
ONLINE METHODS

PREPROCESSING OF FMRI IN A NUTSHELL
Head-motion correction (HMC). Functional MRI (fMRI) data are usually acquired with echo-planar
imaging (EPI) or other fast MR acquisition techniques in order to estimate the timecourse of blood
oxygenation signals. During that time, the blood-oxygen-level dependent (BOLD) signal is measured
at a pre-specified frequency called repetition time (TR), typically selected in a range of 300ms for the
fastest sequences and 3s for the legacy, traditional acquisitions. Even at the shortest TRs and scanning
the most cooperative participants, the position of the head with respect to the scanner will change to
some degree. Head motion occurs as a slow drift from the original position or suddenly when triggered,
for example, by swallowing, task responses or involuntary movements of both healthy and pathological
subjects. Motion causes a spatial misalignment in the source of the BOLD signal measured in all voxels
at a certain TR and its neighbors in the time-series. The effect is particularly noticeable at the brain
edges, where the signal may fall inside or outside the brain mask computed on the spatial average of the
time-series.

Susceptibility-derived distortion correction (SDC). Magnetic susceptibility of tissues locally disturbs
the 𝐵0 field. Even though the tissue susceptibility is quite homogeneous across the brain parenchyma,
those regions near air-filled cavities such as sinuses or the ear-canals may induce variations on the
field. In addition, one limitation of fast MR acquisitions like EPI is the reduced bandwidth on the
phase-encoding (PE) direction. The so-called susceptibility distortion renders as a warping along the PE
direction of the registered BOLD signal, and deformation is proportional in magnitude to the inhomo-
geneity of the field at that point in space. Several techniques to estimate the variance of the field that
induces the distortion have been proposed, such as field mapping techniques 1, the acquisition of several
reference images with different PE directions that allow for estimating the field map through intra-modal
image registration 2,3, using multi-modal image registration to a structural, “anatomically-correct” scan
of the same subject (e.g. a T2-weighted (T2w) image 4, a T1-weighted (T1w) image 5), or surface-driven
registration 6. Once the field map is estimated, the distortion can be computed 7 as a nonlinear map of
displacements along the PE direction (oftentimes called voxel-shift map).

Slice-timing correction (STC). The MR schemes commonly utilized to acquire BOLD signal work with
staggered scanning of 2D slices. Although all 2D slices are acquired very closely to one another, the
hemodynamic response is sampled at different points in time. This effect is alleviated but still present in
multi-band acquisitions that are able to acquire several 2D slices in parallel. To correct for slice timing
it is necessary to record the relative time each slice is registered with respect to the first one and fit the
hemodynamic response to then interpolate the signal at the reference TR 8. Slice timing effects interact
with head motion, raising the question of which one should be accounted for. Some correction methods
are able to tackle both issues simultaneously by merging both interpolation processes 9.

Intra-subject registration. Head motion also occurs between the acquisition of the different MR se-
quences defined in the protocol, especially when the experiment involves running different sessions. In
order to allow fusing information from the different runs in the protocol, an image registration process
between them is necessary. A further complication to the image registration process is the fact that the
different MR sequences utilized in the protocol pose a multi-modal registration problem.

Spatial normalization. In order to enable group comparisons, it is necessary to find a spatial map-
ping that aligns the subject-space into a common space, generally defined using an atlas. After spatial
normalization, the information given by the different images in subject-space (after all intra-subject reg-
istrations have been calculated) can be analyzed as if all the participants shared the same underlying
anatomy.

Surface sampling. Although most studies have analyzed fMRI analysis in the three-dimensional volume,
it is increasingly common to analyze the data on the cortical surface e.g. 10,11. The cortical surface of the
brain is reconstructed from the anatomical (T1w and optionally T2w) images. Using the alignment
described previously (intra-subject registration), these surfaces are mapped to the BOLD scan space and
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Figure S1. The overview of fMRIPrep’s workflow for functional preprocessing. The graph corresponding to the
BOLD processing workflow of a dataset with slice-time information, one of the possible choices of field maps and
surface reconstruction enabled in the anatomical processing branch (not shown in this graph representation). The
graph also shows that BOLD data will be resampled into both MNI space and the subject’s corresponding T1w space.

the signal is sampled at the vertices of the surface.

