Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Harsh environments and "fast" human life histories: What does the theory say?

Ryan Baldini
doi: https://doi.org/10.1101/014647
Ryan Baldini
UC Davis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ryanbaldini@gmail.com
  • Abstract
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

A common belief among human life history researchers is that "harsher" environments - i.e., those with higher mortality rates and resource stress - select for "fast" life histories, i.e. earlier reproduction and faster senescence. I show that these "harsh environments, fast life histories" - or HEFLH - hypotheses are poorly supported by evolutionary theory. First, I use a simple model to show that effects of environmental harshness on life history evolution are incredibly diverse. In particular, small changes in basic but poorly understood variables - e.g., whether and how population density affects vital rates - can cause selection to favor very different life histories. Furthermore, I show that almost all life history theory used to justify HEFLH hypotheses is misapplied in the first place. The reason is that HEFLH hypotheses usually treat plastic responses to heterogeneous environmental conditions within a population, whereas the theory used to justify such hypotheses treat genetic responses to environmental changes across an entire population. Counter-intuitively, the predictions of the former do not generally apply to the latter: the optimal response to a harsh environment within a large heterogeneous environment is not necessarily the optimal strategy of a population uniformly inhabiting the same harsh environment. I discuss these theoretical results in light of the current state of empirical research.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
  • Posted February 4, 2015.

Download PDF

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Harsh environments and "fast" human life histories: What does the theory say?
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
Share
Harsh environments and "fast" human life histories: What does the theory say?
Ryan Baldini
bioRxiv 014647; doi: https://doi.org/10.1101/014647
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Harsh environments and "fast" human life histories: What does the theory say?
Ryan Baldini
bioRxiv 014647; doi: https://doi.org/10.1101/014647

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (815)
  • Biochemistry (1128)
  • Bioengineering (718)
  • Bioinformatics (5733)
  • Biophysics (1946)
  • Cancer Biology (1383)
  • Cell Biology (1961)
  • Clinical Trials (71)
  • Developmental Biology (1340)
  • Ecology (2060)
  • Epidemiology (1096)
  • Evolutionary Biology (4336)
  • Genetics (3048)
  • Genomics (3931)
  • Immunology (840)
  • Microbiology (3301)
  • Molecular Biology (1221)
  • Neuroscience (8408)
  • Paleontology (62)
  • Pathology (169)
  • Pharmacology and Toxicology (304)
  • Physiology (401)
  • Plant Biology (1143)
  • Scientific Communication and Education (318)
  • Synthetic Biology (469)
  • Systems Biology (1601)
  • Zoology (211)