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2	
	

Abstract	14	

	15	

Classical	 quantitative	 genetic	 analyses	 estimate	 additive	 and	 non-additive	 genetic	 and	16	

environmental	components	of	variance	from	phenotypes	of	related	individuals.	The	genetic	17	

variance	components	are	defined	in	terms	of	genotypic	values	reflecting	underlying	genetic	18	

architecture	 (additive,	 dominance	 and	 epistatic	 genotypic	 effects)	 and	 allele	 frequencies.	19	

However,	 the	 dependency	 of	 the	 definition	 of	 genetic	 variance	 components	 on	 the	20	

underlying	genetic	models	is	not	often	appreciated.	Here,	we	show	how	the	partitioning	of	21	

additive	 and	 non-additive	 genetic	 variation	 is	 affected	 by	 the	 genetic	 models	 and	22	

parameterization	of	allelic	effects.	We	show	that	arbitrarily	defined	variance	components	23	

often	capture	a	substantial	 fraction	of	 total	genetic	variation	regardless	of	 the	underlying	24	

genetic	 architecture	 in	 simulated	 and	 real	 data.	 Therefore,	 variance	 component	 analysis	25	

cannot	 be	 used	 to	 infer	 genetic	 architecture	 of	 quantitative	 traits.	 The	 genetic	 basis	 of	26	

quantitative	 trait	 variation	 in	 a	 natural	 population	 can	only	 be	defined	 empirically	 using	27	

high	resolution	mapping	methods	followed	by	detailed	characterization	of	QTL	effects.	 	28	
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Introduction	29	

	30	

Classical	 quantitative	 genetic	 analysis	 begins	 with	 the	 premise	 that	 the	 amount	 of	31	

phenotypic	 variation	 of	 quantitative	 traits	 in	 a	 natural	 population	 is	 determined	 by	 the	32	

genetic	variation	of	the	trait	and	environmental	variation	that	is	random	in	nature	(Fisher	33	

1918;	Falconer	 and	Mackay	1996).	Genetic	 variation	of	quantitative	 traits	 can	be	 further	34	

partitioned	 into	 the	 additive	 variance	 (!!),	 dominance	 variance	 (!!),	 and	 inter-locus	35	

interaction	(epistatic)	variance	(!!)	(Falconer	and	Mackay	1996).	All	of	the	genetic	variance	36	

components	 can	 be	 defined	 in	 terms	 of	 an	 underlying	 genetic	 model	 with	 additive,	37	

dominance	and	epistatic	genotypic	effects	and	allele	 frequencies	 (Table	1)	 (Fisher	1918).	38	

These	 quantitative	 genetic	 variance	 components	 are	 key	 parameters	 in	 theoretical	39	

treatments	of	quantitative	trait	variation.	The	additive	genetic	variance	VA	 is	of	particular	40	

importance	because	it	defines	the	level	of	narrow	sense	heritability	(ℎ!),	which	determines	41	

the	rate	of	response	to	natural	or	artificial	selection	(Lush	1943).	42	

	 The	relative	importance	of	!!,	!! ,	and	!! 	and	especially	the	additive,	dominant,	and	43	

epistatic	 gene	 actions	 they	 imply	 is	 controversial.	 Although	 genetic	 mapping	 studies	44	

frequently	 detect	 non-additive	 intra-	 and	 inter-locus	 interactions,	 variance	 component	45	

estimates	 nearly	 unanimously	 find	 that	!!	is	 the	 majority	 of	 the	 genetic	 variance,	 and	46	

dwarfs	 the	 contribution	of	!!	and	!! 	(Hill	et	al.	 2008;	Bloom	et	al.	 2013;	Mäki-Tanila	 and	47	

Hill	 2014;	 Zhu	 et	 al.	 2015).	 These	 studies	 are	 the	 basis	 for	 the	 argument	 that	!!	is	 the	48	

overwhelming	 determinant	 of	 genetic	 variation.	 Therefore,	 it	 is	 often	 stated	 that	 non-49	

additive	variance	–	and	implicitly	non-additive	gene	action	–	plays	only	a	minor	role	in	the	50	

genetic	 architecture	 of	 quantitative	 traits	 because	 non-additive	 gene	 action	 mostly	51	
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contributes	 to	!!;	and	 because	 the	magnitude	 of	!!	and	!! 	from	 dominance	 and	 epistasis,	52	

respectively	is	small	(Hill	et	al.	2008;	Mäki-Tanila	and	Hill	2014).	53	

	 However,	there	are	many	and	potentially	an	infinite	number	of	possible	ways	other	54	

than	!! ,	!! ,	 and	!! 	to	 partition	 genetic	 variance,	 all	 of	 which	 are	 dependent	 on	 allele	55	

frequencies	in	natural	populations	(Zeng	et	al.	2005).	The	implicit	equivalence	of	just	one	of	56	

the	ways,	!!,	!! ,	 and	!! 	with	 additive,	 dominant,	 and	 epistatic	 gene	 action	 respectively	 is	57	

problematic.	 Because	!! 	seeks	 to	 maximize	 the	 variance	 it	 explains,	 unless	 genotype	58	

frequencies	meet	 specific	 conditions	determined	by	 the	genetic	models,	 all	 types	of	 gene	59	

actions	 can	 contribute	 to	!! (Hill	 et	 al.	 2008),	 making	 it	 impossible	 to	 use	 variance	60	

components	 to	 quantify	 the	 contributions	 of	 them.	 However,	 with	 a	 few	 exceptions,	 for	61	

example,	by	distinguishing	statistical	and	physiological	epistasis	 (Cheverud	and	Routman	62	

