Supplementary Information: Flexible Learning-Free Segmentation and Reconstruction for Sparse Neuronal Circuit Tracing

Ali Shahbazi1,+, Jeffery Kinnison1,2,+, Rafael Vescovi2,3, Ming Du4, Robert Hill5, Maximilian Jösch6, Marc Takeno7, Hongkui Zeng7, Nuno Maçarico da Costa7, Jaime Grutzendler5, Narayanan Kasthuri2,3, and Walter J. Scheirer1,*

1Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
2Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
3Department of Neurobiology, University of Chicago, Chicago, IL, USA
4Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
5Department of Neurology, Yale University, New Haven, CT, USA
6Neuroethology Group, IST Austria, Klosterneuburg, Austria
7Allen Institute for Brain Science, Seattle, WA, USA
*walter.scheirer@nd.edu
+These authors contributed equally to this work.

ABSTRACT

This document contains all supplemental figures and methods descriptions.

Supplementary Methods: Evaluation Metrics

In our experiments we compared our EM reconstructions and one of our \(\mu\)CT X-ray stacks against expert annotated ground-truth. Since 3D reconstruction is the goal of the work, we chose Hausdorff distance as an evaluation tool. It is a well-known evaluation method for 3D meshes and reconstructions1. Instead of one-by-one matching as is done when calculating variation of information, which checks the location of each point on the first model with a similar location on second model, Hausdorff distance considers many-to-many correspondence. Consider a 3D reconstruction \(A\) and corresponding 3D ground-truth \(B\):

\[
A = \{a_1, a_2, \ldots, a_n\} \quad \text{and} \quad B = \{b_1, b_2, \ldots, b_n\}.
\]

The Hausdorff distance from \(A\) to \(B\) will be \(\hat{\delta}_H(A,B) = \max_{a \in A} \min_{b \in B} \|a - b\|\).

Throughout this article, we use the convention \(A\) is \(1/1000\) of the distance of \(B\). Thus when we say \(A\) is in \(1/1000\) of the distance of \(B\), this means the average distance between \(A\) and \(B\) is less than 0.001.

Supplementary Methods: 3D U-Net Training

For \(\mu\)CT X-ray segmentation, a standard 3D U-Net model2 was trained on the manual segmentation of the SRB dataset3, which consists of a 300 \(\times\) 300 \(\times\) 100 voxel volume. Due to memory constraints, each training batch consisted of a single 256 \(\times\) 256 \(\times\) 19 block augmented by randomized rotation, transpose, and grayscale intensity scaling. The model was trained for 60 epochs using weighted mean-squared error loss and the Adam optimizer4 with a learning rate of \(1 \times 10^{-4}\). Training for \(sSEM\) APEX2-positive SAC segmentation proceeded using the same protocol, however the model was trained on manual segmentations created by Jösch \textit{et al.}5.

Supplementary Table S 1. Running time comparison to the previous version of the pipeline5.

<table>
<thead>
<tr>
<th>Method</th>
<th>Running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jösch \textit{et al.}5</td>
<td>136 min</td>
</tr>
<tr>
<td>2D FLoRIN</td>
<td>24.82 min</td>
</tr>
<tr>
<td>3D U-Net</td>
<td>3559.3 min</td>
</tr>
</tbody>
</table>
Supplementary Figure S 1. The 2D Identification process in FLoRIN first registers all connected components discovered in the Identification stage into a single plane. Connections are preserved by connecting components that overlap with one another in 2D, and unconnected components are discarded. The remaining components are then placed into a 3D volume.

Supplementary Figure S 2. A comparison of the performance of global versus local thresholding methods on a noisy image. (Left) Neural images are often subject to large shifts in the grayscale distribution that can hamper reconstruction efforts. (Center) Otsu’s method\(^6\) binarizes images using a global threshold value, however due to grayscale shifts the binarization includes large portions of the image background. (Right) Our LAT algorithm operates by observing a local neighborhood around each voxel to reduce the impact of distant noise. In this case, LAT captures more of the features of interest despite large grayscale shifts.

References

Supplementary Figure S 3. A comparison of SRB (A) manual annotations, (B) 3D U-Net cell segmentation, and (C) 3D FLoRIN cell segmentation. In general, 3D U-Net tends to over-segment the cells, incurring merge errors with nearby cells and on correctly identifying a vasculature segment as a cell. 3D FLoRIN, on the other hand, clearly separates grouped cells and does not misclassify vasculature.
Data: img: an n-dimensional image to threshold
Data: n: the dimensionality of img
Data: d: an n-tuple containing the size of each dimension of img
Data: s: an n-tuple containing the dimensions of the box around each pixel
Data: t: the threshold value to use, number in range [0, 1]
Result: binarization of img

let out be an array the same size as img;
intImg = img;
for i in 1..n do
 // Compute the cumulative summation over dimension i
 intImg = cumulativeSummation(intImg, i);
end

let low, hi, vertex be length n arrays filled with zeros;
parity = n mod 2;
foreach element e in intImg do
 x = index(intImg, e);
 for i in 1..n do
 low[i] = x[i] - s[i] / 2;
 hi[i] = x[i] - s[i] / 2;
 if low[i] < 1 then
 low[i] = 0;
 end
 if hi[i] > d[i] then
 hi[i] = d[i];
 end
 end
 count = Π^n_i=1 hi[i] - low[i];
 sum = 0;
 foreach idx in indices do
 p = 0;
 for i in 1..n do
 p = p + idx[i];
 if idx[i] = 1 then
 vertex[i] = hi[i];
 else
 vertex[i] = low[i];
 end
 end
 p = p mod 2;
 if p = parity then
 sum = sum + intImg[vertex];
 else
 sum = sum - intImg[vertex];
 end
 end
 if img[x] × count ≤ sum × (1.0 - t) then
 out[x] = 0;
 else
 out[x] = 1;
 end
end
return out

Algorithm 1: Local Adaptive Thresholding