Other preprocessing elements. Other preprocessing tasks include the spatio-temporal smoothing of
the signal, the detection of spikes and their removal, the identification of non-steady state (strong T1
contrast) at the beginning of the time-series, frame scrubbing or censoring in resting-state fMRI, the
calculation of masks and regions-of-interest (ROIs), the calculation of confounds, etc. see 12,13.

THE PREPROCESSING WORKFLOW OF FMRIPREP
The general overview and details of processing are thoroughly documented

During the workflow set-up, fMRIPrep applies a set of heuristics to determine the appropriate pro-
cessing operations for the input dataset (see Main Document, Figure 1). All available sub-workflows
implementing individual processing steps that can be combined in the final processing pipeline are de-
scribed in the documentation website1. Figure S1 shows how the right-hand side of Figure 1 (Main
Document) translates into the pipeline graph, as implemented with Nipype.

Particular processing elements of fMRIPrep
Generating BOLD references for image registration. Although generating realignment and co-registration
references may seem like a clerical task, doing so reliably for any dataset is not trivial. FMRIPrep inte-
grates a BOLD reference generation workflow that adapts to the contrast of the input image. The work-
flow was tested to generate over ten thousand binary brain masks, of which two thousand were screened
to ensure they did not exclude extensive areas of the brain nor included substantial background volumes.
Figure S2 describes the workflow and provides further details on the generation of BOLD references.

Fieldmap-less susceptibility-derived distortion correction (SDC). This workflow takes a skull-stripped
T1w image and reference BOLD image, and estimates a field of displacements that compensates for the
warp caused by susceptibility distortion. The tool uses ANTs’ antsRegistration configured with sym-
metric normalization (SyN) to align a fieldmap template 18 and applies the template as prior information
to regularize a follow-up registration process. The follow-up registration process also uses antsRegis-

tration with SyN deformation, with displacements restricted to the PE direction. If no PE direction
is specified, anterior-posterior PE is assumed. Based on the fieldmap atlas, the displacement field is

1https://fmriprep.readthedocs.io/en/latest/workflows.html
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Figure S2. Left | Workflow for the generation of a BOLD reference. The input BOLD image is first validated and the xform information (q-form and
s-form matrices) are checked. Then, volumes with substantial T1 contrast derived from nonsteady states of the scanner (typically found in the beginning
of EPI schemes) are identified, realigned, and averaged to generate a reference (within the node labeled gen_ref). That reference is then
contrast-enhanced and a brain mask is calculated by the enhance_and_skullstrip_bold_wf workflow, presented on the right. Right | Workflow for
enhancement and skull-stripping of the BOLD reference. The reference undergoes several interim masking and contrast enhancement processes to
robustly find the outline of the brain from the BOLD average. The process involves the use of ANT’s N4BiasFieldCorrection14, FSL’s bet15, Nilearn’s
compute_epi_mask 16, AFNI’s 3dAutomask17, and in-house image enhancement heuristics.
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optimized only within regions that are expected to have a >3mm (approximately 1 voxel) warp. This
technique is a variation on previous work 5,19.

Organization of preprocessing results. The results from preprocessing with fMRIPrep follow the
“Derivatives Extension” of BIDS. BIDS-Derivatives is inspired by the original BIDS for raw data. Therefore,
results are sorted by subject in folders under the fmriprep/ folder. In each subject folder, two folders
contain the derivatives from processing the anatomical reference (under the anat/ folder) and the func-
tional data (func/ folder). Results are generally 3D or 4D brain data objects (represented with brain
icons in the filesystem tree of Figure S4). They also contain one “<derivative_prefix>_confounds.tsv”
corresponding to each fMRI run. These confounds files contain specific regressors for different noise
sources that can be included in analysis. The full description of fMRIPrep’s outputs is documented in
fmriprep.readthedocs.io/en/latest/outputs.html.