1995;	 Alvarez-Castro	 and	 Carlborg	 2007),	 there	 has	 been	 a	 general	 lack	 of	 effort	 to	63	

distinguish	variance	components	from	the	underlying	gene	actions	that	contribute	to	them,	64	

which	has	caused	great	confusion.	Here,	we	show	that	the	partitioning	of	genetic	variance	65	

components	 is	 dependent	 on	 the	 parameterization	 of	 allelic	 effects,	 and	 that	 arbitrarily	66	

defined	variance	 components	have	 similar	variance	explaining	ability	 as	!!,	 regardless	of	67	

genetic	models.	We	 argue	 that	 the	 classical	 definition	 of	!!	is	 often	 inappropriate	 in	 the	68	

context	of	explaining	within-generation	variance,	and	that	partitioning	of	genetic	variance	69	

in	 general	 provides	 no	 information	 regarding	 the	 underlying	 genetic	 architecture	 of	70	

quantitative	traits.	71	

	72	

Results	73	

	74	
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Additive	genetic	variance	!!	is	a	major	determinant	of	total	genetic	variance		75	

Following	 conventional	 notation,	 we	 arbitrarily	 assign	 the	 genotypic	 value	 of	 the	 three	76	

possible	genotypes	aa,	Aa,	and	AA	at	a	single	bi-allelic	 locus	as	–!,	!,	and	+!	respectively	77	

(Falconer	 and	 Mackay	 1996).	 Additive	 and	 dominant	 gene	 actions	 (or	 “genetic	 model”)	78	

have	a	clear	meaning	with	this	parameterization.	An	“additive”	genetic	model	refers	to	the	79	

situation	 in	which	! = 0,	and	hence	there	 is	a	completely	 linear	relationship	between	the	80	

genotypic	value	and	the	number	of	copies	of	A	alleles.	A	“dominant”	genetic	model	is	when	81	

! = ±!,	or	when	the	genotypic	value	is	solely	determined	by	the	presence	of	the	dominant	82	

allele.	!!	(see	 Table	 1	 for	 this	 and	 other	 notations	 and	 definitions	 used	 throughout	 this	83	

study)	 accounts	 for	 the	 entirety	 of	 genetic	 variation	 when	 the	 true	 genetic	 model	 is	 an	84	

additive	 model	 (Figure	 1a).	!!	also	 explains	 the	 majority	 of	 genetic	 variation	 under	 the	85	

dominant	 genetic	 model	 unless	 the	 dominant	 allele	 is	 at	 high	 frequency	 (Figure	 1b).	86	

Extending	this	single-locus	model	to	two	unlinked	loci,	it	can	be	shown	that	!!	captures	the	87	

majority	 of	 overall	 genetic	 variance	 unless	 both	 loci	 are	 frequent	 under	 a	 two-locus	88	

“additive	 by	 additive”	 genetic	 model	 (Figure	 1c,d).	 These	 simple	 results	 have	 been	89	

previously	 shown	by	many	authors	 (Falconer	and	Mackay	1996;	Hill	et	al.	 2008;	Mackay	90	

2014)	but	are	reproduced	here	to	set	the	stage	for	the	following	results.	91	

	92	

Alternative	parameterizations	also	capture	the	majority	of	genetic	variance		93	

The	discrepancy	between	the	well-defined	genetic	models	and	the	literal	implication	of	the	94	

term	additive	genetic	variation	(!!),	i.e.,	apparently	non-additive	genetic	models	(dominant	95	

or	 additive	 by	 additive)	 produce	 significant	 additive	 variance,	 is	 confusing	 and	96	

counterintuitive.	 Realizing	 that	!! 	is	 a	 population	 property	 and	 relies	 on	 a	 specific	97	
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parameterization	of	 genotypes,	we	derive	alternative	parameterizations	and	quantify	 the	98	

variance	explained	by	them	(Table	1).	Using	a	single-locus	parameterization	 in	which	the	99	

heterozygotes	and	the	homozygotes	for	the	dominant	allele	are	coded	identically,	we	define	100	

an	alternative	dominance	variance	!!! 	(Table	1,	the	prime	symbol	is	used	to	distinguish	this	101	

variance	 from	 the	 conventional	 dominance	 variance	!!),	 which	 is	 found	 to	 capture	 the	102	

entire	 genetic	 variance	 when	 the	 true	 genetic	 model	 is	 a	 dominant	 model	 (Figure	 2a).	103	

Importantly,	 similar	 to	 the	 phenomenon	 in	 the	 classical	 parameterization	 in	 which	!!	104	

absorbs	the	majority	of	the	genetic	variance,	under	this	parameterization	!!! 	can	explain	a	105	

substantial	 amount	 of	 genetic	 variance	 even	 when	 the	 true	 genetic	 model	 is	 additive	106	

(Figure	2b).	Furthermore,	an	alternative	two-locus	parameterization	(see	Methods)	allows	107	

a	 newly	 defined	!!!!! 	variance	 component	 (Table	 1)	 to	 explain	 the	 entire	 genetic	 variance	108	

with	an	additive	by	additive	genetic	model	 (Figure	2c)	while	 still	 capturing	a	majority	of	109	

genetic	 variance	 under	 most	 circumstances	 when	 the	 genetic	 model	 is	 purely	 additive	110	

