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Abstract

Dual fluorescent reporter constructs, which measure gene expression from two identical pro-
moters within the same cell, allow total gene expression noise to be decomposed into an extrinsic
component, roughly associated with cell-to-cell fluctuations in cellular component concentrations,
and intrinsic noise, roughly associated with inherent stochasticity of the biochemical reactions in-
volved in gene expression [1]. A recent paper by Fu and Pachter presented frequentist statistical
estimators for intrinsic and extrinsic noise using data from dual reporters [2]. For comparison, I here
present results of a Bayesian analysis of this problem. I show that the orthodox estimators suffer from
pathologies such as predicting negative values for a manifestly non-negative quantity, i.e. variance,
and show that the Bayesian estimators do not suffer from such pathologies. In addition, I show that
the Bayesian analysis automatically identifies that optimal estimates of intrinsic and extrinsic noise
depend on a subtle combination of two statistics of the data, allowing for accuracies that are up to
twice the accuracy of the orthodox estimators in some parameter regimes.

I hope up this little worked out example contrasting orthodox statistical analysis based on ad hoc
estimators with estimators resulting from a Bayesian analysis, will be educational for others in the
field. I distribute a Mathematica Notebook with this paper that allows users to easily reproduce all
results and figures of the paper.

Introduction

How much of the variation in the expression of a gene across a set of single cells is caused by variations
in the internal cellular environment of each cell, such as the concentrations of various molecules that
are involved in gene expression, and how much variation would exist even if every cell had the exact
same cellular environment? To answer this question, a seminal early paper in the field of stochastic gene
expression by Elowitz, Swain, and Siggia [1], introduced a dual reporter construct in which two differ-
ent fluorescent proteins that are driven by identical promoter sequences are integrated into the genome.
Since, within each cell, each of the two promoters has experienced an identical cellular environment, the
difference in expression of the two reporters within a single cell quantifies the extent to which gene ex-
pression varies, even within a constant environment. The authors defined this variability of the reporters
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within single cells as the ‘intrinsic’ noise, and used this to decompose the total variance into this intrinsic
component, and the rest, which they called ‘extrinsic noise’. To illustrate the basic idea, let (xi, yi) be
the expression levels (i.e. fluorescence) of the first and second reporter in cell i and assume we have
measured such pairs of expression levels in n cells. The observed mean expression levels are

〈x〉 =
1

n

n∑
i=1

xi, (1)

and

〈y〉 =
1

n

n∑
i=1

yi. (2)

The total amount of observed variance of the two reporters across the n cells is

vtot =
1

n

n∑
i=1

(xi − 〈x〉)2 + (yi − 〈y〉)2, (3)

If we define the intrinsic variance vi as half of the average squared difference of the two reporters in each
cell (half because each of the two promoters is subject to this noise)

vi =
1

2n

n∑
j=1

(xj − yj)2, (4)

then it is easy to see that the total variance can be decomposed as

vtot = 2vi + 2cov(x, y) + (〈x〉 − 〈y〉)2 , (5)

where the covariance of the sample is given by

cov(x, y) =
1

n

n∑
i=1

(xi − 〈x〉) (yi − 〈y〉) . (6)

In [1] this covariance is defined to be the extrinsic variance, i.e.

ve = cov(x, y). (7)

When the two reporters have identical means, or when the data are normalized such that each reporter
has equal mean by construction, then the last term in equation (5) is zero, and the total variance vtot
naturally decomposes into a sum of the intrinsic variance vi and an extrinsic variance ve, i.e. vtot =
2vi + ve. Finally, the intrinsic and extrinsic noise levels are defined by dividing the variances by the
respective mean-squared, i.e. η2i = vi/(〈x〉〈y〉) and η2e = ve/(〈x〉〈y〉). Again, in [1] it is essentially
assumed that the means are equal, i.e. 〈x〉 = 〈y〉.

So far the intrinsic and extrinsic variances where defined directly in terms of the data, i.e. without
referring to an underlying probabilistic model. In a recent paper by Fu and Pachter [2], a more explicit
probabilistic model was formulated for the dual reporter system, and statistical estimators were con-
structed, both unbiased estimators, as well as estimators that minimize mean squared error. At a recent
visit to Berkeley, Lior brought this work to my attention and invited me to comment on it. In reply
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I promised to calculate the Bayesian solution for this problem, and to discuss further if this Bayesian
solution turns out to differ substantially from the orthodox statistical estimators.

In my opinion, this little problem turns out to be a highly illustrative and educational example of
why the Bayesian approach is so superior to an approach using estimators. It is known that, when the
estimators are not sufficient statistics, they can exhibit pathological behavior, see e.g. [3, 4] for concrete
examples. In this particular example, the orthodox estimators can predict negative values for a variance.
Second, as we will see below, while the orthodox estimators per definition use a single statistic of the
data, the Bayesian analysis shows that optimal estimates depend on a non-trivial combination of two
different statistics of the data.