EVALUATION OF FMRIPREP
Iterative quality and robustness assurance
Data. Participants were drawn from a multiplicity of studies available in OpenfMRI, accessed on Septem-
ber 30, 2017. Studies were sampled uniformly (four participants each), except for DS000031 that con-
sists of only one participant. Data selection criteria are described below. Magnetic resonance imaging
(MRI) data were acquired at multiple scanning centers, with the following frequencies of vendors: ∼70%
SIEMENS, ∼14% PHILIPS, ∼14% GE. Data were acquired by 1.5T and 3T systems running varying soft-
ware versions. Acquisition protocols, as well as the particular acquisition parameters (including relevant
BOLD settings such as the TR, the TE, the number of TRs and the resolution) also varied with each
study. However, only datasets including at least one T1w and one BOLD per subject run were included.
Datasets containing BIDS errors (DS000210), and degenerate data (many T1w images of DS000223 are
skull-stripped) at the time of access were discarded. Similarly, very-narrow field-of-view (FoV) BOLD
datasets (DS000172, DS000217, and DS000232) were also excluded. In total, 54 datasets (46 single-
session datasets, 8 multi-session) were included in this assessment (Main Document, Table 2). Data
access, download and management were performed using datalad 21. The selection of OpenfMRI as the
data source ensures large heterogeneity in terms of acquisition protocols, settings, instruments and pa-
rameters that is necessary to demonstrate the robustness of fMRIPrep against the variability in input data
features. Main Document, Table 2 overviews the particular properties of each dataset, summarizing the
large heterogeneity of the resource.

Data coverage. Data coverage is a metric used in software engineering that measures the area that
a given test or test-set covers with respect to the full domain of possible input data. This evaluation
covered 54 studies out of a total of 58 studies in OpenfMRI that included the two required imaging
modalities (T1w and BOLD). Therefore, these tests covered 93% of the studies in OpenfMRI.

Methodology and test plan. To ensure that fMRIPrep fulfills the specifications on reliability and
scientific-software standards, the tool undergoes a thorough acceptance testing plan. The plan is struc-
tured in three phases: the first was aimed at the discovery of faults, the second at the evaluation of the
robustness, and the final phase at the full coverage of OpenfMRI. To note, an early test Phase 0 was
conducted as a proof of concept for the tool 22. During Phase I, a total of 120 subjects from 30 different
datasets were manually identified as low-quality using MRIQC 23. This sub-sample of OpenfMRI under-
went pre-processing in the Stampede2 supercomputer of the Texas Advanced Computer Center (TACC),
Austin, TX. Results were visually inspected and failures reported in the GitHub repository. Once the faults
were fixed, Phase II was launched. In this second phase, the coverage of OpenfMRI was extended to all
60 available datasets, 326 participants randomly (with replacement of the participants of the previous
phase) selecting four participants per dataset (except for the dataset with accession numbers ds000031,
which has a sample size of one). In Phase II, the inspection protocol was more thorough, as specified in
the Testing Plan document. Finally, with the submission of this work Phase III will be kicked-off. This
phase will end when the full coverage of OpenfMRI is reached.
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Additional acquisitions
with alternative PE
directions available?

Field-map acquisition
available?

"Fieldmap-less"
correction enabled?

"PE-Polar" SDC

A highly constrained nonlinear
registration process is used to map
images with opposing realizations of
distortion in an intermediate,
undistorted reference.

Direct field map estimation

Certain MR schemes allow for the
estimation of a field inhomogeneity
map, that can then be used to
calculate the displacement along the
PE each voxel has suffered.