(Figure	2d).		111	

	112	

Conventional	 and	 alternative	 parameterizations	 capture	 the	majority	 of	 polygenic	113	

genetic	variance	114	

To	 extend	 the	 single-	 and	 two-locus	 results	 to	 polygenic	 genetic	 models,	 we	 simulated	115	

genotypes	 and	 phenotypes	 based	 on	 pre-defined	 genetic	 architecture	 and	 broad	 sense	116	

heritability	 (!!),	 and	 used	 mixed	 models	 to	 partition	 phenotypic	 variance	 under	 the	117	

classical	and	alternative	parameterizations	described	above.	As	expected,	when	the	genetic	118	

parameterizations	 and	 the	 resulting	 genetic	 covariance	 matrices	 match	 the	 true	 genetic	119	

models,	 the	 estimated	 variances	 fully	 explain	 the	 total	 genetic	 variances	 (Figure	 3).	120	
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Intriguingly,	similar	to	the	single-	and	two-locus	models,	all	genetic	parameterizations	are	121	

able	to	capture	a	major	(almost	always	>	40%)	fraction	of	total	genetic	variances	regardless	122	

of	the	true	genetic	architecture	(Figure	3).	Among	the	three	parameterizations,	the	classical	123	

definition	of	!!	appears	to	explain	the	most	genetic	variance	when	the	genetic	model	does	124	

not	 match	 its	 parameterization.	 This	 is	 likely	 because	 the	 genotypic	 coding	 under	 the	125	

conventional	additive	parameterization	is	insensitive	to	the	sign	of	the	allelic	effects;	while	126	

the	dominance	parameterization	requires	prior	knowledge	of	the	dominant	allele,	and	the	127	

additive	 by	 additive	 parameterization	 requires	 prior	 knowledge	 of	 the	 interacting	 pairs.	128	

Nonetheless,	it	is	remarkable	that	even	with	random	assignment	of	the	dominant	allele	or	129	

random	 pairing	 of	 loci	 and	 obvious	mischaracterization	 of	 the	 genetic	model,	!!! 	and	!!!!! 	130	

are	 able	 to	 explain	 the	 majority	 of	 genetic	 variance	 when	 the	 genetic	 architecture	 is	131	

additive	within	and	between	loci	(Figure	3b,c).	132	

	133	

!!,	!!! ,	and	!!!!! 	explain	a	large	fraction	of	phenotypic	variance	for	human	height	134	

It	has	been	previously	shown	that	!!	accounts	for	a	large	fraction	of	phenotypic	variance	in	135	

human	 height	 using	 a	 genetic	 covariance	matrix	 computed	 from	 genome-wide	 SNP	 data	136	

under	the	conventional	parameterization	(Yang	et	al.	2010).	Based	on	our	above	results,	we	137	

necessarily	expect	this	result	regardless	of	genetic	architecture	and	indeed	recapitulated	it	138	

using	 genotype	 and	 height	 data	 for	 individuals	 from	 the	GENEVA	project	 (Figure	 4).	We	139	

then	 asked	 if	!!! 	and	!!!!! 	under	 alternative	 parameterizations	 can	 do	 the	 same	 as	 in	140	

simulated	 data.	 Remarkably,	 and	 under	 the	 naive	 assumptions	 that	 minor	 alleles	 are	141	

recessive	and	randomly	pairing	interacting	SNPs,	both	!!! 	and	!!!!! 	can	explain	a	substantial	142	

fraction	of	phenotypic	variance,	with	even	larger	point	estimates	than	!!	(Figure	4).		143	
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	 A	 recent	 study	reported	a	major	contribution	of	!!	and	a	minor	contribution	of	!!	144	

for	 a	 number	 of	 quantitative	 traits,	 using	 the	 classical	 parameterization	 for	 the	 additive	145	

genetic	 variance	 to	 estimate	!!,	and	 a	 frequency-dependent	 parameterization	 (Table	 1)	146	

orthogonal	to	the	additive	genetic	value	to	estimate	!! (Zhu	et	al.	2015).	This	observation	147	

led	 to	 the	 conclusion	 that	 dominance	 variation	 contributes	 little	 to	 quantitative	 trait	148	

variation.	Using	the	same	method,	we	also	observed	similar	relative	contributions	of	!!	and	149	

!!	for	human	height	in	the	GENEVA	data	(Figure	4).	However,	this	is	only	one	of	the	many	150	

possible	ways	of	partitioning	variance.	Using	our	alternatively	defined	parameterizations	151	

and	a	similar	frequency-dependent	parameterization	orthogonal	to	the	dominance	genetic	152	

value	(Table	1),	we	find	a	much	more	substantial	contribution	of	dominance	variance,	i.e.,	153	

!!! 	(Figure	 4),	 further	 suggesting	 that	 partitioning	 of	 genetic	 variance	 is	 dependent	 on	154	

parameterization.	155	

	156	

Discussion	157	

	158	

In	animal	breeding,	!!	and	ℎ!	estimated	from	pedigree	data	inform	us	about	the	proportion	159	

of	 phenotypic	 variation	 that	 is	 “breedable”,	 which	 is	 precisely	 how	 these	 genetic	160	

parameters	 were	 initially	 defined	 and	 used.	 On	 the	 other	 hand,	 while	 broad	 sense	161	

heritability	(!!)	is	the	true	measure	of	the	contribution	of	all	sources	of	genetic	variation,	it	162	

is	 impossible	 to	 estimate	 in	 most	 natural	 populations,	 including	 humans,	 because	 no	163	

replicated	 measures	 can	 be	 made	 on	 genetically	 identical	 individuals,	 and	 therefore	ℎ!	164	

provides	a	lower	bound	of	!!.	Our	results	and	those	of	many	others	clearly	indicate	that	it	165	