Below I first introduce the basic setup of the problem and derive the form of the likelihood function. I
then discuss the maximum likelihood (ML) solution, which is most similar to the solutions obtained with
orthodox estimators. Analysis of the ML solution already clarifies why the orthodox estimators can give
absurd estimates in certain parameter regimes. I then derive Bayesian marginal posterior distributions
for the intrinsic and extrinsic noise and discuss their intricate dependence on two different statistics
of the data. In particular, I will discuss how the Bayesian analysis automatically incorporates subtle
dependencies in the inference of the intrinsic and extrinsic noise levels that are not captured by the
orthodox estimators.

Set-up, assumptions, and likelihood

We assume that there are nmeasurements, from n cells, of fluorescent reporter expression levels (xi, yi),
where 1 ≤ i ≤ n is the index of the cell, xi is the fluorescence of the first reporter and yi is the
fluorescence of the other reporter in the cell. In the paper of Elowitz et al. [1] these are CFP and YFP
proteins but the setup in principle applies to any dual reporter system.

To construct a likelihood model we make essentially the same assumptions as Fu and Pachter [2].
We assume the two reporters are constructed such that, within the same cell, the values xi and yi are
drawn independently from the same distribution that has some mean µi and variance vi. We will make
the assumption that this distribution is a Gaussian

P (xi, yi|µi, vi) =
1

2πvi
exp

[
−(xi − µi)2 + (yi − µi)2

2vi

]
. (8)

As an aside, since the Gaussian is the maximum entropy distribution conditioned on a given mean and
variance, assuming the Gaussian form arguably corresponds to the most general analysis conditioned
on these statistics only. As a second aside, we have here assumed that x and y come from an identical
distribution. We could relax this and assume that the means of x and y differ by a constant amount or by
a multiplicative factor, but since this analysis is mainly for illustrative purposes, we will not pursue this
more general formulation.

For each cell i, the mean µi and variance vi are themselves assumed to be drawn from some distribu-
tion as well. Note that vi is effectively what is meant with the intrinsic noise for cell i. Thus, if vi were
to significantly vary across cells, we would have to speak about a distribution of intrinsic noise values
rather than a given intrinsic noise. To simplify the problem, we follow Fu and Pachter [2] and assume
that vi = v in every cell. That way, there is an unambiguous intrinsic noise v. At this point it is good to
note that our basic biophysical understanding suggests that there is at least a Poisson component to the
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intrinsic noise level in cell i so that the variance vi must be at least as large as µi, i.e. vi ≥ µi, and this
suggests that intrinsic noise levels will likely scale with the mean expression level µi of each cell. Thus,
in a more serious analysis of this problem we would want to take such information into account. We
likely would also want to take into account that the measurements xi and yi are also subject to measure-
ment noise, and maybe also that genealogically close cells, such as sister cells that derived from a cell
division, may show non-negligible correlation in µi, and so on. However, since our aims here are mainly
to use this problem for illustrative purposes, we will ignore all these more subtle issues.

For the means µi we will assume that these have a distribution with overall mean µ and variance vµ.
Again, the max-ent assumption is to let this distribution be Gaussian as well:

P (µi|µ, vµ) =
1√

2πvµ
exp

[
−(µi − µ)2

2vµ

]
. (9)

With these assumptions, the probability to obtain values (xi, yi) from a single cell is given by marginal-
izing over the unknown mean µi of the cell i in question:

P (xi, yi|µ, vµ, v) =

∫ ∞
−∞

dµiP (xi, yi|µi, v)P (µi|µ, vµ). (10)

This integral can be easily performed by completing squares in the exponent and yields:

P (xi, yi|µ, vµ, v) =
1

2π
√
v
√
vµ + v/2

exp

[
−(xi − yi)2

4v
− (zi − µ)2

2(vµ + v/2)

]
, (11)

where I have defined zi = (xi + yi)/2 to be the average of the two reporters in cell i. Note that the result
(11) makes intuitive sense. The difference between x and y is Gaussian distributed with a variance that is
the sum of the intrinsic variances of the two reporters, i.e. 2v. The difference between µ and the average
of the two reporters is Gaussian distributed with variance vµ + v/2, where the last term in the variance
comes from the standard-error of the deviation of the mean of the two reporters from the ‘true mean’ µi.

Since each cell is an independent measurement from this distribution, the probability of the entire
data-set is given by

P (D|µ, vµ, v) ∝ v−n/2 (vµ + v/2)−n/2 exp

[
−
∑
i

(xi − yi)2

4v
−
∑
i

(zi − µ)2

2(vµ + v/2)

]
, (12)

where I left out some constant prefactors that depend on n and π which are irrelevant for the final result.
Since we do not care about the mean µ, we will marginalize over this too. Using a uniform prior over µ
and integrating it out of the likelihood we obtain

P (D|vµ, v) ∝ v−n/2 (vµ + v/2)−(n−1)/2 exp

[
− n

4v
var(δ)− n

2(vµ + v/2)
var(z)

]
, (13)

where I have defined the empirically observed variances var(δ) =
∑
i(xi − yi)2/n, var(z) =

∑
i(zi −

〈z〉)2/n, and average 〈z〉 =
∑
i zi/n.

