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We introduce a Liability Threshold Mixed Linear Model (LTMLM) association statistic for 

ascertained case-control studies that increases power vs. existing mixed model methods, with a 

well-controlled false-positive rate.  Recent work has shown that existing mixed model methods 

suffer a loss in power under case-control ascertainment, but no solution has been proposed.  

Here, we solve this problem using a chi-square score statistic computed from posterior mean 

liabilities (PML) under the liability threshold model. Each individual’s PML is conditional not 

only on that individual’s case-control status, but also on every individual’s case-control status 

and on the genetic relationship matrix obtained from the data.  The PML are estimated using a 

multivariate Gibbs sampler, with the liability-scale phenotypic covariance matrix based on the 

genetic relationship matrix (GRM) and a heritability parameter estimated via Haseman-Elston 

regression on case-control phenotypes followed by transformation to liability scale.  In 

simulations of unrelated individuals, the LTMLM statistic was correctly calibrated and achieved 

higher power than existing mixed model methods in all scenarios tested, with the magnitude of 

the improvement depending on sample size and severity of case-control ascertainment.  In a 

WTCCC2 multiple sclerosis data set with >10,000 samples, LTMLM was correctly calibrated 

and attained a 4.1% improvement (P=0.007) in chi-square statistics (vs. existing mixed model 

methods) at 75 known associated SNPs, consistent with simulations.  Larger increases in power 

are expected at larger sample sizes. In conclusion, an increase in power over existing mixed 

model methods is available for ascertained case-control studies of diseases with low prevalence. 
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Introduction 

Mixed model association statistics are a widely used approach to correct for population 

structure and cryptic relatedness in genome-wide association studies (GWAS)1-11.  However, 

recent work shows that existing mixed model association statistics suffer a loss in power relative 

to standard logistic regression in ascertained case-control studies11.  It is widely known that 

appropriate modeling of case-control ascertainment can produce substantial increases in power 

for case-control studies with fixed-effect covariates12-14, but such increases in power have not yet 

been achieved with models that include random effects.    

 We developed an association score statistic based on a liability threshold mixed linear 

model (LTMLM). The LTMLM statistic relies on the posterior mean liability (PML) of each 

individual; the PML is calculated using a multivariate Gibbs sampler15. The PML of each 

individual is conditional on the genetic relationship matrix (GRM), the case-control status of 

every individual, and the disease prevalence.   Existing methods use a univariate prospective 

model to compute association statistics, but here we use a multivariate retrospective model.  

The LTMLM statistic provides an increase in power in simulations based on either 

simulated or real genotypes.  In a WTCCC2 multiple sclerosis data set with >10,000 samples, 

LTMLM was correctly calibrated and attains a 4.1% improvement (P=0.007) in chi-square 

statistics (vs. existing mixed model methods) at 75 known associated SNPs, consistent with 

simulations.  

 

Materials and Methods 

 

Overview of Method 

 

We improve upon standard mixed model methods11 using a retrospective association 

score statistic (LTMLM) computed from posterior mean liabilities (PML) under the liability 
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threshold model.  The improvement over previous approaches comes from appropriate modeling 

of case-control ascertainment. We consider all individuals simultaneously, incorporating 

prevalence information.  

Our method consists of three steps.  First, the genetic relationship matrix (GRM) is 

calculated and a corresponding heritability parameter is estimated, modeling the phenotype 

covariance of all individuals (see Estimation of Heritability Parameter).  The heritability 

parameter is estimated using Haseman-Elston (H-E) regression on the observed scale followed 

by transformation to liability scale.  Second, Posterior Mean Liabilities (PML) are estimated 

using a truncated multivariate normal Gibbs sampler (see Posterior Mean Liabilities). The PML 

of each individual is conditional on that individual’s case-control status, on every other 

individual’s case-control status, and on disease prevalence and liability-scale phenotypic 

covariance.   Third, a chi-square (1 d.o.f) association score statistic is computed based on the 

association between the candidate SNP and the PML (see LTMLM Association Statistic). 

The toy example in Figure 1 provides an illustration of how genetic relatedness to a 

disease case can increase an individual’s PML.  In Figure 1a and 1b, we plot the distribution of 

liabilities in 10,000 unrelated individuals with random ascertainment and case-control 

ascertainment (for a disease with prevalence 0.1%), respectively. In Figure 1c and 1d, we plot 

the same distributions conditional on an individual having genetic relatedness of 0.5 to a disease 

case, assuming liability-scale heritability of 1.0.  In each case, the posterior distribution of 

liabilities (and hence the PML) is shifted upwards.  (The magnitude and direction of this effect 

would be different for an individual having a genetic relatedness of 0.5 to a control.)   Our main 

focus below is on much lower levels of genetic relatedness (identity-by-state) among many 

unrelated samples, but the same principles apply.  
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Estimation of Heritability Parameter 

Mixed model association statistics rely on the estimation of a heritability parameter. We 

note that this heritability parameter, which Kang et al.4 referred to as “pseudo-heritability”, is 

generally lower than the total narrow-sense heritability (h2) in data sets not dominated by family 

relatedness, but may be larger than the heritability explained by genotyped SNPs (hg
2)16 in data 

sets with population structure or family relatedness.  However, for ease of notation, we use the 

symbol h2 to represent this heritability parameter.  A list of all notation used below is provided in 

Table S1.  

The goal is to test for association between a candidate SNP and a phenotype.  We first 

consider a quantitative trait: 

𝝋 = 𝛽𝒙 + 𝒖 + 𝒆 .     (1) 

The phenotypic data (transformed to have mean 0 and variance 1) may be represented as a vector 

φ with values for each individual i.  Genotype values of candidate SNP are transformed to a vector 

x with mean 0 and variance 1, with effect size β.  The quantitative trait value depends on the fixed 

effect of the candidate SNP (βx), the genetic random effect excluding the candidate SNP (u), and 

the environmental component (e).  We extend to case-control traits via the liability threshold 

model, in which each individual has an underlying, unobserved normally distributed trait called 

the liability. An individual is a disease case if the liability exceeds a specified threshold t, 

corresponding to disease prevalence17 (Figure S1). 

Standard mixed model association methods generally estimate h2 from a genetic 

relationship matrix (GRM) and phenotypes using restricted maximum likelihood (ReML) 4; 11.   