is	a	reasonable	lower	bound	because	in	most	cases	ℎ!	is	close	to	!!.		166	
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	 While	!!	is	certainly	useful	to	give	an	indication	of	the	magnitude	of	!!,	our	results	167	

show	 that	 it	 is	 not	 the	 only	 one.	 Alternative	 parameterizations	 and	 the	 variance	 they	168	

explain,	!!! 	and	!!!!! ,	 do	 similarly	well	 in	most	 cases	 in	 simulated	as	well	 as	 real	data.	The	169	

emphasis	on	!!	in	animal	breeding	is	sensible	because	!!	but	not	!!! 	or	!!!!! 	determines	the	170	

potential	 of	 genetic	 progress	 (Lush	 1943).	 However,	 there	 is	 little	 reason	 to	 take	 this	!!	171	

centric	 perspective	 when	 explaining	 within-generation	 genetic	 variation.	 In	 natural	172	

populations,	 whether	 one	 of	 these	 variance	 components	 is	 more	 useful	 than	 another	173	

depends	 on	 the	 true	 underlying	 genetic	models.	 Though	 it	 is	 impossible	 to	 determine	 a	174	

clear	winner,	it	is	obvious	that	!!	fully	explains	genetic	variation	under	an	additive	model,	175	

!!! 	under	 a	 dominant	 model,	 and	!!!!! 	under	 an	 additive	 by	 additive	 epistatic	 model.	176	

Therefore	it	seems	only	appropriate	to	define	!!	as	the	additive	variance	when	the	genetic	177	

model	 is	 additive,	 but	 to	 define	!!! 	rather	 than	!!	as	 the	 dominance	 variance	 when	 the	178	

genetic	 model	 is	 dominant,	 and	 to	 define	!!!!! 	as	 the	 epistatic	 variance	 when	 the	 genetic	179	

model	is	entirely	additive	by	additive.	However,	these	definitions	are	only	valid	under	very	180	

specific	and	strict	circumstances,	limiting	their	use.	181	

	 Because	 of	 such	 strong	 dependency	 of	 genetic	 variance	 components	 on	 genetic	182	

models,	 the	 literal	 meaning	 implied	 by	 conclusions	 such	 as	 “the	 majority	 of	 genetic	183	

variance	is	due	to	additive	variance”	is	meaningless;	the	same	could	be	said	for	!!! 	and	!!!!! .	184	

The	definition	of	!!	as	“additive”	variance	 is	 thus	an	 inappropriate	one	because	 it	reflects	185	

the	 presumed	 genetic	 model	 and	 genetic	 parameterization	 rather	 than	 the	 true	 genetic	186	

model.	 The	 relative	 importance	 of	 estimated	 genetic	 variance	 components	 is	 also	187	

meaningless	 because	 it	 changes	 with	 the	 parameterizations.	 Therefore,	 genetic	 variance	188	
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components	do	not	inform	us	about	the	underlying	genetic	architecture.	This	is	true	for	!!,	189	

!!! ,	and	!!!!! 	and	independent	of	the	parameterization	used.	190	

	 The	 ability	 of	 arbitrarily	 defined	 parameterizations	 to	 capture	 the	 majority	 of	191	

genetic	 variance	 shares	 analogy	with	 the	 ability	 of	 the	 type	 I	 sum	 of	 squares	 to	 explain	192	

variance	that	is	not	always	attributable	to	the	experimental	factor	when	the	experimental	193	

design	is	not	orthogonal.	In	genetic	studies,	an	orthogonal	design	is	not	always	achievable	194	

and	 impossible	 in	 natural	 populations.	 While	 orthogonal	 parameterizations	 and	195	

partitioning	of	variance	are	possible	subsequently	(Zeng	et	al.	2005)	(e.g.	the	portioning	of	196	

!! 	and	!! 	are	 based	 on	 orthogonal	 parameterizations,	 so	 are	!!! 	and	!!! ),	 they	 are	197	

fundamentally	 different	 from	 a	 hypothetical	 designed	 orthogonal	 experiment,	 in	 which	198	

different	 gene	 actions	 can	 be	 applied	 independently	 as	 treatments.	 Importantly,	 the	199	

additive	 and	 dominant	 gene	 actions	 as	 commonly	 defined	 (Figure	 1a,b),	 are	 two	200	

intrinsically	 inseparable	 terms	 and	 not	 independent,	 with	 a	 strictly	 additive	 model	201	

sometimes	 referred	 to	 as	 co-dominance.	 This	 is	 the	 root	 of	 the	 confusing	 convolution	 of	202	

different	variance	components,	especially	when	not	clearly	defined.	203	

	 In	the	modern	era	with	genome-wide	genetic	polymorphism	data,	the	segregation	of	204	

quantitative	 trait	 loci	 (QTLs)	 can	 be	 tracked	 by	 DNA	 markers	 in	 linkage	 or	 linkage	205	

disequilibrium	with	the	true	QTLs;	and,	in	rare	cases,	the	true	QTLs	themselves.	Therefore	206	

it	 is	possible	 to	 compare	 the	observed	genetic	models	with	 the	presumed	models	 and	 to	207	

define	 genetic	 architecture	 once	 the	 participating	 players	 have	 been	 identified.	 Genome	208	

wide	 association	 studies	 (GWAS)	 have	 become	 the	 most	 common	 implementation	 of	209	

marker	based	approaches.	However,	QTLs	identified	by	GWAS	fail	to	explain	the	majority	of	210	

genetic	variation	additively,	a	phenomenon	referred	to	as	“missing	heritability”	(Manolio	et	211	
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al.	2009).	Simultaneously	using	all	markers	additively	(Yang	et	al.	2010),	as	well	as	using	212	

our	newly	defined	parameterizations	assuming	alternative	genetic	models	(Figure	3,4),	can	213	

explain	a	 large	fraction	of	genetic	variation.	Although	this	holistic	method	cannot	 identify	214	