Equation (13) shows that, besides the number of data points n, inferences about v and vµ depend on
the data only through the statistics var(δ) and var(z). However, (13) also shows that these two statistics
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do not provide information about the parameters v and vµ in an independent manner. The likelihood
roughly corresponds to a product of two distributions. The first factor v−n/2e−nvar(δ)/(4v) relates v to the
statistic var(δ) and roughly says that v ≈ var(δ)/2, with deviations that are proportional to 1/

√
n. The

second factor (vµ + v/2)−(n−1)/2 e−nvar(z)/(2vµ+v) relates the statistic var(z) to the sum vµ + v/2, and
roughly implies that var(z) ≈ vµ + v/2 with deviations proportional to 1/

√
n. This already makes clear

that our estimates of v and vµ will depend on both var(δ) and var(z) in a nontrivial manner. However,
before I go on with the Bayesian solution to providing estimates for v and vµ, we will first derive the
maximum likelihood estimates, because these are closest to the orthodox estimators presented in the
paper of Fu and Pachter [2].

Maximum likelihood solution

To obtain the maximum likelihood (ML) estimates for v and vµ we solve for v∗ and vµ∗ such that the
derivatives of P (D|v, vµ) vanish at (v∗, vµ∗). We then obtain

v∗ =
var(δ)

2
, (14)

and

vµ∗ =
n

n− 1
var(z)− var(δ)

4
. (15)

The first of these two is highly intuitive and corresponds closely to the estimators found in the Elowitz et
al. paper [1] and in the paper of Fu and Pachter [2], i.e. differing only by terms of order 1/n from those
estimators. The second expression can be understood as follows. As we noted above, in the limit of large
n, the statistic var(z) will converge to vµ + v/2 and var(δ) will converge to 2v. Thus, for large n, the
difference between var(z) and var(δ)/4 should converge to vµ. As an aside, the reason the ML solution
has nvar(z)/(n − 1) rather than simply var(z) is because one degree of freedom was integrated out of
the likelihood (i.e. µ).

If we expand var(z) and var(δ) in terms of the empirical means, variances, and covariance of the
(x, y) measurements we obtain

vµ∗ = cov(x, y)− 1

4
(〈x〉 − 〈y〉)2 +

1

n− 1
〈z2〉, (16)

where I have again determined empirical variances and covariances: 〈x〉 =
∑
i xi/n, 〈y〉 =

∑
i yi/n,

〈z2〉 =
∑
i(xi+yi)

2/(4n), and cov(x, y) = −〈x〉〈y〉+
∑
i xiyi/n. Since x and y are drawn by definition

from distributions with the same mean, their empirical averages over n samples will deviate by an amount
that scales as 1/

√
n. Consequently, both the second and third term in equation (16) are of order 1/n.

Thus, up to terms of order 1/n, the ML estimate is given by the empirical covariance of x and y, which
is precisely the way in which extrinsic variance was defined in [1].

Orthodox estimators of extrinsic noise can be negative

The estimators for the extrinsic variance presented by Fu and Pachter [2] are also directly proportional
to cov(x, y). For example, the unbiased estimator of vµ is given by ncov(x, y)/(n − 1). It would thus
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seem that the ML solution, the estimators of Fu and Pachter, and the original expressions given in [1] all
closely agree.

However, it should also be fairly obvious that using a sample covariance as an estimator of a variance
is highly problematic. There is no guarantee that the sample covariance will be a positive number!
Especially when the true extrinsic variance vµ is small compared to the intrinsic variance v, one can easily
get that the covariance of the sample is negative. The estimators would then predict a negative value of
the extrinsic noise, and that is of course absurd. Note that, depending on the relative size of vµ and v,
this may in fact be a very common occurrence. In particular, when the extrinsic variance is negligible
compared to the intrinsic variance, the sample covariance will come out negative approximately half of
the time.

To illustrate this, I created a data-set by setting v = 1, and vµ = 10−4, i.e. with extrinsic fluctuations
being 100-fold smaller than the intrinsic fluctuations, and sampled n = 25 data points. The first two
times I randomly sampled such a synthetic dataset, I obtained positive covariance, but the third time I
obtained a dataset with negative covariance. This dataset is shown in the top left panel of Fig. 1. For
this dataset, we have var(δ) ≈ 2.14, which is only slightly larger than the value of 2v = 2 which is
expected based on the true value v = 1. Similarly, the observed value of var(z) ≈ 0.36, which is smaller
than the expected vµ + v/2 = 0.5001, but such fluctuations can of course occur with finite datasets.
Importantly, the sample covariance comes out negative, i.e. cov(x, y) ≈ −0.23, and the estimators
would thus estimate a negative value for vµ.