Genotypic data is used to  build a GRM (excluding the candidate SNP11):  
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𝜣̂ =
𝑿𝑇𝑿

𝑀
 ,     (2) 

where X is a matrix of non-candidate SNPs normalized to mean 0 and variance 1 and M is the 

number of SNPs. We estimate h2 using Haseman-Elston (H-E) regression followed by a 

transformation to liability scale.  The H-E regression estimate is obtained by regressing the 

product of the case-control phenotypes on the off diagonal terms of the GRM18-20:  

hHE
2̂ =

∑ πiπk𝜣̂iki≠k

∑ 𝜣̂ik
2

i≠k
,      (3) 

where πi denotes the case-control status of individual i and 𝜣̂ik is the genetic relatedness of 

individuals i and k.    This gives an estimate on the observed scale which is then transformed to 

the liability scale21: 

  hHE,l
2̂ = hHE

2̂ [K(1−K)]2

z2(P(1−P)
,      (4) 

where z is the height of the standard normal density (
1

2𝜋
𝑒−𝑡2/2) at the liability threshold t, K is 

disease prevalence, and P is the proportion of cases in the sample21.   

Then, the variance between the individuals is modeled as the phenotypic covariance   

   𝑽 = ℎ2𝜣̂ + (𝐼 − ℎ2)𝑰 ,    (5) 

where 𝜣̂ is the N by N GRM, V is the phenotypic covariance, h2 is the heritability parameter, and 

I is the identity matrix. 

Using the phenotypic covariance matrix V, the liability is modeled as a multivariate 

normal distribution: 

𝐿(𝝋) = (2𝜋)
−𝒏

𝟐 ∣∣(𝑽)∣∣
−1 2⁄

exp(
−1

2
(𝝋)𝑇(𝑽)−1(𝝋))   (6) 

We note that we observe the case-control phenotypes of the individuals and not the continuous  

liabilities. 
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Posterior Mean Liabilities 

We first consider the univariate PML (PMLuni), constructed independently for each individual; 

we generalize to the multivariate setting below.    As described in equations 11 and 12 of ref. 21, 

these correspond to the expected value of the liability conditional on the case control status: 

𝑃𝑀𝐿𝑢𝑛𝑖,𝑐𝑎𝑠𝑒 = 𝐸[𝜑|𝜋𝑖 = 1] = 𝑧/𝐾 

𝑃𝑀𝐿𝑢𝑛𝑖,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝐸[𝜑|𝜋𝑖 = 0] = −𝑧/(1 − 𝐾)   (7) 

These values are calculated analytically in the univariate setting, and can be thought of as the 

mean of a truncated normal above or below the liability threshold t depending on case control 

status21. 

 We now consider the multivariate PML (PMLmulti), estimated jointly across individuals.  

The PMLmulti for each individual is conditional on that individual’s case-control status, on every 

other individual’s case-control status, and on their phenotypic covariance.  The PMLmulti is 

estimated  using a Gibbs sampler, analogous to previous work15  (which focused on family 

relatedness and did not consider association statistics).  The Gibbs sampler is an iterative 

algorithm that generates random variables from conditional distributions in order to avoid the 

difficult task of explicitly calculating the marginal density for each random variable. 

  For each individual in turn, the conditional distribution of the liability is 

calculated based on all of the other individuals and a new value is generated.  The algorithm is: 

Initialization: for each individual j,         (8) 

φi = PMLuni,case if πi=1 or φi = PMLuni,control if πi=0 

For each MCMC iteration n 

 For each individual i 

   Sample φi from the constrained conditional univariate normal distribution 

  L(φi) ~ exp(–φTV 
-1φ/2) and constraint φi≥t if πi=1, φi<t if πi=0      

  (where φ≠i are fixed) 
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We use 100 burn-in iterations followed by 1,000 additional MCMC iterations.  We estimate the 

PMLmulti by averaging over MCMC iterations.  We reduce the number of MCMC iterations 

needed via Rao-Blackwellization, which averages (across iterations n) the posterior means of the 

distributions from which each φi is sampled. 

  

LTMLM Association Statistic 

 The LTMLM association statistic is calculated using PMLmulti. For simplicity, we first 

consider the case where the liability is known. We jointly model the liability and the genotypes 

using a retrospective model, enabling appropriate treatment of sample ascertainment.  We 

concatenate the two vectors (φ,x) and derive the joint likelihood for these combined terms.  The 

covariance of φ and x between individual i and k is: 

𝐶𝑜𝑣(𝝋𝒊, 𝒙𝒌) = 𝐸[𝝋𝒊, 𝒙𝒌] − 𝐸[𝝋𝒊]𝐸[𝒙𝒌] = 𝐸[𝝋𝒊, 𝒙𝒌] = 𝐸[𝛽𝒙𝒊, 𝒙𝒌] = 𝛽𝜣𝑖,𝑘, (9) 

where Θ is the true underlying genetic relatedness matrix from which genotypes are sampled.  

(We note that Θ, which is unobserved, is different from the GRM 𝜣̂ estimated from the data.) 

The variance of (φ,x) as a function of effect size 𝛽 is: 

𝑪(𝛽) = (
𝑽 𝛽𝜣

𝛽𝜣𝑻 𝜣
),      (10) 

 thus 

𝐶(𝛽)−1 = (
𝑽−𝟏 −𝛽𝑽−𝟏

−𝛽(𝑽−𝟏)𝑇 𝜣−𝟏 ) + 𝑂(𝛽2) ,   (11) 

where both of these matrices are 2N by 2N.  The joint likelihood of the liability and genotypes 

are distributed as a multivariate normal N(0,C(β) ), and thus   
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𝑳(𝒙, 𝝋|𝜷) = (𝟐𝝅)
−𝒏

𝟐 ∣∣𝑪(𝜷)∣∣
−𝟏 𝟐⁄

𝐞𝐱𝐩(
−𝟏

𝟐
(𝝋, 𝒙)𝑻𝑪(𝜷)−𝟏(𝝋, 𝒙)).  (12) 

Taking the derivative of the log likelihood results in the score equation.  The determinant of the 

matrix V does not have any terms linear in β, so the terms with V alone drop out when we take 

the derivative:   

𝑆(𝒙, 𝝋|𝛽) =
𝑑

𝑑𝛽
ln𝐿(𝒙, 𝝋|𝛽) =

𝑑

𝑑𝛽

−1

2
(𝝋, 𝒙)𝑇𝑪(𝛽)(𝝋, 𝒙) 