QTLs	 and	 offers	 no	 information	 on	 the	 underlying	 genetic	 models,	 it	 suggests	 that	 the	215	

heritability	 is	 just	missing	 but	 does	 not	 vanish.	 Strategies	 to	 find	 the	 heritability	 include	216	

increasing	sample	size	to	find	QTLs	of	smaller	size,	using	sequencing	to	find	QTLs	of	rarer	217	

frequencies,	 and	 testing	 for	 non-additive	 effects.	 Unfortunately,	 the	 effort	 to	model	 non-218	

additive	effects	 is	 limited	because	of	 its	requirement	for	much	larger	sample	size	and	the	219	

predominant	 assumption	 that	 non-additive	 effects	 are	 unimportant.	 Our	 results	 suggest	220	

that	 this	 assumption	 is	 unfounded.	 Undoubtedly,	 it	 is	 experimentally	 and	 statistically	221	

challenging	to	find	all	QTLs,	even	more	so	to	search	for	cryptic	genetic	models	other	than	222	

additivity	 and	 dominance	 within	 a	 single	 locus,	 including	 two	 way	 or	 higher	 order	223	

interactions,	 and	 other	 cryptic	 genetic	models.	 Like	 the	 single	 locus	models,	 these	more	224	

complex	genetic	models	may	not	ultimately	explain	the	missing	heritability.	Nonetheless,	it	225	

is	clear	that	the	current	standard	single-locus	approach	is	not	adequate	precisely	because	226	

of	the	missing	heritability	phenomenon	itself.		227	
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Least	squares	regression	interpretation	of	!!	235	

Consider	 a	 single	 biallelic	 locus	 in	 a	 diploid	 genome	 with	 alleles	 A	 and	 a,	 each	 with	236	

frequency	!	and	!	(! + ! = 1);	and	assign	genotypic	values	! = –!,	!,	and	+!	to	genotypes	237	

aa,	 Aa,	 and	 AA	 respectively.	 The	 average	 effects	 of	 A	 and	 a	 are	 then	!" 	and	–!"	238	

respectively,	 where	! = ! + !(! − !)	is	 the	 allele	 substitution	 effect	 and	 measures	 the	239	

change	 in	 phenotype	 in	 an	 individual	 if	 an	 allele	 a	 is	 substituted	 with	 A(Falconer	 and	240	

Mackay	1996).	The	breeding	value,	defined	as	the	expected	genotypic	value	of	the	progeny	241	

an	individual	produces,	is	the	sum	of	average	allelic	effects	each	diploid	individual	carries,	242	

and	 is	– 2!",	!" − !",	 and	2!"	for	 aa,	 Aa,	 and	 AA	 respectively.	 With	 only	 one	 locus,	 the	243	

total	 genetic	 variation	 in	 a	 randomly	 mating	 (thus	 in	 Hardy-Weinberg	 equilibrium)	244	

population	 can	 be	 partitioned	 into	 two	 orthogonal	 components,	 the	 additive	 genetic	245	

variance	!! ,	 which	 is	 defined	 as	 the	 variance	 due	 to	 breeding	 values,	2!"!! ,	 and	 the	246	

dominance	genetic	variance	!! = (2!"#)!	(Table	1)(Falconer	and	Mackay	1996).		247	

	 Alternatively,	we	can	define	a	random	variable	!!	as:		248	

!! =
0, !"#$%&'" = !!,
1, !"#$%&'" = !",
2, !"#$%&'" = !!.

	

This	parameterization	has	the	convenient	interpretation	that	!!	is	equal	to	the	number	of	A	249	

alleles.	It	is	easy	to	show	that	the	allele	substitution	effect	!	as	defined	above	is	the	slope	of	250	

the	 least	 squares	 regression	 of	 genotypic	 value	!	on	!!	in	 an	 idealized	 population	 with	251	

random	 mating	 (Figure	 S1).	 The	 additive	 genetic	 variance	 is	 then	252	

!! = !"# ! = !"# !!! = !!!"# !! = 2!"!!	and	 the	dominance	genetic	variance	!!	is	253	

the	 residual	 variance.	 It	 is	 easy	 to	 see	 that	 the	 least	 squares	 solution	 for	 this	 regression	254	
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seeks	 to	maximize	!!	and	minimize	!! .	 This	 least	 squares	 interpretation	 is	 not	 new	 and	255	

dates	back	to	the	early	days	of	quantitative	genetics(Fisher	1918).		256	

	 By	extension	of	 this	 least	 squares	 regression	 interpretation	of	 genetic	 variation,	 if	257	

we	arbitrarily	define	any	one	random	variable	!	or	more	than	one	of	them	and	fit	a	linear	258	

model	 of	 form	! = !" + !,	we	 can	partition	 genetic	 variance	 due	 to	 the	 assumed	 genetic	259	

model	!"# ! = !"# !" 	and	residual	variance	!"# ! .	260	

	261	

Derivation	of	dominance	variance	!!! 	using	least	squares	regression	262	

Now	we	 illustrate	 the	 idea	of	using	 least	squares	regression	 to	partition	genetic	variance	263	

due	 to	 dominant	 gene	 action	 and	 the	 remaining	 genetic	 variance.	We	define	 the	 random	264	

variable	!!! 	as:	265	

!!! =
0,                     !"#$%&'" = !!; 
2, !"#$%&'" = !" !" !!.	