Correct maximum likelihood solution

One may ask whether this problem also affects the maximum likelihood estimate. The answer is: it
depends on whether one is careful when applying maximum likelihood. Above we obtained the max-
imum likelihood estimates of v and vµ by differentiating (13) with respect to v and vµ and demand-
ing that these derivatives are zero. However, there is no guarantee that the maximum of the likeli-
hood lies in the physically meaningful region v ≥ 0, vµ ≥ 0. From equation (16) we see that when
var(δ) > 4nvar(z)/(n − 1), the maximum of the likelihood function lies at a negative value of vµ.
Indeed, for the dataset of Fig. 1, the optimum of the likelihood occurs at a negative value of vµ, as
illustrated in the top-right panel of Fig. 1. The naive maximum-likelihood estimate of equations (14) and
(16) give v∗ ≈ 1.07, and vµ∗ ≈ −0.16, which is equally absurd.

Of course, the correct way of applying maximum likelihood is to make use of the information that v
and vµ are non-negative quantities and find the maximum of the likelihood on the domain v ≥ 0, vµ ≥ 0.
One then finds that, whenever var(δ)/4 > nvar(z)/(n− 1), the correct maximum is at

vµ∗ = 0, (17)

and
v∗ =

n

2(2n− 1)
(var(δ) + 4var(z)) . (18)

For the data-set of Fig. 1, this optimum occurs at v∗ ≈ 0.91 and vµ∗ = 0.
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Figure 1: Inference of (v, vµ) for a dataset with negative covariance. Top left: The n = 25 data-points
sampled according to the model with v = 1 and vµ = 0.0001. For this particular data-set the relevant
empirical statistics of the sample are var(δ) = 2.14, var(z) = 0.36, and cov(x, y) = −0.23. Top
right: Contourplot of the log-likelihood log[P (D|v, vµ)] including unphysical values at vµ < 0. The
maximum of the likelihood surface occurs at (v∗ = 1.07, vµ∗ = −0.16). Bottom left: The log-likelihood
surface restricted to vµ ≥ 0. Bottom right: Close-up of the log-likelihood surface around the optimum
(v∗ = 0.91, vµ∗ = 0) when restricted to vµ ≥ 0.
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Bayesian posteriors for v and vµ

In the Bayesian analysis, the next step after obtaining the likelihood is to obtain a joint posterior dis-
tribution P (v, vµ|D) by multiplying the likelihood P (D|v, vµ) by a prior P (v, vµ) that represents our
prior information about v and vµ (which for example includes that these are non-negative quantities),
and normalizing, i.e.

P (v,vµ|D) =
P (D|v, vµ)P (v, vµ)∫∞

0 dv′dv′µP (D|v′, v′µ)P (v′, v′µ)
. (19)

For simplicity, we will assume a uniform prior, which gives P (v, vµ|D) ∝ P (D|v, vµ). From the
point of view of the Bayesian analysis, the posterior represents all the information that the data provides
about v and vµ. Thus, for any region R in the upper-quadrant v ≥ 0, vµ ≥ 0, we can calculate the
probability that the true values of v and vµ lie in R by integrating the posterior over this region.

It is natural to be interested in giving credible intervals for v and vµ separately, and the next logical
step in the Bayesian analysis is thus to calculate marginal posterior distributions P (v|D) and P (vµ|D).
With these, one can then determine, for example, symmetric 90% credible intervals [vmin, vmax] such
that P (v < vmin|D) = 0.05 and P (v > vmax|D) = 0.05, and similarly for vµ. Such intervals would
give estimates of the ranges of values in v and vµ that are consistent with the data D (when considering
v and vµ separately).

The marginal posterior distributions for v and vµ are given by the integrals

P (v|D) =

∫ ∞
0

P (v, vµ|D)dvµ, (20)

and
P (vµ|D) =

∫ ∞
0

P (v, vµ|D)dv. (21)

In the Bayesian approach, these posterior distributions contain all information about the values of
v and vµ. In order to make the question for a single ‘best’ estimate of v or vµ well-defined, we must
specify how costly different possible errors in this ‘best estimate’ would be. That is, we need to specify
a loss or cost function C(ve, vt) that calculates the loss or cost for estimating ve when the true value of
v is vt. One can show that the optimal estimate ve is the one that minimizes the expected loss