=
𝑑

𝑑𝛽
(𝝋, 𝒙)𝑇 (

𝑽−𝟏 −𝛽𝑽−𝟏

−𝛽(𝑽−𝟏)𝑇 𝜣−𝟏 ) (𝝋, 𝒙) = 𝑽−1𝝋𝒙   (13) 

The marginal score statistic tests the null hypothesis that the fixed effect of the candidate SNP is 

zero (H0: β = 0) vs. the alternative hypothesis (HA: β ≠ 0). The denominator of the score statistic 

is the variance of the score evaluated under the null. :     

𝑉𝑎𝑟(𝑆(𝒙, 𝝋|𝛽)) = (𝑽−𝟏𝝋)𝑇𝜣(𝑽−1𝝋)    (14) 

This leads to the score statistic: 

𝑆𝑐𝑜𝑟𝑒 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
(𝒙𝑻𝑽−𝟏𝝋)2

(𝑽−𝟏𝝋)𝑇𝜣(𝑽−𝟏𝝋)
 ,     (15) 

where Θ, the true underlying genetic relatedness of the individuals, can be approximated by the 

identity matrix in data sets of unrelated individuals.  

We now consider a case-control trait, with unobserved liability, and derive the score 

function using the observed case-control status of each individual, π.  Returning to the score 

function and conditioning on case control status:  

𝑆 (𝒙, 𝝋|𝛽, 𝝅)𝛽=0 =
𝑑

𝑑𝛽
ln𝐿(𝒙, 𝝋|𝛽, 𝝅)𝛽=0 =

𝑑𝐿(𝒙,𝝋|𝛽,𝝅)𝛽=0

𝑑𝛽

𝐿(𝒙,𝝋|𝛽,𝜋)𝛽=0
   (16) 

Introducing the unobserved quantitative liability, φ, the score function can be rewritten in terms 

of the probability density of the liability:  
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𝑑𝐿(𝒙,𝝋|𝛽)𝛽=0

𝑑𝛽

𝐿(𝒙, 𝝋|𝛽)𝛽=0
=  

∫ 𝑃(φ)
𝑑𝐿(𝒙,𝝋|𝛽)𝛽=0

𝑑𝛽
𝑑φ

𝐿(𝒙, 𝝋|𝛽)𝛽=0
 

𝑆(𝒙, 𝝋|𝛽, 𝝅) = 𝐶 ∫ 𝑃(φ) 𝑆(φ|𝝅)𝑑 = 𝑆(𝐸[φ|𝝅]) ,   (17) 

where P(φ) is the probability density of the liability and E[φ| π] is the PML. It follows that an 

appropriate score statistic is 

𝐿𝑇𝑀𝐿𝑀 𝑠𝑐𝑜𝑟𝑒 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
(𝒙𝑻𝑽−𝟏𝑷𝑴𝑳𝒎𝒖𝒍𝒕𝒊)2

(𝑽−𝟏𝑷𝑴𝑳𝒎𝒖𝒍𝒕𝒊)𝑇𝜣(𝑽−𝟏𝑷𝑴𝑳𝒎𝒖𝒍𝒕𝒊)
    (18) 

Again Θ can be approximated by the identity matrix in data sets of unrelated individuals; we 

note that this choice affects only a constant calibration factor (since the denominator is the same 

for each candidate SNP), and that other calibration options are available (see below).  As with 

other association statistics, the LTMLM score statistic generalizes to non-normally distributed 

genotypes22-24. The overall computational cost of computing the LTMLM statistic is O(MN2) 

when M > N (Table S2).    

 We calculate the GRM via Leave One Chromosome Out (LOCO) analysis, i.e. for each 

candidate SNP on a given chromosome the GRM is calculated using all of the other 

chromosomes. This prevents deflation due to double counting the candidate SNP as both a fixed 

effect and random effect in the mixed model4; 6; 11.  

 

Simulated Genotypes and Simulated Phenotypes 

We performed simulations both using simulated genotypes and simulated phenotypes, 

and using real genotypes and simulated phenotypes (see below).  Quantitative liabilities for each 

individual were generated from SNP effects and an environmental component.  The proportion of 

causal SNPs was set to 0.01.  The quantitative liabilities were then dichotomized based on the 

liability threshold to categorize each individual as a case or control.  Case-control ascertainment 
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was performed, simulating 50% cases and 50% controls.  We compared ATT, MLM, and 

LTMLM statistics (see Table 1).  MLM statistics were computed using the GCTA-LOCO statistic 

described in ref. 11, with the heritability parameters estimated using the GCTA software25.  All 

simulations used M SNPs to calculate the GRM and M additional SNP as candidate SNPs being 

tested for association (so that candidate SNPs are not included in the GRM).    

In the primary analyses, we simulated individuals without population structure or LD, 

with N = 1K or 5K samples, M = 1K, 5K or 50K SNPs, and prevalence K = 50%, 10%, 1% or 

0.1%.  Genotypes were sampled from independent binomials with allele frequencies uniform on 

[0.1,0.9].  In secondary analyses, we simulated population structure by simulating two 

populations with an FST of 0.01, whose  allele frequencies were drawn from beta distributions 

with parameters p(1 – FST)/ FST and (1 – p)(1 – FST)/ FST,  based on ancestral allele frequency p 

which is uniform on [0.1,0.9].   

 

WTCCC2 Genotypes and Simulated Phenotypes 

We also conducted simulations using real genotypes from WTCCC2 to incorporate LD and 

realistic population structure.  The WTCCC2 data contained 360,557 SNPs and 15,633 samples, 

as described previously11. Since the goal of the power study is demonstrate a comparison of the 

statistics under case-control ascertainment, we used N = 1000 samples (500 cases and 500 

controls), with simulated phenotypes having prevalence of 50%, 25%, 10%.  The prevalence was 

restricted to a lower bound of 10% because of the limitation of only 15,633 WTCCC2 samples 

for simulating case-control ascertainment.  We computed ATT, MLM and LTMLM statistics as 

described above. 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2014. ; https://doi.org/10.1101/008755doi: bioRxiv preprint 

https://doi.org/10.1101/008755
http://creativecommons.org/licenses/by/4.0/


11 

 

WTCCC2 Genotypes and MS Phenotypes 

Finally, we analyzed WTCCC2 individuals with ascertained case-control phenotypes for 

MS11, a disease with a prevalence of around 0.1%.   We computed ATT, MLM and LTMLM 

statistics as described above.  Although the underlying MS study was appropriately matched for 

ancestry26, the data made available to researchers included only pan-European cases and UK 

controls.  Thus, the WTCCC2 data set shows a severe mismatch in ancestry of cases and 

controls;  this severe mismatch between cases and controls is not representative of a typical 

GWAS.  We thus restricted our primary analysis to 10,034 samples with only a moderate 

mismatch in ancestry, but  analyses of unmatched and stringently matched data sets were also 

performed (Figure S2).  The unmatched data set contained 10,204 case and 5,429 

controls. Matching was performed by first calculating 20 PCs in the full cohort and weighing the 

contribution of each PC based on the variance in phenotype it explained in a multiple regression. 

