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Abstract

To extract patterns from neuroimaging data, various techniques, including statistical methods and machine learning
algorithms, have been explored to ultimately aid in Alzheimer's disease diagnosis of older adults in both clinical and
research applications. However, identifying the distinctions between Alzheimer's brain data and healthy brain data in
older adults (age > 75) is challenging due to highly similar brain patterns and image intensities. Recently, cutting-edge
deep learning technologies have been rapidly expanding into numerous fields, including medical image analysis. This
work outlines state-of-the-art deep learning-based pipelines employed to distinguish Alzheimer's magnetic resonance
imaging (MRI) and functional MRI data from normal healthy control data for the same age group. Using these
pipelines, which were executed on a GPU-based high performance computing platform, the data were strictly and
carefully preprocessed. Next, scale and shift invariant low- to high-level features were obtained from a high volume of
training images using convolutional neural network (CNN) architecture. In this study, functional MRI data were used
for the first time in deep learning applications for the purposes of medical image analysis and Alzheimer's disease
prediction. These proposed and implemented pipelines, which demonstrate a significant improvement in classification
output when compared to other studies, resulted in high and reproducible accuracy rates of 99.9% and 98.84% for the
fMRI and MRI pipelines, respectively.
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1. Introduction

1.1. Alzheimer's Disease

Alzheimer's disease (AD) is an irreversible, progressive
neurological brain disorder and multifaceted disease that
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slowly destroys brain cells, causing memory and thinking
skill losses, and ultimately loss of the ability to carry out
even the simplest tasks. The cognitive decline caused by
this disorder ultimately leads to dementia. For instance,
the disease begins with mild deterioration and grows pro-
gressively worse as a neurodegenerative type of demen-
tia. Diagnosing Alzheimer's disease requires very care-
ful medical assessment, including patient history, a mini
mental state examination (MMSE), and physical and neu-
robiological exams (Vemuri et al., 2012)(He et al., 2007).
In addition to these evaluations, structural magnetic reso-
nance imaging and resting state functional magnetic res-
onance imaging (rs-fMRI) offer non-invasive methods of
studying the structure of the brain, functional brain activ-
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ity, and changes in the brain. During scanning using both
structural (anatomical) and rs-fMRI techniques, patients
remain prone on the MRI table and do not perform any
tasks. This allows data acquisition to occur without any
effects from a particular task on functional activity in the
brain (Sarraf and Sun, 2016)(Grady et al., 2016)(Saverino
et al., 2016). Alzheimer's disease causes shrinkage of the
hippocampus and cerebral cortex and enlargement of ven-
tricles in the brain. The level of these effects is dependent
upon the stage of disease progression. In the advanced
stage of AD, severe shrinkage of the hippocampus and
cerebral cortex, as well as significantly enlarged ventri-
cles, can easily be recognized in MR images. This dam-
age affects those brain regions and networks related to
thinking, remembering (especially short-term memory),
planning and judgment. Since brain cells in the damaged
regions have degenerated, MR image (or signal) intensi-
ties are low in both MRI and rs-fMRI techniques (Warsi,
2012)(Grady et al., 2003)(Grady et al., 2001). However,
some of the signs found in the AD imaging data are
also identified in normal aging imaging data. Identify-
ing the visual distinction between AD data and images
of older subjects with normal aging effects requires ex-
tensive knowledge and experience, which must then be
combined with additional clinical results in order to ac-
curately classify the data (i.e., MMSE) (Vemuri et al.,
2012). Development of an assistive tool or algorithm to
classify MR-based imaging data, such as structural MRI
and rs-fMRI data, and, more importantly, to distinguish
brain disorder data from healthy subjects, has always been
of interest to clinicians (Tripoliti et al., 2008). A ro-
bust machine learning algorithm such as Deep Learning,
which is able to classify Alzheimer's disease, will assist
scientists and clinicians in diagnosing this brain disorder
and will also aid in the accurate and timely diagnosis of
Alzheimer's patients (Raventós and Zaidi).