〈C(ve)〉 =

∫
P (vt|D)C(ve, vt)dvt, (22)

where the expectation is taken with respect to the posterior distribution P (v|D) [4]. Commonly used loss
functions are the squared-deviation C(vt, ve) = (vt−ve)2, and absolute deviation C(vt, ve) = |vt−ve|.
These lead to optimal estimators that are given by the expected mean

ve =

∫
vP (v|D)dv, (23)

and median ∫ ve

0
P (v|D)dv =

1

2
, (24)

respectively.
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These estimators ve are optimal in the following sense. Imagine the following game played many
times: We pick values of v and vµ from the prior distribution P (v, vµ) (for example uniform over some
range) and generate a data-set D of n data-points using the model. We then calculate the posterior
marginal distributions P (v|D) and P (vµ|D) and use these to calculate either the expected means (when
minimizing expected square deviation) or expected medians (when minimizing expected absolute devi-
ation). In the limit of many repetitions of this game, the total loss (summed over all repetitions) will be
minimized by this procedure, and it will outperform all other estimators in this sense.

Marginal posterior for intrinsic noise v

The integral (20) can be performed analytically and we obtain for the posterior of v:

P (v|D) ∝ v−n/2 exp

[
−nvar(δ)

4v

] 1−
Γ
(
n−3
2 , nvar(z)v

)
Γ
(
n−3
2

)
 , (25)

where the incomplete gamma function is defined as

Γ(a, x) =

∫ x

0
ya−1e−ydy, (26)

and the ratio 0 ≤ Γ(A, x)/Γ(A) ≤ 1 is also known as the regularized incomplete gamma function.
It is instructive to analyze this posterior P (v|D) in some detail. Like the likelihood (13), the posterior

naturally decomposes into two factors. The first factor, v−n/2e−nvar(δ)/(4v), is the same as the first factor
in the likelihood and says, roughly speaking, that v must be close to var(δ)/2. If the posterior consisted
only of this factor, then inferences about the intrinsic noise v would only depend on var(δ). The maximal
posterior value of v would be var(δ)/2 and the posterior mean (which minimizes expected square loss)
would be nvar(δ)/(2(n − 4)). These estimates are very similar to the estimator given by Elowitz et al.
[1] and the estimators proposed in the Fu and Pachter paper [2]. Thus, these estimators essentially only
use the statistic var(δ) to estimate v and ignore other features of the data.

However, this is not the only factor in the Bayesian posterior (25)! There is a second factor (the part
with the incomplete gamma-function within square brackets) that depends on the data through var(z).
To understand the meaning of this factor, Fig. 2 (left panel) shows the full posterior and the two factors
out of which it is composed for the data-set with v = 1 and vµ = 0.0001 that I introduced above.

If the posterior consisted only of the first factor v−n/2e−nvar(δ)/(4v), it would be given by the red
curve in the left panel of Fig. 2. It would take on a maximum at v∗ = var(δ)/2 ≈ 1.07, its mean would
be 〈v〉 ≈ 1.27, its median vmed ≈ 1.20, and the symmetric 90% posterior probability interval would be
[vmin, vmax] = [0.76, 2.04].

However, there is also a factor depending on the variance var(z) of the average expression z =
(x+y)/2 across the cells, shown in blue. This factor is 1 for small values of v and then starts dropping at
some critical value of v, which is approximately at v = 2nvar(z)/(n−3), which is equal to 0.82 for this
dataset. Because of this, the full posterior (yellow curve) is shifted toward slightly smaller values of v,
and it becomes significantly more tightly peaked. The yellow posterior takes on a maximum at v∗ ≈ 0.91,
its mean equals 〈v〉 ≈ 0.96, its median equals vmed ≈ 0.93 and its symmetric 90% posterior probability
interval equals [vmin, vmax] = [0.65, 1.36]. Importantly, the 90% posterior probability interval is almost
half as wide for the full posterior (yellow curve) compared to posterior based on the first factor only (red
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Figure 2: Decomposition of the posterior distribution P (v|D) for two different data-sets. Left panel:
The full posterior distribution P (v|D) (yellow curve) for the data-set of n = 25 points sampled from
the distribution with v = 1 and vµ = 0.0001 introduced previously. The red curve shows the part of
the posterior v−n/2e−nvar(δ)/(4v) that depends on var(δ) only, whereas the blue curve shows the factor
[1 − Γ((n − 3)/2, nvar(z)/v)/Γ((n − 3)/2)] that depends on var(z). The yellow curve is the full
posterior obtained by multiplying the factors represented by the red and blue curves. The green curve
shows the posterior P (v|D, vµ = 0) that would be obtained if it were known that there is no extrinsic
noise, i.e. vµ = 0. Right panel: The same curves (except the green curve) for a data-set of n = 25
points sampled from the distribution with v = 1 and vµ = 4.

curve). That is, for this data-set, inclusion of the second factor that depends on the statistic var(z) almost
doubles the accuracy of the estimate.