A Euclidean distance over these 20 weighted dimensions was then computed for all pairs of 

individuals, and each case was greedily assigned the nearest unmatched control until no matched 

case-control pairs could be identified. Finally, any matched case-control pairs that were not 

within 6 standard deviations of the mean pairwise distance were removed as outliers, yielding the 

5,017 cases and 5,017 matched controls used in our primary analysis. Stringent matching was 

performed by additionally removing any matched case-control pairs that were not within 2 

standard deviations of the mean pairwise distance, yielding 4,094 cases and 4,094 matched 

controls used in our stringently matched analysis. 

We compared association statistics at 75 published SNPs associated to MS11.  We used a 

jackknife approach to assess the statistical significance of differences in association statistics, by 

excluding each of the 75 published SNPs in turn. 
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Results 

Simulations: Simulated Genotypes and Simulated Phenotypes 

 

We first conducted simulations using simulated genotypes and simulated ascertained 

case-control phenotypes (see Materials and Methods).  Our main simulations involve unrelated 

individuals with no population structure, but the impact of population structure is explored 

below.  We evaluated the power of ATT, MLM and LTMLM (see Table 2).  Results for additional 

values of #SNPs (M) and #samples (N) are displayed in Table S3.  The LTMLM statistic 

consistently outperforms the ATT and MLM statistics, particularly at low values of disease 

prevalence. For LTMLM vs. MLM at disease prevalence of 0.1%, 3% and 24% improvements 

were observed in simulations with 5,000 SNPs and 50,000 SNPs respectively. Smaller 

improvements were observed at higher disease prevalences.  Test statistics were well-calibrated 

at null markers. Simulations at other values of M and N indicate that the magnitude of the 

improvement depends on the value of N/M (Table S3).  Simulations with population structure 

demonstrate similar results, but with inflation in the ATT statistic as expected (Table S4).   

The MLM statistics were calculated using an h2 parameter estimated using Restricted 

Maximum Likelihood Methods (ReML)4, but  the LTMLM statistics were calculated using an h2 

parameter estimated via Haseman-Elston (H-E) regression on case-control phenotypes followed 

by transformation to liability scale 18; 21 (see Materials and Methods).  As case-control 

ascertainment becomes more severe the H-E regression estimate of the h2 remains unbiased, 

whereas the variance component estimate is severely downwardly biased even after 

transformation to the liability scale (Table 3 and Table S5), consistent with previous work (see 

ref.19 and Supp Table 9 of ref.11 ) .  Population structure resulted in bias of both ReML and HE-

regression estimates of h2, but consistently higher bias for the ReML estimates (Table S6).   

These biases do not inflate LTMLM or MLM statistics under the null (Table S4). We note that 
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previous work has shown that running MLM using the correct h2 parameter does not ameliorate 

the loss in power for MLM11. 

 

Simulations: WTCCC2 Genotypes and Simulated Phenotypes 

 

We next conducted simulations using real WTCCC2 genotypes and simulated ascertained 

case-control phenotypes (see Materials and Methods)11; 26. For a given value of M (M SNPs to 

calculate the GRM and M candidate SNPs, for a total of 2M SNPs), we used the first M/2 SNPs 

from each of the first four chromosomes.  The GRM was calculated using SNPs on 

chromosomes 3 and 4, with SNPs on chromosomes 1 and 2 treated as the candidate SNPs.  The 

simulated phenotypes were generated from chromosome 1 and 3, where 1% of the SNPs were 

randomly selected as being causal.  Results are reported for causal SNPs on chromosome 1 and 

null SNPs on chromosome 2, which were not used to build the GRM. 

Results for 1,000 and 10,000 SNPs (M) are displayed in Table 4 and Table S7, with 

sample size fixed at 500 cases and 500 controls; formal power calculations produce similar 

results (Table S8). Once again, the LTMLM statistic outperforms ATT and MLM as case-control 

ascertainment becomes more severe.  (A limitation of these simulations is that performing case-

control ascertainment on a fixed set of individuals limits case-control sample size; thus, these 

simulations were restricted to a disease prevalence of 10% or higher.  It is reasonable to infer that 

for rarer diseases with more extreme case-control ascertainment the LTMLM statistic would 

achieve even higher power gains, as was demonstrated in simulations with simulated genotypes.)  

The h2 parameter estimates for simulations using real genotypes are displayed in Table 

S9. The H-E regression estimates are unbiased, but the ReML estimates are again downwardly 

biased at lower prevalence and large N/M.   
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WTCCC2 Multiple Sclerosis data set 

 

We analyzed the WTCCC2 genotypes together with multiple sclerosis (MS) case-control 

phenotypes: 5,172 MS cases and 5,172 controls genotyped on Illumina chips11; 26 (see Materials 

and Methods).  We compared ATT, ATT with 5 PCs (PCA)23, MLM and LTMLM.  We evaluated 

calibration using the average χ2
 over all SNPs; we note that the average χ2

 over all SNPs is 

expected to be greater than 1 due to polygenic effects11; 27, and all methods can be correctly 

calibrated via LD Score regression28.   

 We evaluated power using the average χ2
 over the 75 published SNPs.  The results are 

displayed in Table 5.  The LTMLM method performed best, with a 4.1% improvement vs. MLM 

(jackknife P=0.007; see Materials and Methods) and an even larger improvement versus ATT 

and PCA, consistent with simulations (Table 2).  Similar results are obtained when calibrating 

association statistics via LD Score regression28 (Table S10).  A perfectly matched data set with 

4,094 MS cases and 4,094 controls yielded a similar improvement for LTMLM vs. MLM (Table 

S11).  We also applied LTMLM to the full unmatched data set of 10,204 MS cases and 5,429 

controls, where there is a severe mismatch in ancestry between cases and controls that is not 

representative of a typical GWAS.  The LOCO estimates of h2 demonstrate inflation before 

controlling for population structure (Table S12). In this analysis, the H-E regression estimate of 

the h2 produces an unrealistic value of 7.3 on the observed scale (corresponding  to 2.8 on the 

liability scale), which is outside the plausible 0-1 range suggesting severe population 

stratification or other severe problems with the data. We do not recommend the use of LTMLM 

on unmatched samples when such severe problems are detected.  For completeness, we report the 

results of running LTMLM, which results in a loss in power (Table S11). 
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Discussion 

We have shown that controlling for case-control ascertainment using the LTMLM 

statistic can lead to significant power improvements in ascertained case-control studies of 

diseases of low prevalence.  This was demonstrated via simulations using both simulated and 

real genotypes, and in WTCCC2 MS case-control data. 