1.2. Deep Learning
Hierarchical or structured deep learning is a modern

branch of machine learning that was inspired by the hu-
man brain. This technique has been developed based upon
complicated algorithms that model high-level features and
extract those abstractions from data by using similar neu-
ral network architecture that is actually much more com-
plicated. Neuroscientists have discovered that the neocor-
tex, which is a part of the cerebral cortex concerned with

sight and hearing in mammals, processes sensory signals
by propagating them through a complex hierarchy over
time. This served as the primary motivation for the devel-
opment of deep machine learning that focuses on com-
putational models for information representation which
exhibits characteristics similar to those of the neocortex
(Jia et al., 2014) (Ngiam et al., 2011). Convolutional neu-
ral networks (CNNs) that are inspired by the human vi-
sual system are similar to classic neural networks. This
architecture has been specifically designed based on the
explicit assumption that raw data are comprised of two-
dimensional images that enable certain properties to be
encoded while also reducing the amount of hyper param-
eters. The topology of CNNs utilizes spatial relationships
to reduce the number of parameters that must be learned,
thus improving upon general feed-forward backpropaga-
tion training (Erhan et al., 2010) (Schmidhuber, 2015).
Equation 1 demonstrates how the gradient component for
a given weight is calculated in the backpropagation step,
where E is error function, y is the neuron Ni, j , x is the
input, l represents layer numbers, w is filter weight with a
and b indices, N is the number of neurons in a given layer,
and m is the filter size.
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As shown in Equation 1: In convolutional layers, the
gradient component of a given weight is calculated by
applying the chain rule. Partial derivatives of the error for
the cost function with respect to the weight are calculated
and used to update the weight.

Equation 2 describes the backpropagation error for
the previous layer using the chain rule. This equation is
similar to the convolution definition, where x(i+a)( j+b) is
replaced by x(i−a)( j−b). It demonstrates the backpropaga-
tion results in convolution while the weights are rotated.
The rotation of the weights derives from a delta error in
the convolutional neural network.
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The error of backpropagation for the previous layer
(Equation 2) is calculated using the chain rule. This
equation is similar to the definition of convolution, but
the weights are rotated.

In CNNs, small portions of the image (called local
receptive fields) are treated as inputs to the lowest layer
of the hierarchical structure. One of the most important
features of CNNs is that their complex architecture pro-
vides a level of invariance to shift, scale and rotation, as
the local receptive field allows the neurons or processing
units access to elementary features, such as oriented
edges or corners. This network is primarily comprised
of neurons having learnable weights and biases, forming
the convolutional layer. It also includes other network
structures, such as a pooling layer, a normalization layer
and a fully connected layer. As briefly mentioned above,
the convolutional layer, or conv layer, computes the out-
put of neurons that are connected to local regions in the
input, each computing a dot product between its weight
and the region it is connected to in the input volume. The
pooling layer, also known as the pool layer, performs a
downsampling operation along the spatial dimensions.
The normalization layer, also known as the rectified linear
units (ReLU) layer, applies an elementwise activation
function, such as max (0, x) thresholding at zero. This
layer does not change the size of the image volume
(LeCun et al., 1998) (Jia et al., 2014) (Arel et al., 2010).
The fully connected (FC) layer computes the class scores,
resulting in the volume of the number of classes. As with
ordinary neural networks, and as the name implies, each
neuron in this layer is connected to all of the numbers
in the previous volume (Jia et al., 2014) (Szegedy et al.,
2015). The convolutional layer plays an important role in
CNN architecture and is the core building block in this
network. The conv layer's parameters consist of a set of
learnable filters. Every filter is spatially small but extends
through the full depth of the input volume. During the
forward pass, each filter is convolved across the width
and height of the input volume, producing a 2D activation
map of that filter. During this convolving, the network
learns of filters that activate when they see some specific
type of feature at some spatial position in the input. Next,
these activation maps are stacked for all filters along the
depth dimension, which forms the full output volume.
Every entry in the output volume can thus also be

interpreted as an output from a neuron that only examines
a small region in the input and shares parameters with
neurons in the same activation map (Jia et al., 2014)
(Wang et al., 2015). A pooling layer is usually inserted
between successive conv layers in CNN architecture. Its
function is to reduce (down sample) the spatial size of
the representation in order to minimize network hyper
parameters, and hence also to control overfitting. The
pooling layer operates independently on every depth
slice of the input and resizes it spatially using the max
operation (LeCun et al., 1998) (Jia et al., 2014) (Arel
et al., 2010) (Szegedy et al., 2015) (Wang et al., 2015). In
convolutional neural network architecture, the conv layer
can accept any image (volume) of size W1 × H1 × D1 that
also requires four hyper parameters, which are K, number
of filters; F, their spatial extent; S , the size of stride; and
P, the amount of zero padding. The conv layer outputs
the new image, whose dimensions are W2 × H2 × D2,
calculated as Equation 3. An understanding of how the
conv layer produces new output images is important to
realize the effect of filters and other operators, such as
stride (S), on input images.

