
Supplementary Information: Flexible Learning-Free
Segmentation and Reconstruction for Sparse
Neuronal Circuit Tracing
Ali Shahbazi1,+, Jeffery Kinnison1,2,+, Rafael Vescovi2,3, Ming Du4, Robert Hill5,
Maximilian Jösch6, Marc Takeno7, Hongkui Zeng7, Nuno Maçarico da Costa7, Jaime
Grutzendler5, Narayanan Kasthuri2,3, and Walter J. Scheirer1,*

1Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
2Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
3Department of Neurobiology, University of Chicago, Chicago, IL, USA
4Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
5Department of Neurology, Yale University, New Haven, CT, USA
6Neuroethology Group, IST Austria, Klosterneuburg, Austria
7Allen Institute for Brain Science, Seattle, WA, USA
*walter.scheirer@nd.edu
+These authors contributed equally to this work.

ABSTRACT

This document contains all supplemental figures and methods descriptions.

Supplementary Methods: Evaluation Metrics
In our experiments we compared our EM reconstructions and one of our µCT X-ray stacks against expert annotated ground-
truth. Since 3D reconstruction is the goal of the work, we chose Hausdorff distance as an evaluation tool. It is a well-known
evaluation method for 3D meshes and reconstructions1. Instead of one-by-one matching as is done when calculating variation
of information, which checks the location of each point on the first model with a similar location on second model, Hausdorff
distance considers many-to-many correspondence. Consider a 3D reconstruction A and corresponding 3D ground-truth B:
A = {a1,a2, ...,an} and B = {b1,b2, ...,bn}. The Hausdorff distance from A to B will be δ̃H(A,B) = maxa∈Aminb∈B ‖a−b‖.
Throughout this article, we use the convention A is in X/Y of the distance of B. Thus when we say A is in 1/1000 of the distance
of B, this means the average distance between A and B is less than 0.001.

Supplementary Methods: 3D U-Net Training

For µCT X-ray segmentation, a standard 3D U-Net model2 was trained on the manual segmentation of the SRB dataset3,
which consists of a 300× 300× 100 voxel volume. Due to memory constraints, each training batch consisted of a single
256×256×19 block augmented by randomized rotation, transpose, and grayscale intensity scaling. The model was trained
for 60 epochs using weighted mean-squared error loss and the Adam optimizer4 with a learning rate of 1×10−4. Training
for sSEM APEX2-positive SAC segmentation proceeded using the same protocol, however the model was trained on manual
segmentations created by Jösch et al.5.

Supplementary Table S 1. Running time comparison to the previous version of the pipeline5.
Method Running time

Jösch et al. 5 136 min
2D FLoRIN 24.82 min

3D U-Net 3559.3 min

1



Supplementary Figure S 1. The 2D Identification process in FLoRIN first registers all connected components discovered in
the Identification stage into a single plane. Connections are preserved by connecting components that overlap with one another
in 2D, and unconnected components are discarded. The remaining components are then placed into a 3D volume.

Supplementary Figure S 2. A comparison of the performance of global versus local thresholding methods on a noisy image.
(Left) Neural images are often subject to large shifts in the grayscale distribution that can hamper reconstruction efforts.
(Center) Otsu’s method6 binarizes images using a global threshold value, however due to grayscale shifts the binarization
includes large portions of the image background. (Right) Our LAT algorithm operates by observing a local neighborhood
around each voxel to reduce the impact of distant noise. In this case, LAT captures more of the features of interest despite large
grayscale shifts.

References
1. Aspert, N., Santa-Cruz, D. & Ebrahimi, T. Mesh: Measuring errors between surfaces using the hausdorff distance. In

Multimedia and Expo, 2002. ICME’02. Proceedings. 2002 IEEE International Conference on, vol. 1, 705–708 (IEEE, 2002).

2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. 3d u-net: learning dense volumetric segmentation
from sparse annotation. In International Conference on Medical Image Computing and Computer-Assisted Intervention,
424–432 (Springer, 2016).

3. Dyer, E. L. et al. Quantifying mesoscale neuroanatomy using x-ray microtomography. eNeuro 4, ENEURO–0195 (2017).

4. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).

5. Joesch, M. et al. Reconstruction of genetically identified neurons imaged by serial-section electron microscopy. eLife 5,
e15015 (2016).

6. Otsu, N. A threshold selection method from gray-level histograms. IEEE Transactions on Syst. Man, Cybern. 9, 62–66
(1979).

2/4



Supplementary Figure S 3. A comparison of SRB (A) manual annotations, (B) 3D U-Net cell segmentation, and (C) 3D
FLoRIN cell segmentation. In general, 3D U-Net tends to over-segment the cells, incurring merge errors with nearby cells and
on correctly identifying a vasculature segment as a cell. 3D FLoRIN, on the other hand, clearly separates grouped cells and
does not misclassify vasculature.

3/4



Data: img: an n-dimensional image to threshold
Data: n: the dimensionality of img
Data: d: an n-tuple containing the size of each dimension of img
Data: s: an n-tuple containing the dimensions of the box around each pixel
Data: t: the threshold value to use, number in range [0,1]
Result: binarization of img
let out be an array the same size as img;
intImg = img;
for i in 1..n do

// Compute the cumulative summation over dimension i
intImg = cumulativeSummation(intImg, i);

end
let indices be the set of all binary strings length n;
let low, hi, vertex be length n arrays filled with zeros;
parity = n mod 2;
foreach element e in intImg do

x = index(intImg, e);
for i in 1..n do

low[i] = x[i] - s[i] / 2;
hi[i] = x[i] - s[i] / 2;
if low[i] < 1 then

low[i] = 0;
end
if hi[i] > d[i] then

hi[i] = d[i];
end

end
count = ∏

n
i=1 hi[i]− low[i];

sum = 0;
foreach idx in indices do

p = 0;
for i in 1..n do

p = p + idx[i];
if idx[i] = 1 then

vertex[i] = hi[i];
else

vertex[i] = low[i];
end

end
p = p mod 2;
if p = parity then

sum = sum + intImg[vertex];
else

sum = sum - intImg[vertex];
end

end
if img[x] × count ≤ sum × (1.0 - t) then

out[x] = 0;
else

out[x] = 1;
end

end
return out

Algorithm 1: Local Adaptive Thresholding

4/4


	References