The LTMLM statistic should not be used if the inferred liability-scale h2 parameter is 

outside the plausible 0-1 bound, as this is indicative of severe population stratification or other 

severe problems with the data (this can also be assessed via PCA; see Figure S2).  In such 

settings, either matching based on ancestry should first be performed, or other statistics should be 

used.   

Several limitations of LTMLM remain as directions for future study.  First, previous work 

has shown that using the posterior mean liabilities in conjunction with fixed effects such as BMI, 

age, or known associated SNPs will further increase power12; 21. The incorporation of fixed-effect 

covariates into the LTMLM statistic is not considered here, and remains as a future direction. 

Second, the calibration of our statistic in unrelated samples relies on an approximation that 

works well in the WTCCC2 data analyzed, but may not work well in all data sets.  Here, 

calibration via LD Score regression offers an appealing alternative28.   Third, we did not consider 

ascertained case-control studies in family data sets, which also represents a future direction.  

Fourth, LTMLM requires running time O(MN2), analogous to standard mixed model association 

methods.  This may be computationally intractable in very large data sets.  We are developing 

much faster mixed model methods29, but those methods do not consider case-control 

ascertainment and should not be applied to ascertained case-control data for diseases of low 

prevalence.   The incorporation of the ideas we have described here into those methods is an 
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open question.  Finally, our methods could potentially be extended to multiple traits7; 30; 31.  
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Web Resources 

The URLs for data presented herein are as follows: 

1. Liability Threshold Mixed Linear Model (LTMLM) software will be provided at 

http://www.hsph.harvard.edu/alkes-price/software/ 

2. GCTA (Genome-wide Complex Trait Analysis) software, 

http://www.complextraitgenomics.com/software/gcta/  
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Figure 1. Genetic relatedness to a disease case can increase an individual’s PML. In (a) and (b), we plot 

distributions of liabilities for a set of 10,000 individuals under (a) random ascertainment or (b) case-control 

ascertainment for a disease with prevalence 0.1%  (see Figure 2 of Lee et al.17).  In (c) and (d), we plot the same 

distributions conditional on an individual having genetic relatedness of 0.5 to a disease case, assuming a heritability 

of 1 on the liability scale.   
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 ATT MLM LTMLM 

 Quant vs Case control 

Trait 

Both Both CC 

Herit Param Est. None ReML H-E regression 

Prospective vs. 

Retrospective  

Pro Pro Retro 

Equation (𝑥𝑇π∗ )2

𝑥𝑇𝑥
 

(𝑥𝑇π∗𝑉−1 )2

𝑥𝑇𝑉−1𝑥
=

(𝑥𝑇𝑉−1𝑃𝑀𝐿𝑢𝑛𝑖  )
2

𝑥𝑇𝑉−1𝑥
 

(𝑥𝑇𝑉−1𝑃𝑀𝐿𝑚𝑢𝑙𝑡𝑖  )2

(𝑉−1𝑃𝑀𝐿𝑚𝑢𝑙𝑡𝑖)𝑇𝐼(𝑉−1𝑃𝑀𝐿𝑚𝑢𝑙𝑡𝑖)
 

 

Corrects for 

Confounding? 

No Yes Yes 

Models Case-Control 

Asc. 

No No Yes 

 

Table 1. List of association statistics. We list properties of the Armitage Trend Test (ATT), standard mixed model 

association statistic (MLM), and proposed statistic (LTMLM). π* is normalized case-control status (mean 0, variance 

1), x are normalized genotypes, PMLuni is the univariate PML conditional on the case-control status of a single 

individual, , PMLmulti is the multivariate PML conditional of the case-control status of all individuals, I is the identity 

matrix, V is the phenotypic covariance (on the observed scale for MLM, and on the liability scale for LTMLM).
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M N PREVALENCE SNP SET ATT MLM LTMLM 

5000 5000 50% all 1.14 1.15 1.15 

   causal 16.79 17.13 17.12 

   null 0.99 0.99 0.99 

  10% all 1.23 1.23 1.24 

   causal 24.59 24.79 25.18 

   null 0.99 0.99 0.99 

  1% all 1.45 1.40 1.46 

   causal 45.72 42.61 46.85 

   null 1.00 0.99 1.00 

  0.1% all 1.71 1.51 1.73 

   causal 71.99 59.53 74.05 

   null 1.00 0.93 1.00 

50000 5000 50% all 1.02 1.02 1.02 

   causal 2.68 2.68 2.69 

   null 1.00 1.00 1.00 

  10% all 1.02 1.02 1.02 

   causal 3.35 3.35 3.35 

   null 1.00 1.00 1.00 

  1% all 1.04 1.04 1.04 

   causal 5.47 5.42 5.48 

   null 1.00 1.00 1.00 

  0.1% all 1.07 1.07 1.07 

   causal 8.02 7.81 8.05 

   null 1.00 1.00 1.00 

 

 

Table 2. Results on simulated genotypes and simulated phenotypes.  We report average χ2 statistics.  N is the 

number of individuals and M is the number of SNPs.  SNP set indicates either all SNPs, the 1% causal SNPs, or the 

99% null SNPs.  The disease prevalence ranges from 50% (no case-control ascertainment) to 0.1%.  
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M 

 

N 

 

PREVALENCE 

LIABILITY  

H-E 

 

REML 

OBSERVED  

H-E 

 

REML 

5000 5000 50% 0.248 ( 0.005 ) 0.247 ( 0.005 ) 0.158 ( 0.003 ) 0.157 ( 0.003 ) 

  25% 0.232 ( 0.005 ) 0.228 ( 0.005 ) 0.167 ( 0.004 ) 0.164 ( 0.003 ) 