W2 = (W1 − F)/S + 1
H2 = (H1 − F)/S + 1

D2 = D1

(3)

LeNet-5 was first designed by Y. LeCun et al. (LeCun
et al., 1998). This architecture successfully classified dig-
its and was applied to hand-written check numbers. The
application of this fundamental but deep network archi-
tecture expanded into more complicated problems by ad-
justing the network hyper parameters. LeNet-5 architec-
ture, which extracts low- to mid-level features, includes
two conv layers, two pooling layers, and two fully con-
nected layers, as shown in Figure 1. More complex CNN
architecture was developed to recognize numerous objects
derived from high volume data, including AlexNet (Ima-
geNet) (Krizhevsky et al., 2012), ZF Net (Lowe, 2004),
GoogleNet (Szegedy et al., 2015) and ResNet (He et al.,
2015). GoogleNet, which was developed by Szegedy et
al. (Szegedy et al., 2015), is a successful network that
is broadly used for object recognition and classification.
This architecture is comprised of a deep, 22-layer net-
work based on a modern design module called Incep-
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Figure 1: LeNet-5 includes two conv, two pool and two FC layers. The
original version of this network classified 10 digits. In this work, the
architecture was optimized for binary output, which were Alzheimer's
disease (AD) and normal control (NC), respectively.

tion. One of the fundamental approaches to improving
the accuracy of CNN architecture is to increase the size
of layers. However, this straightforward solution causes
two major issues. First, a large number of hyper pa-
rameters requires more training data and may also result
in overfitting, especially in the case of limited training
data. On the other hand, uniform increases in network size
dramatically increase interactions with computational re-
sources, which affect the timing performance and the cost
of providing infrastructure. One of the optimized solu-
tions for both problems would be the development of a
sparsely connected architecture rather than a fully con-
nected network. Strict mathematical proofs demonstrate
that the well-known Hebbian principle of neurons firing
and wiring together created the Inception architecture of
GoogleNet (Szegedy et al., 2015). The Inception mod-
ule of GoogleNet, as shown in Figure 2, is developed by
discovering the optimal local sparse structure to construct
convolutional blocks. Inception architecture allows for a
significant increase in the number of units at each layer,
while computational complexity remains under control at
later stages, which is achieved through global dimension-
ality reduction prior to costly convolutions with larger
patch sizes.

1.3. Data Acquisition

In this study, two subsets of the ADNI database
(http://adni.loni.usc.edu/) were used to train and validate
convolutional neural network classifiers. The first subset
included 144 subjects who were scanned for resting-state
functional magnetic resonance imaging (rs-fMRI) stud-
ies. In this dataset, 52 Alzheimer's patients and 92 healthy
control subjects were recruited (age group > 75). The sec-

Filter  
Concatenation 

3x3 convolutions 5x5 convolutions 1x1 convolutions 

1x1 convolutions 1x1 convolutions 3x3 max pooling 

1x1 convolutions 

Previous Layer 

Figure 2: Inception module with dimensionality reduction in GoogleNet
architecture

ond dataset included 302 subjects whose structural mag-
netic resonance imaging data (MRI) were acquired (age
group > 75). This group included 211 Alzheimer's pa-
tients and 91 healthy control subjects. Certain subjects
were scanned at different points in time, and their imag-
ing data were separately considered in this work. Table
1 presents the demographic information for both subsets,
including mini mental state examination (MMSE) scores.
MRI data acquisition was performed according to the
ADNI acquisition protocol (Jack et al., 2008). Scanning
was performed on three different Tesla scanners, Gen-
eral Electric (GE) Healthcare, Philips Medical Systems,
and Siemens Medical Solutions, and was based on iden-
tical scanning parameters. Anatomical scans were ac-
quired with a 3D MPRAGE sequence (TR=2s, TE=2.63
ms, FOV=25.6 cm, 256 × 256 matrix, 160 slices of 1mm
thickness). Functional scans were acquired using an EPI
sequence (150 volumes, TR=2 s, TE=30 ms, flip an-
gle=70, FOV=20 cm, 64 × 64 matrix, 30 axial slices of
5mm thickness without gap).