"Fieldmap-less" SDC

The T1w image can be used as
"anatomically unwarped" reference.
The intensities of the T1w image are
inverted to maximize the similarity to
the T2* contrast of BOLD images.

Additional acquisitions
Extra acquisitions are generally included
within the imaging protocol to inform the
susceptibility distortion correction (SDC)
process.

Original BOLD image

BOLD data acquired with EPI schemes
typically present nonlinear distortions along
the phase-encoding (PE) axis.

Yes Yes

Low-frequency distortion

SDC compensates for the small
displacements across the brain
caused by the low-frequency
component of the map of field
inhomogeneity

Drop-out
Regions where higher frequency
components of the field map are
present are not, generally,
recoverable. As a result, signal is lost
and a considerable amount of
distortion may remain.

Figure S3. The overview of fMRIPrep’s workflow for susceptibility-derived distortion correction (SDC). The
BIDS 20 (Brain Imaging Data Structure) structure is hierarchically queried to discover whether extra acquisitions
containing field map information are available. The highest priority is given to the “PE-Polar” (phase-encoding
POLARity) approach. In this case, in addition to the BOLD time-series, an extra EPI image is acquired with all
parameters matching those of the BOLD data, except for the PE direction. Changing either the axis or (more often)
the polarity of the PE results in a different realization of the distortion. “PE-Polar” methods establish a highly
constrained registration framework between the two images of the same object with different distortions to estimate
the underlying field map. If extra EPI scans for “PE-Polar” approaches are not available, then fMRIPrep queries for
actual field mapping acquisitions. Typically, two gradient-recalled echoes can be acquired. Measuring the phase drift
between the two echoes, and knowing the time delta between them, it is possible to map the inhomogeneity of the
field. Once the field map is estimated, distortion is proportional to the inhomogeneity. In the last resort, when no
field map information was acquired, fMRIPrep may run the “fieldmap-less” correction option (when enabled). The
three methodologies will compensate for the low-frequency components of the distortion. However, current BOLD
acquisitions are very fast at the cost of accepting the complete deletion (drop-out) of signal in particular regions.
These regions are typically located around the orbitofrontal lobe (due to the proximity of the sinuses) and the
temporal lobes (near the ear canals).
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Figure S4. Example of the organization of fMRIPrep’s processing outcomes. The BIDS-Derivatives draft
describes how the results from preprocessing can be organized. In this figure, imaging data are represented with
brain icons, while additional text metadata and the visual reports are represented with a paper sheet.

Figure S5. Continuous Integration testing and deployment. Every code iteration adding features or fixing defects
triggers a battery of automated tests. The full documentation website is regenerated, some unit tests are performed
and fMRIPrep is also run on three datasets from OpenfMRI (i.e. DS000005, DS000054, and DS000210). In order to
ease the computational load on the continuous integration service, the three datasets were fixed for BIDS errors (in
particular DS000210), reduced to a single-participant and heavily down-sampled, after downloading from
OpenfMRI. The figure shows the current deployment workflow at CircleCI. Only after all tests (middle column)
passed successfully, the “deploy” job pushes the Docker image to the Docker Hub repository and the Python package
is uploaded to the Python Package Index (PyPI).
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Figure S6. Visual assessment of all datasets under test, arranged by the mean overall rating. Each column of
the diagram represents one out of the seven quality control points in the Phase II assessment: i) overall
performance; ii) surface reconstruction from anatomical MRI; iii) T1w brain mask and tissue segmentation; iv)
spatial normalization; v) brain mask and ROIs for CompCor application in native BOLD space (“BOLD ROIs”); vi)
intra-subject BOLD-to-T1w co-registration; and vii) “fieldmap-less” SDC. Experts are instructed to assign a score on a
scale from 1 (poor) to 4 (excellent) at each quality control point. A special rating score of 0 (unusable) could be
assigned to cases where a particular step failed in a critical way that would completely hamper further processing.
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Comparison to FSL feat

Data
We reuse the UCLA Consortium for Neuropsychiatric Phenomics LA5c Study 24, a dataset that is pub-

licly available on OpenfMRI under data accession DS000030. During the experiment, subjects performed
six tasks, a block of rest, and two anatomical scans. The study includes imaging data of a large group of
healthy individuals from the community, as well as samples of individuals diagnosed with schizoprenia,
bipolar disorder, and ADHD. A total of N=257 participants were available. For this experiment, we will
only use the T1w, anatomical scans (for coregistration) and the functional scans from the Stop Signal
(referred to as “stopsignal”) task described below.