  10% 0.249 ( 0.005 ) 0.239 ( 0.005 ) 0.236 ( 0.005 ) 0.227 ( 0.004 ) 

  1% 0.253 ( 0.003 ) 0.212 ( 0.002 ) 0.459 ( 0.006 ) 0.384 ( 0.004 ) 

  0.1% 0.243 ( 0.003 ) 0.157 ( 0.001 ) 0.691 ( 0.009 ) 0.447 ( 0.001 ) 

50000 5000 50% 0.266 ( 0.009 ) 0.265 ( 0.009 ) 0.169 ( 0.006 ) 0.169 ( 0.006 ) 

  25% 0.268 ( 0.007 ) 0.275 ( 0.007 ) 0.193 ( 0.005 ) 0.197 ( 0.005 ) 

  10% 0.233 ( 0.007 ) 0.233 ( 0.007 ) 0.222 ( 0.007 ) 0.222 ( 0.007 ) 

  1% 0.254 ( 0.004 ) 0.248 ( 0.004 ) 0.46 ( 0.007 ) 0.449 ( 0.006 ) 

  0.1% 0.247 ( 0.002 ) 0.231 ( 0.002 ) 0.700 ( 0.007 ) 0.656 ( 0.006 ) 

 

 

Table 3. Heritability parameter estimates on simulated genotypes and phenotypes.  These results are from the 

same simulations used to generate Table 2.  We report results on both liability and observed scales.  The true h2 

explained by the SNPs used to build the GRM is 25% on the liability scale for all simulations. 
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M PREVALENCE SNP SET ATT MLM LTMLM 

1000 50% all 1.61 1.64 1.64 

  causal 17.07 17.96 17.90 

  null 1.01 1.01 1.01 

 25% all 1.73 1.75 1.75 

  causal 19.64 20.46 20.56 

  null 1.02 1.01 1.01 

 10% all 1.90 1.89 1.93 

  causal 24.88 25.15 26.11 

  null 1.04 1.02 1.03 

       

10000 50% all 1.08 1.08 1.08 

  causal 2.65 2.66 2.66 

  null 1.00 1.00 1.00 

 25% all 1.10 1.10 1.10 

  causal 2.90 2.91 2.92 

  null 1.02 1.01 1.01 

 10% all 1.14 1.13 1.13 

  causal 3.58 3.58 3.61 

  null 1.03 1.02 1.02 

 

Table 4. Results on real genotypes and simulated phenotypes. We report average χ2 statistics.  M is the number of 

SNPs, and sample size is fixed at 500 cases and 500 controls.  
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SNP SET  ATT PCA MLM LTMLM 

Genome Wide Average 1.38 1.16 1.14 1.17 

Published SNPs Average 11.64 9.97 9.92 10.59 

Published SNPs/Genome Wide Average 8.44 8.61 8.67 9.03 

 

 

Table 5. Results on WTCCC2 MS data set. We report the genome-wide average χ2 over 360,557 SNPs and the 

average across 75 published SNPs, before or after normalizing by the genome-wide average.  All results are based 

on analysis of 10,034 individuals (see main text). 
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Figure S1. Liability Threshold Model.  The liability threshold model performs a transformation based on disease 

prevalence. As ascertainment becomes more drastic so does the difference between the PML for cases versus 

controls. In Figure S1, the portion of the population above the threshold is a case (blue).  For T2D, at a prevalence of 

8% (blue), the threshold is set to 1.405. In this region, the expected value for the posterior liability is 1.85 and the 

expected value for the controls is -0.14.  Comparing T2D to MS with disease prevalence around 0.1% and t around 

3.00, the PMLindiv for a control is 0.00 and 3.33 for a case. As the disease prevalence goes down the difference in the 

PMLindiv for cases versus controls increases, the transformation plays a larger role for rare diseases and results in a 

power gain for the LTMLM.   
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A 

 

B 

 

Figure S2. Mismatch in ancestry between MS cases and controls. We plot the first two principal components for 

(a) unmatched data with a severe mismatch (5,429 MS cases and 10,204controls), (b) stringently matched data using 

the first 20 PC(4,094 MS cases and 4,094 controls).  The controls are depicted in red and cases in black.  After PC 

matching the remaining samples show considerably less population stratification differentiation between cases and 

controls. 
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Term Description 

φ Quantitative liability, the unobserved trait 

β Effect Size of the SNP 

x Genotype values of candidate SNP, normalized to mean 0 variance 1 

u Genetic random effect excluding the candidate SNP 

e Environmental component  

X Matrix of genotype values of non-candidate SNPs, normalized to mean 0 and 

variance 1 

π Observed binary case control phenotype.  

t Threshold corresponding to the disease prevalence 

K Prevalence of the disease in the population 

P Proportion of cases in the sample 

𝜣̂ Genetic Relationship Matrix (GRM) computed from the data 

Θ True underlying Genetic Relationship Matrix (GRM) 

V Phenotypic covariance matrix 

I Identity matrix 

h2 Heritability parameter 

  
Table S1: Description of notation used and a brief description of the terms.  

 

Computation ATT MLM LTMLM 

GRM and V-1 NA O(MN2) O(MN2) 

PML NA NA O(N3+iter*N2) = O(N3) 

Assoc. Statistic O(MN) O(MN) or O(MN2) O(MN) 

Overall  O(MN) O(MN2) O(MN2) 

 

Table S2. Computational cost. M is the number of SNPs and N is the number of individuals.  We assume that M > 

N. The details of the computational costs of MLM are provided in Table 1 of ref11. 
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M 

 

 

 

N 

 

 

 

PREVALENCE 

 

 

SNP 

SET 

LIABILITY 

 

 

ATT 

 

 

 

MLM 

 

 

 

ATT 

CASE CONTROL 

 

 

MLM 

 

 

 