Intuitively, the blue curve represents the impact on v of information about vµ, which is encoded in
the statistic var(z). So how can information about vµ lead to an almost doubling of the estimate of v? To
understand this, let’s imagine we knew in advance that vµ is very small. For illustration, let’s assume that
we know vµ = 0, i.e. that there is no extrinsic noise at all. In that case the x and y measurements in each
cell become independent. That is, in each cell i the measurements xi and yi are drawn from independent
Gaussians with mean µ and variance v and the likelihood becomes

P (D|v, vµ = 0) = v−(2n−1)/2 exp

[
− n

2v

(
var(x) + var(y) +

1

2
(〈x〉 − 〈y〉)2

)]
, (27)

which has a maximum at

v∗ =
2n

2n− 1

(
var(x) + var(y)

2
+

1

4
(〈x〉 − 〈y〉)2

)
. (28)

Up to corrections of order 1/n, this is equal to the average of the variances var(x) and var(y). Thus,
when we know vµ = 0, then we base our estimate for v on 2n independent measurements: n measure-
ments determining the variance var(x) and n separate measurements determining the variance var(y). In
contrast, with the red curve v−n/2e−nvar(δ)/(4v), we are basing our estimate of v on only nmeasurements
of the difference (x − y) in each cell. This explains why, if we know vµ = 0, then the accuracy of our
estimate of v can become much larger.

This should elucidate that the effect of incorporating knowledge of var(z), i.e. the effect of the blue
curve in Fig. 2, is similar to knowing that vµ = 0. To confirm this, the green curve in the left panel of
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Fig. 2 shows the posterior P (v|D, vµ = 0) that would be obtained if it were known that vµ = 0. Indeed,
we see that the full posterior (yellow) curve, is quite close to the posterior that would be obtained if we
knew vµ = 0. Thus, by incorporating the information var(z) contains, we have effectively incorporated
knowledge that vµ is very small.

Let’s now see how the blue accomplishes this. Remember that the likelihood (13) naturally decom-
posed into a factor v−n/2e−nvar(δ)/(4v) (the red curve) and a factor (vµ+v/2)−(n−1)/2e−nvar(z)/(2(vµ+v/2)).
This second factor, roughly speaking, says that vµ+v/2 should be close to var(z). The blue curve results
from integrating this factor over vµ. Again speaking very roughly, this integral measures how many ways
vµ can be set to match the requirement that (vµ + v/2) is close to var(z). If v/2 is small compared to
var(z), one can always match this requirement by picking a large value of vµ and so the contribution of
the integral is approximately constant. However, when v/2 becomes close to or even larger than var(z),
then there is essentially no value of vµ left that is consistent with the observed var(z), i.e. even with
vµ = 0 the sum vµ + v/2 is already larger than the observed var(z), and the integral will become small.
In other words, the blue curve roughly constrains v to be less than 2var(z). At the same time, the red
curve constraints v to be close to var(δ)/2. For our data, these two constraints together are equivalent to
knowing that vµ must be small and, consequently, the full posterior is similar to what would be obtained
if one knew that vµ is small.

Note also that, when vµ is large, the constraint that v < 2var(z) will become irrelevant. An example
is shown in the right figure of panel Fig. 2. Here I generated a data-set with v = 1 and vµ = 4. Because
the red curve depends only on var(δ), and var(δ) depends only on v, and not vµ, the red curve in the
right panel is similar to the red curve in the left panel. However, because vµ is now much larger, var(z)
is now also much larger, and the blue curve therefore only starts to drop at values of v that are outside
of the range supported by the red curve. As a consequence ,the final posterior P (v|D) (yellow) is now
entirely on top of the red curve v−n/2e−nvar(z)/(4v), i.e. the factor represented by the blue curve has no
influence in this case.

Marginal posterior for extrinsic noise vµ

It appears to me that the integral (21) cannot easily be done analytically (although, admittedly, I didn’t
try very hard, and I might have missed a clever substitution). However, it is straightforward to perform
these integrals numerically to obtain the posterior for vµ. Figure 3 shows the posterior distributions
that I obtained numerically for P (vµ|D) for the same two data-sets. Note that, for the first data-set, vµ is
correctly inferred to be small (at most 0.5 or so) and for the second data-set the maximum of the posterior
is close to the true value of vµ = 4.

I noticed that if one defines vµ = λv, i.e. λ = vµ/v is the size of the extrinsic noise relative to the
intrinsic noise, then the integral over v can be performed analytically and one obtains for the posterior of
λ:

P (λ|D) ∝
(
λ+

1

2

)(n−2)/2 (
λ+

1

2
+

2var(z)

var(δ)

)−n+3/2

. (29)

This solution makes clear that the ratio λ depends on the data only through the number of data-points n
and the ratio

R =
2var(z)

var(δ)
. (30)
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Figure 3: Posterior sP (vµ|D) for the extrinsic noise vµ for the same two data-set introduced previously.
Left panel: The posterior P (vµ|D) for the data-set with n = 25 points sampled from v = 1, vµ =
0.0001. Right panel: The posterior P (vµ|D) for the data-set with n = 25 points sampled from v = 1,
vµ = 4.