The	 least	 square	 solution	 for	 the	 linear	 model	! = !′!!! + !	can	 be	 easily	 found	 to	 be	266	

!! = !
!!! ! +

!
!!! !	(Figure	S2).	Therefore	the	variance	due	to	!!

! 	is	!!! = !!!!
!!! ! + !" !.	The	267	

residuals	from	this	regression	are	0,	!!!!!! (! − !),	and	
!!!
!!! (! − !),	for	genotypes	aa,	AA,	and	268	

AA	 respectively.	 Similar	 to	!! 	and	!! ,	 we	 define	 the	 residual	 variance	 as	 an	 “additive	269	

deviation”	variance	!!!,	which	can	be	found	to	be	!!! = !!!!
!!! ! − ! !.	270	

	271	

Finding	!!!!! 	numerically	272	

Extending	the	 least	squares	regression	interpretation	of	genetic	variance	to	any	arbitrary	273	

random	 variable	 ! 	and	 finding	 the	 solution	 is	 not	 always	 easy.	 However,	 it	 is	274	

computationally	 trivial	 to	 find.	 For	 example,	 to	 numerically	 estimate	 the	 additive	 by	275	
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additive	variance	!!!!! ,	we	define	!!!!! 	as	follows	for	two	independently	segregating	loci	with	276	

alleles	A/a,	and	B/b	respectively:	277	

!! =
−1, !"#$%&'" = !!; 
0, !"#$%&'" = !";
1, !"#$%&'" = !!.

,	!! =
−1, !"#$%&'" = !!; 
0, !"#$%&'" = !";
1, !"#$%&'" = !!.

	278	

Then,	!!!!! = !!!!.	 We	 randomly	 draw	 100,000	 individuals	 with	 the	 specific	 genotypes	279	

according	 to	pre-defined	 allele	 frequencies	 and	 assign	 genotypic	 values	with	pre-defined	280	

genetic	models.	The	 slopes	!	can	be	 easily	 found	by	numerically	 regressing	!	onto	!.	 The	281	

proportion	of	genetic	variation	explained	by	this	parameterization	is	then	just	the	!!of	the	282	

regression.	283	

	284	

Mixed	model	analysis	of	simulated	and	real	data	285	

To	 extend	 the	 single-	 and	 two-locus	models	 to	 polygenic	models,	 we	 used	mixed	model	286	

analysis	 to	 partition	 phenotypic	 variation	 in	 simulated	 and	 real	 data.	 To	 simulate	287	

phenotypic	 data	 with	 pre-defined	 genetic	 models,	 we	 first	 drew	 from	 the	 U-shaped	288	

distribution(Hill	 et	 al.	 2008)	! ! ∝ !
!"	1,000	 realizations,	 which	 took	 possible	 values	 of	289	

0.01,	0.02,	…,	0.99.	Genotypes	for	these	! = 1,000	loci	were	randomly	assigned	according	to	290	

their	 Hardy-Weinberg	 frequencies	 to	! = 5,000 	individuals.	 Genetic	 values	 were	 then	291	

assigned	to	the	5,000	individuals	using	this	general	formula	! = !".	Each	of	the	columns	of	292	

the	!×!	matrix	!	was	coded	by	 the	additive	parameterization	!!	as	defined	above	 for	 the	293	

additive	genetic	model,	!!! 	for	 the	dominance	genetic	model.	 Similarly	 for	 the	additive	by	294	

additive	 genetic	model,	!! = 500	pairs	 of	 loci	were	 parameterized	 as	 defined	 above	 using	295	

!!!!! .	 The	 vector	!	was	 drawn	 from	 standard	 normal	 distribution.	 The	 phenotypic	 value	!	296	

for	each	individual	was	then	simulated	by	adding	random	noise	such	that	! = !+ !,	where	297	
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!	was	normally	distributed	with	zero	mean	and	variance	equal	to	!"# ! !!!!
!! .	!

!	was	the	298	

broad	sense	heritability	and	was	always	set	to	0.5.	299	

	 We	standardized	columns	of	!	and	computed	 the	covariance	matrix	as	!!!,	which	300	

was	further	scaled	by	the	mean	of	its	diagonal	values.	A	linear	mixed	model	! = !!+ !!+301	

!	was	fitted	to	the	data,	where	!	was	the	population	mean,	!	was	the	incidence	matrix	and	302	

in	 all	 cases	 in	 this	 study	 the	 identity	 matrix,	! 	was	 a	 random	 effect	 with	 variance	303	

covariance	matrix	!!!,	where	!	was	 simply	 the	 scaled	!!!	above	 and	!!	was	 the	 part	 of	304	

genetic	variance	due	to	the	specific	parameterization.	We	fitted	this	model	using	the	GCTA	305	

software(Yang	et	al.	2011)	with	REML	and	performed	simulations	100	times.	We	defined	306	

the	 heritability	 explained	 by	!! 	as	ℎ!/!! ,	 where	ℎ! = !!
!!!!!!