2. Related Work

Changes in brain structure and function caused by
Alzheimer’s disease have proved of great interest to nu-
merous scientists and research groups. In diagnostic
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Table 1: Two subsets of the ADNI database were used in this study, including 144 subjects with fMRI data and 302 subjects with MRI data. The
mean and standard deviation (SD) of age and total MMSE scores per group are delineated in the table below.

Modality Total Subj. Group Subj. Female Mean of Age SD Male Mean of Age SD MMSE SD

rs-fMRI 144 Alzheimer 52 21 79.42 16.35 31 80.54 15.98 22.70 2.10
Control 92 43 80.79 19.16 49 81.75 21.43 28.82 1.35

MRI 302 Alzheimer 211 85 80.98 21.6 126 81.27 16.66 23.07 2.06
Control 91 43 79.37 12.52 48 80.81 19.51 28.81 1.35

imaging in particular, classification and predictive mod-
eling of the stages of Alzheimer's have been broadly in-
vestigated. Suk et al. (Suk and Shen, 2013) (Suk et al.,
2015a) (Suk et al., 2015b) developed a deep learning-
based method to classify AD magnetic current imaging
(MCI) and MCI-converter structural MRI and PET data,
achieving accuracy rates of 95.9%, 85.0% and 75.8% for
the mentioned classes, respectively. In their approach,
Suk et al. developed an auto-encoder network to extract
low- to mid-level features from images. Next, classifi-
cation was performed using multi-task and multi-kernel
Support Vector Machine (SVM) learning methods. This
pipeline was improved by using more complicated SVM
kernels and multimodal MRI/PET data. However, the best
accuracy rate for Suk et al. remained unchanged (Suk
et al., 2014). Payan et al. of Imperial College London
designed (Payan and Montana, 2015) a predictive algo-
rithm to distinguish AD MCI from normal healthy control
subjects'imaging. In this study, an auto-encoder with 3D
convolutional neural network architecture was utilized.
Payan et al. obtained an accuracy rate of 95.39% in distin-
guishing AD from NC subjects. The research group also
tested a 2D CNN architecture, and the reported accuracy
rate was nearly identical in terms of value. Additionally,
a multimodal neuroimaging feature extraction pipeline for
multiclass AD diagnosis was developed by Liu et al. (Liu
et al., 2015). This deep-learning framework was devel-
oped using a zero-masking strategy to preserve all pos-
sible information encoded in imaging data. High-level
features were extracted using stacked auto-encoder (SAE)
networks, and classification was performed using SVM
against multimodal and multiclass MR/PET data. The
highest accuracy rate achieved in that study was 86.86%.
Aversen et al. (Arvesen, 2015), Liu et al. (Liu and Shen,
2014), Siqi et al. (Liu et al., 2014), Brosch et al. (Brosch
et al., 2013), Rampasek et al. (Rampasek and Golden-

berg, 2016), De Brebisson et al. (de Brebisson and Mon-
tana, 2015) and Ijjina et al. (Ijjina and Mohan, 2015)
also demonstrated the application of deep learning in au-
tomatic classification of Alzheimer's disease from struc-
tural MRI, where AD, MCI and NC data were classified.

3. Methods

Classification of Alzheimer's disease images and nor-
mal, healthy images required several steps, from prepro-
cessing to recognition, which resulted in the development
of an end-to-end pipeline. Three major modules formed
this recognition pipeline: a) preprocessing b) data conver-
sion; and c) classification, respectively. Two different ap-
proaches were used in the preprocessing module, as pre-
processing of 4D rs-fMRI and 3D structural MRI data re-
quired different methodologies, which will be explained
later in this paper. After the preprocessing steps, the
data were converted from medical imaging to a Portable
Network Graphics (PNG) format to input into the deep
learning-based classifier. Finally, the CNN-based archi-
tecture receiving images in its input layer was trained and
tested (validated) using 75% and 25% of the dataset, re-
spectively. In practice, two different pipelines were devel-
oped, each of which was different in terms of preprocess-
ing but similar in terms of data conversion and classifica-
tion steps, as demonstrated in Figure 3.