As described in their data descriptor 24, MRI data were acquired on one of two 3T Siemens Trio
scanners, located at the Ahmanson-Lovelace Brain Mapping Center (syngo MR B15) and the Staglin
Center for Cognitive Neuroscience (syngo MR B17). FMRI data were collected using an EPI sequence
(slice thickness=4mm, 34 slices, TR=2s, TE=30ms, flip angle=90deg, matrix 64×64, FoV=192mm,
oblique slice orientation). Additionally, a T1w image is available per participant (MPRAGE, TR=1.9s,
TE=2.26ms, FoV=250mm, matrix=256×256, sagittal plane, slice thickness=1mm, 176 slices).

Stop signal task. During this stopsignal task, participants were instructed to respond quickly to a ’go’
stimulus. During some of the trials, at unpredictable times, a stop signal would appear after the stimulus
is presented. During those trials, the subject has to inhibit any planned response. In this experiment,
we specifically look into the difference between the brain activation during a successful stop trial and a
go trial (contrast: Go - StopSuccess). We expect to see brain regions responsible for response inhibition
(negative) and motor response (positive). A detailed description of this particular task is available with
the dataset descriptor 24.

Methods
Data were preprocessed with two alternate pipelines: fMRIPrep v1.0.8 and FSL’s feat v5.0.10. We

then performed identical analyses on each dataset preprocessed with either pipeline. The data are
analysed on the first level: the results are obtained for each subject. We perform group level analyses in
a specific resampling scheme to allow a statistical comparison between the pipelines: two random (non-
overlapping) subsets of 𝑛 subjects are repeatedly entered into a second level analysis. The first step is
the experimental manipulation resulting in two conditions: (1) the data are preprcessed with fMRIPrep,
and (2) the data are preprocessed using feat. The next two steps are identical for both conditions. We
describe the details on the three analysis steps in more detail below.

Preprocessing. Preprocessing with fMRIPrep is described using the corresponding citation boilerplate,
Box S1. We configured feat using its graphical user interface (GUI) and generated a template.fsf file,
which can be found in GitHub 2. We manually extended execution to all participants in our sample
creating the script fsl_feat_wrapper.py that accompanies the template.fsf file in GitHub. As it can
be seen on the template.fsf file, we disabled band-pass filtering and spatial smoothing to make results
of preprocessing comparable. Both processing steps (temporal filtering and spatial smoothing) were
implemented in a common, subsequent analysis workflow described below. Additionally, we manually
configured the ICBM 152 Nonlinear Asymmetrical template version 2009c as target for spatial normal-
ization. Finally, we manually resampled the preprocessed BOLD files into template space using FSL’s
flirt.

First-level analysis. We analyzed the task data using FSL and AFNI tools, integrated in a workflow
using Nipype. Spatial smoothing was applied using AFNI’s 3dBlurInMask with a Gaussian kernel with
FWHM=5mm. Activity was estimated using a general linear model (GLM) with FSL’s feat. For the one
condition under comparison (go - successful) one task regressor was included with a fixed duration of
1.5s and an extra regressor was added with equal amplitude, but the duration equal to the reaction time.
Again, these regressors were orthogonalized with respect to the fixed duration regressor of the same

2https://github.com/oesteban/misc/tree/16660df9fe80d20107b6abd7fc8ce1f4946791e6/fsl-feat
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Box S1. The citation boilerplate