,	 and	!! 	was	 the	 simulated	307	

broad	sense	heritability.		308	

	 To	analyze	 real	data	where	 the	genetic	 architecture	 cannot	be	known	a	priori,	we	309	

downloaded	 genotype	 and	 phenotype	 data	 from	 dbGaP	 for	 the	 GENEVA	 Genes	 and	310	

Environment	Initiatives	in	Type	2	Diabetes	study	(phs000091.v2.p1).	We	pruned	the	data	311	

set	to	contain	5,497	unrelated	(nominal	genetic	relationship	as	calculated	by	GCTA	<	0.05)	312	

individuals	 with	 European	 ancestry	 based	 on	 both	 self-reported	 ethnicity	 and	 principal	313	

component	analysis.	We	then	computed	genetic	covariance	matrices	as	defined	above	using	314	

autosomal	SNPs	and	partitioned	phenotypic	variance	using	GCTA	where	sex	was	fitted	as	a	315	

fixed	 effect	 in	 the	model.	We	used	 the	parameterization	 (Table	 1)	 as	 defined	 in	 a	 recent	316	

study(Zhu	 et	 al.	 2015)	 to	 partition	 phenotypic	 variance	 into	!! ,	!! ,	 and	!! .	 We	 also	317	

partitioned	phenotypic	variance	 into	!!!,	!!! ,	and	!! ,	where	!!! 	was	defined	as	above	and	!!!	318	

was	estimated	by	defining	a	new	variable	!!! 	(Table	1),	where	319	
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!!! =

0, !"#$%&'" = !!,
1− !
1+ ! , !"#$%&'" = !",
−2!
1+ ! , !"#$%&'" = !!.
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Table	1	|	Notations	and	definitions	of	variance	components	in	this	study.	356	

Notation	 Variance	component	 Genotype	coding	

!!	 2!"[! + ! ! − ! ]!	 !! ∈ {0, 1, 2}	
!!	 (2!"#)!	 !! ∈ {0, 2!, 2 ! − ! }	
!!! 	 4!!!

1+ ! ! + !" !	
!!! ∈ {0, 2, 2}	

!!!	 2!!!
1+ ! ! − ! !	 !!! ∈ {0,

1− !
1+ ! ,

−2!
1+ !}	

!!!!! 	 computed	numerically	 !!!!! ∈ (!!,! − 1)(!!,! − 1)	
	357	

	 	358	
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Figure	Legends	359	

	360	

Figure	 1	 |	 Additive	 genetic	 variance	!! 	is	 a	 major	 determinant	 of	 total	 genetic	361	

variance.	 Under	 additive	 (a),	 dominant	 (b),	 or	 additive	 by	 additive	 (c,	 d)	 models,	 the	362	

proportion	 of	 total	 genetic	 variance	 explained	 by	 the	 additive	 genetic	 variance	!!	and	363	

dominance	 genetic	 variance	!!	are	 estimated	 either	 analytically	 (a,	 b)	 or	 numerically	 by	364	

simulation	(d).		365	

	366	

Figure	 2	 |	 Alternative	 parameterizations	 capture	 the	majority	 of	 genetic	 variance.	367	

Using	 an	 alternative	 parameterization	 that	 emphasizes	 dominant	 gene	 action,	 a	 newly	368	

defined	 dominance	 variance	 !!! 	and	 additive	 deviation	 variance	 !!! 	are	 estimated	369	

analytically	 under	 dominant	 (a)	 and	 additive	 (b)	 models.	 Using	 an	 alternative	370	

parameterization	 that	 emphasizes	 additive	 by	 additive	 gene	 action,	 a	 newly	 defined	371	

interaction	 variance	!!!!! 	is	 estimated	 numerically	 under	 additive	 by	 additive	 (c)	 and	372	

additive	(d)	models.	373	

	374	

Figure	 3	 |	 Conventional	 and	 alternative	 parameterizations	 capture	 the	majority	 of	375	

polygenic	genetic	variance.	Simulation	is	used	to	generate	data	sets	with	the	additive	(A),	376	

dominant	 (D),	 and	 additive	 by	 additive	 (AxA)	 genetic	 models	 and	!! ,	!!! ,	 and	!!!!! 	are	377	

estimated	 using	 linear	 mixed	 models.	 The	 results	 are	 presented	 as	 the	 proportion	 of	378	

heritability	 explained	 by	 the	 genetic	 variance	 component;	ℎ!! 	corresponds	 to	!!,	ℎ!!! 	to	!!! ,	379	

and	ℎ!!!!! 	to	!!!!! .	380	

	381	
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Figure	4	|	Variance	component	analyses	of	human	height	data.	Phenotypic	variation	of	382	

height	 (in	 cm)	 observed	 in	 the	 GENEVA	 study	 is	 partitioned	 into	 genetic	 variance	383	

components	as	indicated	(color-coded	bars)	and	environmental	variance	(!! ,	grey	bar).	The	384	

colors	 of	 bars	 correspond	 to	 the	 colors	 of	 the	 text	 indicating	 the	 variance	 components.	385	

Error	 bars	 indicate	 standard	 errors	 of	 the	 variance	 component	 estimates	 provided	 by	386	

