -FILTER [OPTION ]... [FILE]

Filter and segment FALCON output.

Non -mandatory arguments:

-h give this help ,

-F force mode (overwrites top file),

-V display version number ,

-v verbose mode (more information),

-s <size > filter window size ,

-w <type > filter window type ,

-x <sampling > filter window sampling ,



44

-sl <lower > similarity lower bound ,

-su <upper > similarity upper bound ,

-dl <lower > size lower bound ,

-du <upper > size upper bound ,

-t <threshold > threshold [0;2.0] ,

-o <FILE > output filename ,

Mandatory arguments:

[FILE] profile filename (from FALCON ).

Output

The output of the file contains the coordinates of the relative similar regions with the respective self-

similarity classification.

FALCON-EYE program

The FALCON-EYE program enables to vizualise both results from the computation of FALCON and

FALCON-FILTER. It creates a vectorial image (SVG) with the respective information. In the following

subsections, we explain the input and output parameters.

Input parameters

The mandatory input of the FALCON-EYE program is provided by the output of the FALCON-FILTER

program. The non-mandatory parameters are mainly related with the shape, colors and disposal of the

image output.

Usage: FALCON -EYE [OPTION ]... [FILE]

Visualize FALCON -FILTER output.

Non -mandatory arguments:

-h give this help ,

-F force mode (overwrites top file),

-V display version number ,

-v verbose mode (more information),

-w <width > square width (for each value),

-s <ispace > square inter -space (between each value),

-i <indexs > color index start ,

-r <indexr > color index rotations ,

-u <hue > color hue ,

-sl <lower > similarity lower bound ,

-su <upper > similarity upper bound ,

-dl <lower > size lower bound ,

-du <upper > size upper bound ,

-bg show only the best of group ,

-g <color > color gamma ,

-e <size > enlarge painted regions ,
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-ss do NOT show global scale ,

-sn do NOT show names ,

-o <FILE > output image filename ,

Mandatory arguments:

[FILE] profile filename (from FALCON -FILTER ).

Output

The output is an image with a summary of all the computations from the programs FALCON, FALCON-

FILTER and FALCON-EYE. According to Figure S17, the image is mainly divided in two regions A and

B. The region A stands for the Normalized Relative Similarity (NRS) of the reference genomes relatively

to the ancient reads, while the B stands for the local relative similarity (Supplementary Note 10)

classification of regions with high Normalized Relative Similarity below a certain threshold provided from

A.
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A1

B1

B2

A2

A3A3

Figure S17: FALCON-EYE image output. A) Normalized Relative Similarity (NRS) of the reference genomes relatively to the ancient
reads. A1) NRS scale, where “-” and “+” stand for lower and higer NRS values, respectively. A2) names (and GIs) of each reference
genome (provided in the FASTA file). A3) NRS values and corresponding colors according to the scale. B) local relative similarity
(Supplementary Note 10) classification of regions with high Normalized Relative Similarity provided from A). B1) local similarity
scale where “-” stands for high complex regions, while “+” for very repetitive regions. B2) local similarity classification along the sequence
ordered from the top to the bottom.
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