Results included in this manuscript come from preprocessing performed using fMRIPrep version
1.0.8, a Nipype 25,26 based tool. Each T1w volume was corrected for intensity non-uniformity (INU)
using N4BiasFieldCorrection v2.1.014 and skull-stripped using antsBrainExtraction.sh v2.1.0
(using the OASIS template). Brain surfaces were reconstructed using recon-all from FreeSurfer
v6.0.0 [5], and the brain mask estimated previously was refined with a custom variation of the
method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter
of Mindboggle [20]. Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template ver-
sion 2009c [6] was performed through nonlinear registration with the antsRegistration tool of
ANTs v2.1.0 [7], using brain-extracted versions of both T1w volume and template. Brain tissue seg-
mentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed
on the brain-extracted T1w using fast [16] (FSL v5.0.9). Fieldmap-less" distortion correction was
performed by co-registering the functional image to the same-subject T1w image with intensity
inverted [12,13] constrained with an average fieldmap template [14], implemented with antsReg-
istration (ANTs). This was followed by co-registration to the corresponding T1w using boundary-
based registration [15] with 9 degrees of freedom, using bbregister (FreeSurfer v6.0.0). Motion
correcting transformations, field distortion correcting warp, BOLD-to-T1w transformation and T1w-
to-template (MNI) warp were concatenated and applied in a single step using antsApplyTransforms
(ANTs v2.1.0) using Lanczos interpolation.
Physiological noise regressors were extracted applying CompCor [17]. Principal components were
estimated for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). A
mask to exclude signal with cortical origin was obtained by eroding the brain mask, ensuring it only
contained subcortical structures. Six tCompCor components were then calculated including only
the top 5% variable voxels within that subcortical mask. For aCompCor, six components were calcu-
lated within the intersection of the subcortical mask and the union of CSF and WM masks calculated
in T1w space, after their projection to the native space of each functional run. Frame-wise displace-
ment [18] was calculated for each functional run using the implementation of Nipype. Many in-
ternal operations of FMRIPREP use Nilearn [21], principally within the BOLD-processing workflow.
For more details of the pipeline see https://fmriprep.readthedocs.io/en/latest/workflows.html.
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condition. Predictors were convolved with a double-gamma canonical hemodynamic response function.
Temporal derivatives were added to all task regressors to compensate for variability on the hemodynamic
response function. Furthermore, the six rigid-motion parameters (translation in 3 directions, rotation
in 3 directions) were added as regressors to avoid confounding effects of head-motion. We included a
high-pass filter (100Hz) in FSL’s feat.

The resampling scheme and group level analysis. Subsequent to the single subject analyses, two
random (non-overlapping) subsamples of 𝑛 subjects were taken and entered into a second level analysis.
We vary the sample size 𝑛 between 10 and 90 (there are in total of 257 subjects). This process is repeated
100 times. We analyzed the group data using ordinary least squares (OLS) mixed modeling using FSL’s
flame. Subsequently, we threshold the statistical maps, ensuring control of the False Discovery Rate
(FDR) using FSL’s fdr command.

Mapping the BOLD variability on standard space. To investigate the spatial consistency of the aver-
age BOLD across participants, we calculated standard deviation maps in MNI space 27 for the temporal
average map derived from preprocessing with both alternatives.

Activation-count maps. The statistical map for each subject is binarized at 𝑧=±1.65. For each contrast,
the average of these maps is computed over subjects. The average negative map (percentage of subjects
showing a negative effect with 𝑧 < -1.65) is subtracted from the average positive map to indicate the
direction of effects. These maps show for each voxel the percentage of subjects that have values exceed-
ing the threshold. High values in certain regions and low values in other regions show a good overlap of
activation between subjects. A 𝑧-value of 1.65 corresponds to a two-sided test of 𝑝<0.1.

