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ABSTRACT

This document contains all supplemental figures and methods descriptions.

Supplementary Methods: Evaluation Metrics
In our experiments we compared our EM reconstructions and one of our µCT X-ray stacks against expert annotated ground-
truth. Since 3D reconstruction is the goal of the work, we chose Hausdorff distance as an evaluation tool. It is a well-known
evaluation method for 3D meshes and reconstructions1. Instead of one-by-one matching as is done when calculating variation
of information, which checks the location of each point on the first model with a similar location on second model, Hausdorff
distance considers many-to-many correspondence. Consider a 3D reconstruction A and corresponding 3D ground-truth B:
A = {a1,a2, ...,an} and B = {b1,b2, ...,bn}. The Hausdorff distance from A to B will be δ̃H(A,B) = maxa∈Aminb∈B ‖a−b‖.
Throughout this article, we use the convention A is in X/Y of the distance of B. Thus when we say A is in 1/1000 of the distance
of B, this means the average distance between A and B is less than 0.001.

Supplementary Methods: 3D U-Net Training

For µCT X-ray segmentation, a standard 3D U-Net model2 was trained on the manual segmentation of the SRB dataset3,
which consists of a 300× 300× 100 voxel volume. Due to memory constraints, each training batch consisted of a single
256×256×19 block augmented by randomized rotation, transpose, and grayscale intensity scaling. The model was trained
for 60 epochs using weighted mean-squared error loss and the Adam optimizer4 with a learning rate of 1×10−4. Training
for sSEM APEX2-positive SAC segmentation proceeded using the same protocol, however the model was trained on manual
segmentations created by Jösch et al.5.

Supplementary Table S 1. Running time comparison to the previous version of the pipeline5.
Method Running time

Jösch et al. 5 136 min
2D FLoRIN 24.82 min

3D U-Net 3559.3 min
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Supplementary Figure S 1. The 2D Identification process in FLoRIN first registers all connected components discovered in
the Identification stage into a single plane. Connections are preserved by connecting components that overlap with one another
in 2D, and unconnected components are discarded. The remaining components are then placed into a 3D volume.

Supplementary Figure S 2. A comparison of the performance of global versus local thresholding methods on a noisy image.
(Left) Neural images are often subject to large shifts in the grayscale distribution that can hamper reconstruction efforts.
(Center) Otsu’s method6 binarizes images using a global threshold value, however due to grayscale shifts the binarization
includes large portions of the image background. (Right) Our LAT algorithm operates by observing a local neighborhood
around each voxel to reduce the impact of distant noise. In this case, LAT captures more of the features of interest despite large
grayscale shifts.
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Supplementary Figure S 3. A comparison of SRB (A) manual annotations, (B) 3D U-Net cell segmentation, and (C) 3D
FLoRIN cell segmentation. In general, 3D U-Net tends to over-segment the cells, incurring merge errors with nearby cells and
on correctly identifying a vasculature segment as a cell. 3D FLoRIN, on the other hand, clearly separates grouped cells and
does not misclassify vasculature.
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Data: img: an n-dimensional image to threshold
Data: n: the dimensionality of img
Data: d: an n-tuple containing the size of each dimension of img
Data: s: an n-tuple containing the dimensions of the box around each pixel
Data: t: the threshold value to use, number in range [0,1]
Result: binarization of img
let out be an array the same size as img;
intImg = img;
for i in 1..n do

// Compute the cumulative summation over dimension i
intImg = cumulativeSummation(intImg, i);

end
let indices be the set of all binary strings length n;
let low, hi, vertex be length n arrays filled with zeros;
parity = n mod 2;
foreach element e in intImg do

x = index(intImg, e);
for i in 1..n do

low[i] = x[i] - s[i] / 2;
hi[i] = x[i] - s[i] / 2;
if low[i] < 1 then

low[i] = 0;
end
if hi[i] > d[i] then

hi[i] = d[i];
end

end
count = ∏

n
i=1 hi[i]− low[i];

sum = 0;
foreach idx in indices do

p = 0;
for i in 1..n do

p = p + idx[i];
if idx[i] = 1 then

vertex[i] = hi[i];
else

vertex[i] = low[i];
end

end
p = p mod 2;
if p = parity then

sum = sum + intImg[vertex];
else

sum = sum - intImg[vertex];
end

end
if img[x] × count ≤ sum × (1.0 - t) then

out[x] = 0;
else

out[x] = 1;
end

end
return out

Algorithm 1: Local Adaptive Thresholding
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