LTMLM 

5000 5000 50% all 1.24 1.26 1.14 1.15 1.15 

   causal 25.83 27.20 16.79 17.13 17.12 

   null 0.99 0.99 0.99 0.99 0.99 

  10% all 1.34 1.35 1.23 1.23 1.24 

   causal 35.41 36.83 24.59 24.79 25.18 

   null 1.00 1.00 0.99 0.99 0.99 

  1% all 1.57 1.50 1.45 1.40 1.46 

   causal 58.66 55.61 45.72 42.61 46.85 

   null 1.00 0.95 1.00 0.99 1.00 

  0.1% all 1.84 1.55 1.71 1.51 1.73 

   causal 85.47 70.68 71.99 59.53 74.05 

   null 1.00 0.85 1.00 0.93 1.00 

50000 5000 50% all 1.03 1.03 1.02 1.02 1.02 

   causal 3.56 3.57 2.68 2.68 2.69 

   null 1.00 1.00 1.00 1.00 1.00 

  10% all 1.04 1.04 1.02 1.02 1.02 

   causal 4.45 4.47 3.35 3.35 3.35 

   null 1.00 1.00 1.00 1.00 1.00 

  1% all 1.06 1.06 1.04 1.04 1.04 

   causal 6.75 6.72 5.47 5.42 5.48 

   null 1.00 1.00 1.00 1.00 1.00 

  0.1% all 1.08 1.08 1.07 1.07 1.07 

   causal 9.32 9.11 8.02 7.81 8.05 

   null 1.00 1.00 1.00 1.00 1.00 
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M 

 

 

N 

 

 

PREVALENCE 

 

SNP 

SET 

LIABILITY  

 

 

ATT 

 

 

 

MLM 

 

 

ATT 

CASE CONTROL  

 

MLM 

 

 

LTMLM 

1000 1000 50% all 1.24 1.25 1.16 1.17 1.16 

   causal 24.60 25.94 16.27 16.66 16.65 

   null 1.00 1.00 1.01 1.01 1.01 

  25% all 1.28 1.29 1.18 1.18 1.19 

   causal 28.07 29.34 18.66 19.02 19.08 

   null 1.01 1.01 1.01 1.00 1.00 

  10% all 1.33 1.34 1.22 1.22 1.22 

   causal 34.40 35.43 23.77 23.77 24.34 

   null 1.00 0.99 0.99 0.99 0.99 

  1% all 1.56 1.52 1.43 1.39 1.45 

   causal 56.78 54.64 44.01 41.11 46.16 

   null 1.00 0.98 1.00 0.99 1.00 

  0.1% all 1.73 1.59 1.60 1.48 1.64 

   causal 72.64 63.00 60.55 51.07 64.69 

   null 1.01 0.97 1.01 0.98 1.00 

5000 1000 50% all 1.05 1.05 1.03 1.03 1.03 

   causal 6.08 6.14 4.28 4.30 4.30 

   null 1.00 1.00 1.00 1.00 1.00 

  25% all 1.06 1.06 1.04 1.04 1.03 

   causal 6.64 6.69 4.69 4.69 4.70 

   null 1.00 1.00 1.00 1.00 1.00 

  10% all 1.07 1.07 1.05 1.05 1.05 

   causal 7.93 8.00 5.79 5.80 5.83 

   null 1.00 1.00 1.00 1.00 1.00 

  1% all 1.11 1.11 1.09 1.09 1.09 

   causal 12.39 12.27 9.89 9.71 10.01 

   null 1.00 1.00 1.00 1.00 1.00 

  0.1% all 1.17 1.16 1.14 1.13 1.15 

   causal 17.33 16.51 14.76 13.97 15.03 

   null 1.01 1.00 1.01 1.00 1.01 

 

 Table S3. Complete results on simulated genotypes and simulated phenotypes.  Results are analogous to Table 

2, but are reported for other values of M and N. For completeness, we also report ATT and MLM statistics computed 

using the underlying liability, where we again observe a loss in power for MLM at lower prevalence.  
 

  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2014. ; https://doi.org/10.1101/008755doi: bioRxiv preprint 

https://doi.org/10.1101/008755
http://creativecommons.org/licenses/by/4.0/


31 

 

 

M N PREVALENCE SNP SET ATT MLM LTMLM 

1000 1000 10% All 1.99 1.32 1.25 

   Causal 24.28 16.59 16.03 

   Null 1.54 1.01 0.95 

   Causal/All 12.19 12.54 12.80 

10000   All 1.13 1.04 1.03 

   Causal 3.40 3.24 3.20 

   Null 1.08 1.00 0.99 

   Causal/All 3.02 3.11 3.10 

20000   All 1.10 1.02 1.01 

   Causal 2.26 2.16 2.13 
   Null 1.07 1.00 0.99 
   Causal/All 2.07 2.11 2.10 

 

Table S4. Results on simulated genotypes and simulated phenotypes with population structure. We report 

average χ2 statistics for simulations with population structure (see main text). 
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M 

 

N 

 

PREVALENCE 

LIABILITY  

H-E 

 

REML 

OBSERVED  

H-E 

 

REML 

1000 1000 50% 0.251 ( 0.013 ) 0.253 ( 0.012 ) 0.16 ( 0.008 ) 0.161 ( 0.008 ) 

  25% 0.244 ( 0.012 ) 0.238 ( 0.011 ) 0.175 ( 0.009 ) 0.171 ( 0.008 ) 

  10% 0.234 ( 0.009 ) 0.228 ( 0.009 ) 0.223 ( 0.009 ) 0.217 ( 0.008 ) 

  1% 0.245 ( 0.008 ) 0.207 ( 0.005 ) 0.444 ( 0.014 ) 0.376 ( 0.009 ) 

  0.1% 0.245 ( 0.006 ) 0.176 ( 0.003 ) 0.695 ( 0.018 ) 0.499 ( 0.009 ) 

5000 1000 50% 0.245 ( 0.016 ) 0.255 ( 0.014 ) 0.156 ( 0.01 ) 0.162 ( 0.009 ) 

  25% 0.261 ( 0.016 ) 0.261 ( 0.015 ) 0.187 ( 0.011 ) 0.188 ( 0.011 ) 

  10% 0.245 ( 0.013 ) 0.249 ( 0.013 ) 0.233 ( 0.012 ) 0.236 ( 0.012 ) 

  1% 0.246 ( 0.006 ) 0.237 ( 0.006 ) 0.446 ( 0.011 ) 0.429 ( 0.011 ) 

  0.1% 0.247 ( 0.005 ) 0.222 ( 0.004 ) 0.700 ( 0.014 ) 0.631 ( 0.012 ) 

 

Table S5. Heritability parameter estimates on simulated genotypes and phenotypes.  Results are analogous to 

Table 3, under different settings of M and N.   