This is another illustration of how a Bayesian analysis can often identify what the relevant statistics of
the data are, i.e. here the ratio R is the only property of the data that is relevant for inferences regarding
λ.

The maximal posterior estimate of λ is given by

λ∗ = max

[
0,−1

2
+
n− 2

n− 1
R

]
. (31)

To determine the mean, median and 90% posterior intervals, it is helpful to introduce the parameter

ρ =
λ+ 1

2

λ+ 1
2 +R

. (32)

The probability density for ρ takes on the form of a beta-distribution:

P (ρ|n,R) =
ρ−1+n/2(1− ρ)−1+(n−3)/2

B
(
n
2 ,

n−3
2

)
−B

(
1

1+2R ,
n
2 ,

n−3
2

) , (33)

where as λ runs from 0 to ∞, ρ runs from ρmin = 1/(1 + 2R) to 1, B(a, b) is the beta-function, and
B(x, a, b) is the incomplete beta-function:

B(x, a, b) =

∫ x

0
ρa−1(1− ρ)b−1dρ, (34)

with B(a, b) = B(1, a, b). The mean, median and 90% posterior probability interval can then be ex-
pressed in terms of incomplete beta-functions. For example we find for the mean

〈λ〉 = −1

2
+R

B
(
n+2
2 , n−52

)
−B

(
1

1+2R ,
n+2
2 , n−52

)
B
(
n
2 ,

n−3
2

)
−B

(
1

1+2R ,
n
2 ,

n−3
2

) . (35)
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Note that in equation (31), we had to again explicitly check that −1/2 + (n− 2)R/(n− 1) ≥ 0. I leave
it as an entertaining exercise for the reader to convince her/himself that, although R may well come out
smaller than 1/2, through the subtle dependence on R of the ratio of beta-functions, the expression (35)
is guaranteed to be non-negative.

The median λmed can be obtained by finding ρmed that satisfies

2B

(
ρmed,

n

2
,
n− 3

2

)
= B

(
n

2
,
n− 3

2

)
+B

(
1

1 + 2R
,
n

2
,
n− 3

2

)
, (36)

and then setting λmed = −1/2 +Rρmed/(1− ρmed). The symmetric 90% posterior probability interval
can similarly be solved in terms of incomplete beta-functions and solutions for this interval are provided
in the Mathematica notebook that I distribute with this paper.

To illustrate the behavior of the posterior P (λ|D), Fig. 4 shows the posterior for the two data-sets
with n = 25 data-points shown previously, i.e. with v = 1, vµ = 0.0001 for the first and v = 1, vµ = 4
for the second.
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Figure 4: Posteriors P (λ|D) for the ratio of extrinsic to intrinsic noise λ = vµ/v, for the two data-sets.
Left panel: The posterior P (λ|D) for the data-set with n = 25 points sampled from v = 1, vµ = 0.0001.
Right panel: The posterior P (λ|D) for a data-set with n = 25 points sampled from v = 1, vµ = 4.

For the first data-set (left panel) , the ML value of λ is λ∗ = 0, the mean is 〈λ〉 ≈ 0.17, the median
λmed ≈ 0.11, and the shortest 90% posterior probability interval is [0, 0.37]. For the second dataset (right
panel) the ML value is λ∗ ≈ 2.84, the mean 〈λ〉 ≈ 3.85, the median λmed ≈ 3.47 and the symmetric
90% posterior probability interval is [1.49, 7.49]. All these are of course very reasonable given the true
values λ = 0.0001 and λ = 4, and the limited amount of data.

Discussion

I here looked at a simple statistical problem of inferring two unknown parameters (intrinsic and extrinsic
variance in gene expression) from measurements using dual reporter constructs. In the approach that
I presented, probability theory is seen as an extension of logic [4], and probabilities quantify states of
information regarding these unknown quantities. In this approach, the solution to the problem is the
calculation of posterior distributions P (v, vµ|D), P (v|D), and P (vµ|D) that represent how likely it is
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that v and vµ have particular values given our data D, and any other prior information that we may have
had regarding v and vµ.

Although the interpretation of probabilities as representing states of information is arguably the orig-
inal interpretation given by the early developers of the theory such as Bernoulli and Laplace, for most of
the 20th century the prevailing view has been that probabilities correspond to frequencies within repeated
‘random experiments’. In this view, probabilities can only be assigned to random variables. For this ex-
ample, the random variables would be the measured fluorescence intensities of the reporters in each cell.
In contrast, the parameters v and vµ would just be unknown constants and ‘not random’. Consequently,
in this interpretation it makes no sense to talk about ‘the probability that v is between this and that value’.
Instead, in frequentist statistics one constructs estimators of the unknown quantities that are functions
of the data, i.e. in the current problem the estimators of intrinsic and extrinsic variance proposed in [1]
and [2] are proportional to var(δ) and cov(x, y) respectively. The performance of these estimators is
then assessed by imagining fixing v and vµ, repeatedly sampling measurements from their frequency
distributions, calculating the estimators, and then calculating how close these estimators are to the true
values on average, e.g. their average squared deviation from the true values. However, note that such
performance measures only describe the average performance of the estimator across many experiments.
They do not say anything about the particular performance for a single individual data-set with particular
var(δ) and cov(x, y). In fact, it has been shown that if estimators are not based on sufficient statistics,
they can show severe pathologies such as predicting values that are known to be impossible [3, 4].