Smoothness. We used AFNI’s 3dFWHMx to estimate the (average) smoothness of the data at two check-
points: i) before the first-level analysis workflow, and ii) after applying a 5.0mm full-width half-maximum
(FWHM) spatial smoothing, which was the first step of the analysis workflow.

Extended results
FMRIPrep achieved higher spatial accuracy. Figure S7 shows the variability maps obtained with
both preprocessing pipelines, and suggests that results from feat are smoother. These maps reveal a
superior anatomical accuracy of fMRIPrep over feat, likely reflecting the combined effects of a more
precise spatial normalization scheme, the single-shot interpolation that uses the more accurate sinc
kernel (Lanczos interpolation), and the application of the “fieldmap-less” SDC methodology. FMRIPrep
outcomes are particularly better aligned with the underlying anatomy in regions typically warped by
susceptibility distortions such as the orbitofrontal lobe, as demonstrated by the close-ups on the lower
panel of Figure S7.

First-level and group-level modeling did not show substantial differences. The results and figures
associated to this experiment are fully reported using a Jupyter Notebook3

RELATED FMRI PREPROCESSING WORKFLOWS
The most comprehensive neuroimaging packages –AFNI, FSL and SPM in particular– include GUIs

(see Figure S8) and workflows for fMRI preprocessing. AFNI (Analysis of Functional NeuroImages) offers
a general purpose GUI and afni_proc.py, a single-subject, single-run preprocessing workflow for fMRI.
The afni_proc.py pipeline is complemented by a GUI (uber_subject.py) and align_epi_anat.py, an im-
age alignment tool (including several intra-subject registration schemes: fMRI-to-anatomical, anatomical-
to-anatomical, fMRI-to-fMRI and anatomical-to-atlas). AFNI is completely open-source, and user feed-
back is utilized to improve the tool and users can contribute with bugfixes and features through https:
//github.com/afni/afni. FSL (FMRIB’s Software Library) possesses the most extensive GUI, covering a num-
ber of MRI processing and analysis workflows, not limited to fMRI. One of the available tools is FEAT

3https://github.com/poldracklab/fmriprep-notebooks/blob/b3ada9425785c744884087937314e90610be1c22/02_Evaluation%
20-%20FEAT%20Comparison.ipynb

10 of 15

https://github.com/poldracklab/fmriprep-notebooks/blob/b3ada9425785c744884087937314e90610be1c22/02_Evaluation%20-%20FEAT%20Comparison.ipynb
https://github.com/afni/afni
https://github.com/afni/afni
https://github.com/poldracklab/fmriprep-notebooks/blob/b3ada9425785c744884087937314e90610be1c22/02_Evaluation%20-%20FEAT%20Comparison.ipynb
https://github.com/poldracklab/fmriprep-notebooks/blob/b3ada9425785c744884087937314e90610be1c22/02_Evaluation%20-%20FEAT%20Comparison.ipynb


ONLINE METHODS

Figure S7. Maps of between-subjects variability of the averaged BOLD time-series resampled into MNI space.
We preprocess DS000030 (N=257) with fMRIPrep and FSL feat. This figure shows greater between-subject
variability of the averaged BOLD series obtained with feat, in MNI space. The top box of the panel shows these
maps at different axial planes of the image grid, with reference contours from the MNI atlas. The map summarizing
feat-derived results displays greater variability outside the brain mask delineated with the black contour. This effect
is generally associated with a lower performance of spatial normalization 27. The histogram at the right side plots
the normalized frequency of variability (arbitrary units) for both maps, within the brain mask. The distribution
corresponding to FSL feat shows a heavier tail. As demonstrated in the lower box of the panel,
fMRIPrep-preprocessed images keep a higher spatial detail, especially on those regions affected by
susceptibility-derived distortions.
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FMRI Analysis, a GUI that creates a single-subject, single-run preprocessing and analysis workflow. Ex-
ecution of the workflow can be delayed by writing one script file in the FSL internal format, generally
referred to as design.fsf. Users can manually modify the file to analyze different subjects and runs. The
user is responsible for manually executing other elements of the pipeline, such as anatomical preprocess-
ing or susceptibility-derived distortion corrections (SDCs) other than fieldmap-based. SPM (Statistical
Parametric Mapping) offers a GUI for the different processing and analysis tasks in the workflow and the
users can combine them manually. Particular processing elements can be introduced using plug-ins, for
instance to include a SDC step. Finally, SPM allows plug-outs to create workflows and batch scripts to
run over several subjects. Both FSL and SPM are open-source, although they follow a more traditional
development model less open to third-party contributions.