 

 

M 

 

N 

 

PREVALENCE 

LIABILITY  

HE 

 

REML 

OBSERVED  

HE 

 

REML 

1000 10000 10% 0.49 ( 0.01 ) 0.442 ( 0.007 ) 0.42 ( 0.007 ) 0.465 ( 0.009 ) 

10000   0.348 ( 0.024 ) 0.375 ( 0.014 ) 0.357 ( 0.013 ) 0.413 ( 0.041 ) 

20000   0.374 ( 0.027 ) 0.384 ( 0.018 ) 0.365 ( 0.017 ) 0.457 ( 0.045 ) 

 

Table S6. Heritability parameter estimates on simulated genotypes and phenotypes with population structure. 
These results are from the same simulations used to generate Table S5.  We report results on both liability and 

observed scales.  The true h2 explained by the SNPs used to build the GRM is 25% on the liability scale for all 

simulations.  We report results on both liability and observed scales.  The true h2 explained by the SNPs used to 

build the GRM is 25% on the liability scale for all simulations. 
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M 

 

PREVALENCE 

 

SET 

LIABILITY 

ATT 

 

MLM 

 

ATT 

CASE-CONTROL 

MLM 

 

LTMLM 

1000 50% all 1.95 2.07 1.61 1.64 1.64 

  causal 26.35 29.53 17.07 17.96 17.90 

  null 1.00 1.01 1.01 1.01 1.01 

 25% all 2.12 2.24 1.73 1.75 1.75 

  causal 30.37 33.66 19.64 20.46 20.56 

  null 1.03 1.02 1.02 1.01 1.01 

 10% all 2.29 2.37 1.90 1.89 1.93 

  causal 35.61 38.29 24.88 25.15 26.11 

  null 1.02 1.01 1.04 1.02 1.03 

          

10000 50% all 1.13 1.13 1.08 1.08 1.08 

  causal 3.63 3.71 2.65 2.66 2.66 

  null 1.01 1.00 1.00 1.00 1.00 

 25% all 1.15 1.15 1.10 1.10 1.10 

  causal 3.91 3.99 2.90 2.91 2.92 

  null 1.02 1.01 1.02 1.01 1.01 

 10% all 1.19 1.18 1.14 1.13 1.13 

  causal 4.74 4.83 3.58 3.58 3.61 

  null 1.02 1.01 1.03 1.02 1.02 

 

Table S7. Complete results on real genotypes and simulated phenotypes. Results are analogous to Table 4, but 

we also report ATT and MLM statistics computed using the underlying liability. 
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PREVALENCE ATT MLM LTMLM 

50% 30.0% 29.7% 30.4% 
25% 21.4% 22.2% 22.5% 
10% 21.4% 22.2% 22.5 

 

Table S8. Percentage of causal SNPs achieving genome-wide significance (p < 5 x 10-8). Results are based on 

500 cases and 500 controls with real genotypes and simulated phenotypes, where M = 1000 SNPs. 

 

 

 

M 

 

PREVALENCE 

LIABILITY  

HE 

 

REML 

OBSERVED  

HE 

 

REML 

1000 50% 0.241 ( 0.013 ) 0.243 ( 0.01 ) 0.153 ( 0.008 ) 0.155 ( 0.006 ) 

 25% 0.237 ( 0.011 ) 0.24 ( 0.009 ) 0.170 ( 0.008 ) 0.173 ( 0.006 ) 

 10% 0.24 ( 0.013 ) 0.227 ( 0.008 ) 0.228 ( 0.012 ) 0.216 ( 0.008 ) 

10000 50% 0.262 ( 0.01 ) 0.276 ( 0.009 ) 0.167 ( 0.006 ) 0.176 ( 0.006 ) 

 25% 0.258 ( 0.01 ) 0.274 ( 0.01 ) 0.185 ( 0.007 ) 0.197 ( 0.007 ) 

 10% 0.263 ( 0.008 ) 0.273 ( 0.008 ) 0.250 ( 0.008 ) 0.260 ( 0.008 ) 

 

Table S9. Heritability parameter estimates on real genotypes and simulated phenotypes.  These results are from 

the same simulations used to generate Table 4.  The true heritability explained by the SNPs used to build the GRM is 

25% on the liability scale for all simulations.   

 
. 
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SNP SET  ATT PCA MLM LTMLM 

GENOME WIDE AVERAGE 1.38 1.16 1.14 1.17 

GENOME WIDE LD SCORE INTERCEPT 1.29 1.09 1.08 1.10 

PUBLISHED SNPS AVERAGE 11.64 9.97 9.92 10.59 

PUBLISHED SNPS/GENOME WIDE AVERAGE 8.44 8.61 8.67 9.03 

PUBLISHED SNPS/LD SCORE INTERCEPT 9.06 9.17 9.20 9.66 

 

Table S10: Results on WTCCC2 MS data set with calibration via LD Score regression. We report the genome 

wide χ2 averages using 10,034 individuals over 360,557 SNPs and the average across 75 published SNPs 

standardized by the genome wide average and LD Score regression intercept.   
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SNP SET N ATT MLM LTMLM 

GENOME WIDE AVERAGE 8188 1.16 1.11 1.14 

PUBLISHED SNPS AVERAGE  8.94 8.26 8.76 

PUBLISHED SNPS/GENOME WIDE AVERAGE  7.73 7.45 7.71 

GENOME WIDE AVERAGE 10034 1.38 1.14 1.17 

PUBLISHED SNPS AVERAGE  11.64 9.92 10.59 

PUBLISHED SNPS/GENOME WIDE AVERAGE  8.44 8.67 9.03 

GENOME WIDE AVERAGE 15633 3.95 1.23 1.08 

PUBLISHED SNPS AVERAGE  18.54 11.30 5.76 

PUBLISHED SNPS/GENOME WIDE AVERAGE  4.69 9.20 5.32 

 

Table S11. Results on WTCCC2 MS data set at different levels of QC. We report results for stringently matched 

(N = 8,188), partially matched (N = 10,034) and unmatched (N = 15,633) data sets (see main text).  

 

 
N 

Liability 
HE 

 
ReML 

Observed 
HE 

 
ReML 

8188 0.363 (0.0017) 0.260 (0.001) 0.979 (0.005) 0.702 (0.003) 

10034 0.704 (0.009) 0.279 (0.001) 1.901 (0.025) 0.753 (0.002) 

15633 2.792 (0.010) 0.293 (0.001) 7.543 (0.0266) 0.792 (0.002) 

 

Table S12: Heritability parameter estimates on WTCCC2 MS data set at different levels of QC.   We report 

results for stringently matched (N = 8,188), partially matched (N = 10,034) and unmatched (N = 15,633) data sets 

(see main text).  
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