Indeed, our analysis showed that var(δ) and cov(x, y) are not sufficient statistics for the intrinsic
and extrinsic variances, and it is thus not surprising that they indeed show pathological behavior. In the
case of cov(x, y) the pathology is particularly simple: The estimator can easily estimate a negative value
for the extrinsic variance. For the intrinsic variance the situation was more subtle. When vµ is very
small relative to v, the estimator var(δ) is not producing absurd values, but it is clearly non-optimal,. By
comparing the Bayesian estimates with the orthodox estimator we saw that, when vµ ≈ 0, using var(δ)
roughly corresponds to throwing away half of the data.

Estimators that can produce absurd values for some datasets, such as cov(x, y) for this problem, are
sometimes defended on the grounds that, in the particular applications in question, such pathologies are
unlikely to occur. Indeed, in the systems studied in [1] the extrinsic variance vµ was never very small, and
the estimator cov(x, y) does not exhibit pathological behavior in this case. But this is not a valid defense
for the mathematical procedure as such. In my opinion, once we know that our method can in principle
produce nonsensical results, it is no longer acceptable as a rigorous mathematical procedure. Moreover,
as our analysis shows, there is no need to use such estimators. Instead of needing ad hoc guesses at the
functional form of the estimators, the Bayesian analysis gives posterior distributions for v and vµ that
are unambiguous and are easily calculated from first principles. Bayesian estimators that minimize any
desired loss function are also easily obtained, e.g. the estimator with minimal expected square deviation
is simply the posterior mean, and the estimator with minimal expected absolute deviation is the posterior
median.

We studied P (v|D), the Bayesian posterior for the intrinsic variance, in some detail and found that
it automatically incorporates rather subtle dependencies between v, vµ, and the two statistics var(δ) and
var(z). In certain parameter regions both var(δ) and var(z) contain useful information about v and the
Bayesian posterior then automatically incorporates that information, while in other parameter regimes
almost all relevant information is in var(δ) and the Bayesian posterior then automatically reduces to a
form that effectively only depends on var(δ). Importantly, these results did not rely on us inventing clever
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estimators or developing specific new procedures for this problem. We simply used the standard rules of
probability theory to calculate the posteriors P (v|D) and P (vµ|D). This automatically incorporated all
the subtle dependencies between v, vµ and the data. We in fact had to do quite some interpreting work
after the fact to understand how the Bayesian analysis was incorporating these subtle dependencies.

As another example, the Bayesian analysis also showed that, whereas there are no sufficient statistics
for either v or vµ, the ratio of sample variances R = 2var(z)/var(δ) is a sufficient statistic for the noise-
ratio λ = vµ/v and we derived an explicit expression for an estimator with minimal expected quadratic
deviation for this ratio in equation (35).

It is interesting to note that the two reporter construct of Elowitz et al. [1] was designed specifically
to be able to estimate intrinsic noise from measurements of expression differences δi = xi − yi across
different cells i. However, when we performed the Bayesian calculation we found that not only the
statistic var(δ) carried information about v, but that var(z) can carry subtle information about v as well.

This kind of story by now feels very familiar to me. I encountered Jaynes’ book on probability theory
interpreted as an extension of logic [4] during my PhD and I have been applying this methodology in my
own research ever since. By now it has happened many times that, when estimating some quantity of
interest from experimental data, intuition suggested that all information regarding the quantity of interest
should be contained in some single simple statistic of the data, only to find that the proper probabil-
ity calculation suggested a significantly more complex function of the data. After studying this more
complex function in more detail I would find, time and time again, that the Bayesian calculation was
automatically incorporating all kinds of subtle dependencies that I had not anticipated beforehand. It is
exactly these kinds of experiences that most strongly convinced me that calculations based on treating
probability theory as an extension of logic are vastly superior to more orthodox methods that demand
one think of probability only as a frequency in repeated experiments. My main motivation for writing up
the Bayesian solution for this simple problem in some detail is the hope that it might similarly convince
some others of the same: You don’t have to restrict yourself to outdated blunt instruments when extract-
ing information from your experimental data. Probability theory as extended logic provides an integrated
rigorous theoretical framework that is unambiguous, pathology-free, and often with demonstrably supe-
rior performance.
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