Interoperability between these three main software packages is low, since their internal processing
and analysis elements are highly coupled. Although Nipype25 provides a homogeneous interface that en-
ables the decoupling these components (and effectively allows one to mix-and-match these tools), most
researchers have been historically attached to one of the options. Their custom processing workflows
are generally based off of one single package. In other words, their ad hoc pipelines are variations of
afni_proc.py, FSL feat or SPM’s batch scripts.

Human Connectome Project (HCP 28) Pipelines constitute a different type of solution to this challenge.
They propose a very comprehensive ensemble of workflows for preprocessing and analysis of “HCP-
like” datasets. HCP Pipelines are built combining (mainly) FSL and FreeSurfer to perform fMRI surface
analysis (among other anatomical and diffusion MRI analyses). The development of HCP Pipelines is
open-source and collaborative through http://github.com.

Finally, C-PAC29 (configurable pipeline for the analysis of connectomes) integrates AFNI and FSL
tools through Nipype for preprocessing and analysis of resting-state fMRI connectomes. C-PAC offers a
GUI that generates an extremely detailed configuration file where all the processing steps and all the
necessary parameters are defined. Additional strengths of C-PAC are the open-source and collaborative
development, and up-to-date and thorough documentation.

CURRENT USAGE OF FMRIPREP
FMRIPrep has been adopted by a large number of scientists, as suggested by the number of unique,

worldwide visitors to the documentation website (see Figure S9) and more than ten thousand pulls of
fMRIPrep’s Docker image4. On OpenNeuro.org, fMRIPrep has accumulated more than 240 run requests,
accounting for the ∼40% of all analyses requested so far in the platform. Some of these requests were
executed on data uploaded by users – not found in OpenfMRI.

We have incorporated fMRIPrep in the processing workflow of all datasets in our laboratory. One
example of the robust performance of fMRIPrep on idiosyncratic datasets is presented in Figure S10.
FMRIPrep performed with high-accuracy on a challenging dataset with simultaneous electrocorticogra-
phy (ECoG) recordings.

4https://hub.docker.com/r/poldracklab/fmriprep/
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Figure S8. a | AFNI’s uber_subject.py GUI. b | FSL’s feat GUI. c | SPM’s fMRI analysis GUI. d | FMRIPrep’s GUI at
OpenNeuro.org.

Figure S9. Unique visitors to the fMRIPrep’s documentation site. Clip from Google Analytics Panel showing
tracking results for the documentation website http://fmriprep.org.

13 of 15

http://fmriprep.org


ONLINE METHODS

Figure S10. Successfully processing electrocorticography (ECoG) data. FMRIPrep successfully processed a some
datasets acquired with simultaneous ECoG recordings. For ECoG, electrodes are placed directly on surfaces of the
brain surgically exposed. As described previously, the exposed areas introduce large steps of magnetic susceptibility
across the imaged volume, that lead to large distortions and signal drop-out (marked by red arrows). Yellow arrows
point at distortions typically found in regular BOLD data. A | Performance of co-registration. Despite the wide
areas of signal completely lost, boundary based registration performed accurately. B | Delineation of
regions-of-interest (ROIs). FMRIPrep’s heuristics and workflow for BOLD skull-stripping performed correctly (red
contour). Moreover, regions where data are sampled to calculate CompCor 30 (blue and magenta contours) do not
include any cortical regions.
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