GCTA.	Proportions	of	the	components	are	also	indicated.		387	

	388	

Figure	 S1	 |	 Least	 squares	 regression	 interpretation	 of	!! .	 This	 representation	 is	389	

adapted	 from	 Fig.	 7.2	 of	 Reference	 2.	 Grey	 circles	 indicate	 the	 genotypic	 value	 of	 each	390	

genotype,	which	 is	coded	as	0,	1,	2	 for	aa,	Aa,	and	AA	respectively.	A	regression	 line	(red	391	

line)	is	fitted	to	the	data,	on	which	the	fitted	values	are	indicated	by	white	circles.	The	fitted	392	

line	must	pass	through	the	center	of	 the	data,	as	 indicated	by	the	cross.	The	fitted	values	393	

are	 equivalent	 to	 breeding	 values.	 The	 arrows	 between	 the	 breeding	 values	 and	 the	394	

genotypic	 values	 are	 the	 dominance	 deviations,	 which	 are	 the	 same	 as	 residuals	 of	 the	395	

regression.	Note	that	the	data	points	are	weighted	by	their	frequencies	in	the	population.	A	396	

dominance	model	is	used	so	that	the	dominance	deviation	can	be	illustrated.		397	

	398	

Figure	 S2	 |	 Least	 squares	 regression	 interpretation	 of	!!! .	 Grey	 circles	 indicate	 the	399	

genotypic	value	of	each	genotype,	which	is	coded	as	0,	2,	2	for	aa,	Aa,	and	AA	respectively.	A	400	

regression	 line	(red	 line)	 is	 fitted	 to	 the	data,	on	which	 the	 fitted	values	are	 indicated	by	401	

white	circles.	The	fitted	line	must	pass	through	the	center	of	the	data,	as	indicated	by	the	402	

cross.	The	fitted	line	must	also	pass	through	the	circle	(half	grey	and	half	white	to	indicate	403	

the	overlap	of	the	genotypic	and	fitted	values)	denoting	genotype	aa.	The	fitted	values	are	404	
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equivalent	 to	dominance	values	as	defined	 in	 this	parameterization.	The	arrows	between	405	

the	dominance	values	and	the	genotypic	values	are	the	residuals	of	the	regression,	which	406	

we	define	as	“additive	deviation”,	 therefore	the	residual	variance	is	!!!.	Note	that	the	data	407	

points	are	weighted	by	 their	 frequencies	 in	 the	population.	An	additive	model	 is	used	so	408	

that	the	additive	deviation	can	be	illustrated.		409	

	410	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 26, 2016. ; https://doi.org/10.1101/041434doi: bioRxiv preprint 

https://doi.org/10.1101/041434


−a
aa

0 d
Aa

+a
AA

a

Additive

0.01 0.2 0.4 0.6 0.8 0.99
Allele frequency p(A)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on
 o

f g
en

et
ic

 v
ar

ia
nc

e

VA

−a
aa

0
Aa AA

+adb

Dominance

0.01 0.2 0.4 0.6 0.8 0.99
Allele frequency p(A)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on
 o

f g
en

et
ic

 v
ar

ia
nc

e

VA

VD

Additive by additive

BB

Bb

bb

aa Aa AA

−a

0

+a

G
en

ot
yp

ic
 v

al
ue

c

0.01
0.2

0.4
0.6

0.8
0.99

p(A) 0.01

0.2

0.4
0.6

0.8
0.99

p(B)
0

0.5

1

P
ro

po
rti

on
 o

f V
A

d

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 26, 2016. ; https://doi.org/10.1101/041434doi: bioRxiv preprint 

https://doi.org/10.1101/041434


−a
aa

0
Aa AA

+ada

Dominance

0.01 0.2 0.4 0.6 0.8 0.99
Allele frequency p(A)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on
 o

f g
en

et
ic

 v
ar

ia
nc

e

VD
'

−a
aa

0 d
Aa

+a
AA

b

Additive

0.01 0.2 0.4 0.6 0.8 0.99
Allele frequency p(A)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on
 o

f g
en

et
ic

 v
ar

ia
nc

e

VA
'

VD
'

Additive by additive

0.01
0.2

0.4
0.6

0.8
0.99

p(A) 0.01

0.2

0.4
0.6

0.8
0.99

p(B)
0

0.5

1

P
ro

po
rti

on
 o

f V
A
A''

c Additive

0.01
0.2

0.4
0.6

0.8
0.99

p(A) 0.01

0.2

0.4
0.6

0.8
0.99

p(B)
0

0.5

1

P
ro

po
rti

on
 o

f V
A
A''

d

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 26, 2016. ; https://doi.org/10.1101/041434doi: bioRxiv preprint 

https://doi.org/10.1101/041434


A D AxA

0.0

0.2

0.4

0.6

0.8

1.0

h
a2  / 
H

2
a

A D AxA

0.0

0.2

0.4

0.6

0.8

1.0

h
d'2  / 
H

2

b

A D AxA

0.0

0.2

0.4

0.6

0.8

1.0

h
aa
''

2
 / 
H

2

c

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 26, 2016. ; https://doi.org/10.1101/041434doi: bioRxiv preprint 

https://doi.org/10.1101/041434


0 10 20 30 40 50

Variance component (cm2)

41.84% 26.60%

45.93%

7.61%

56.96%

48.04%

46.17%

VA
' + VD

'

VA + VD

VAA
''

VD
'

VA

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 26, 2016. ; https://doi.org/10.1101/041434doi: bioRxiv preprint 

https://doi.org/10.1101/041434


−a

aa

0

Aa AA

+ad

0
aa

1
Aa

2
AA

−a

0

+a

G
en

ot
yp

ic
 v

al
ue

y - y = α(x - x)

(x, y)

breeding value

genotypic value

dominance deviation

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 26, 2016. ; https://doi.org/10.1101/041434doi: bioRxiv preprint 

https://doi.org/10.1101/041434


−a

aa

0 d

Aa

+a

AA

0
aa

2
Aa   AA

−a

0

+a

G
en

ot
yp

ic
 v

al
ue

y - y = δ'(x - x)

(x, y)

dominance value

genotypic value

additive deviation

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 26, 2016. ; https://doi.org/10.1101/041434doi: bioRxiv preprint 

https://doi.org/10.1101/041434