3.1. rs-fMRI Data Preprocessing

The raw data in DICOM format for both the
Alzheimer's (AD) group and the normal control (NC)
group were converted to NII format (Neuroimaging Infor-
matics Technology Initiative - NIfTI) using the dcm2nii
software package developed by Chris Roden et al.
http://www.sph.sc.edu/comd/rorden/mricron/dcm2nii.html.
Next, non-brain regions, including skull and neck voxels,
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Figure 3: End-to-end recognition based on deep learning CNN classification methods is comprised of three major components: preprocessing,
image conversion and classification modules. In the preprocessing step, two different submodules were developed for rs-fMRI and structural data.
Next, the image conversion module created PNG images from medical imaging data using the algorithm described in the following section of this
paper. The final step was to recognize AD from NC samples using CNN models, which was performed by training and testing models using 75%
and 25% of the samples, respectively.

were removed from the structural T1-weighted image
corresponding to each fMRI time course using FSL-BET
(Smith, 2002). Resting-state fMRI data, including
140 time series per subject, were corrected for motion
artefact using FSL-MCFLIRT (Jenkinson et al., 2002),
as low frequency drifts and motion could adversely
affect decomposition. The next necessary step was the
regular slice timing correction, which was applied to
each voxels time series because of the assumption that
later processing assumes all slices were acquired exactly
half-way through the relevant volumes acquisition time
(TR). In fact, each slice is taken at slightly different
times. Slice timing correction works by using Hanning-
windowed Sinc interpolation to shift each time series by
an appropriate fraction of a TR relative to the middle of
the TR period. Spatial smoothing of each functional time
course was then performed using a Gaussian kernel of 5
mm full width at half maximum. Additionally, low-level
noise was removed from the data by a temporal high-pass
filter with a cut-off frequency of 0.01 HZ (sigma =

90 seconds) in order to control the longest allowed
temporal period. The functional images were registered
to the individuals high-resolution (structural T1) scan
using affine linear transformation with seven degrees of
freedom (7 DOF). Subsequently, the registered images

were aligned to the MNI152 standard space (average
T1 brain image constructed from 152 normal subjects at
the Montreal Neurological Institute) using affine linear
registration with 12 DOF followed by 4 mm resampling,
which resulted in 45x54x45 images per time course.

3.2. Structural MRI Data Preprocessing
The raw data of structural MRI scans for both

the AD and the NC groups were provided in NII
format in the ADNI database. First, all non-brain
tissues were removed from images using Brain Ex-
traction Tool FSL-BET (Smith, 2002) by optimiz-
ing the fractional intensity threshold and reducing
image bias and residual neck voxels. A study-
specific grey matter template was then created us-
ing the FSL-VBM library and relevant protocol, found
at http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM (Douaud
et al., 2007). In this step, all brain-extracted images were
segmented to grey matter (GM), white matter (WM) and
cerebrospinal fluid (CSF). GM images were selected and
registered to the GM ICBM-152 standard template us-
ing linear affine transformation. The registered images
were concatenated and averaged and were then flipped
along the x-axis, and the two mirror images were then re-
averaged to obtain a first-pass, study-specific affine GM
template. Second, the GM images were re-registered to
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this affine GM template using non-linear registration, con-
catenated into a 4D image which was then averaged and
flipped along the x-axis. Both mirror images were then
averaged to create the final symmetric, study-specific non-
linear GM template at 2x2x2 mm3 resolution in stan-
dard space. Following this, all concatenated and aver-
aged 3D GM images (one 3D image per subject) were
concatenated into a stack (4D image = 3D images across
subjects). Additionally, the FSL-VBM protocol intro-
duced a compensation or modulation for the contrac-
tion/enlargement due to the non-linear component of the
transformation, where each voxel of each registered grey
matter image was multiplied by the Jacobian of the warp
field. The modulated 4D image was then smoothed by a
range of Gaussian kernels, sigma = 2, 3, 4 mm (standard
sigma values in the field of MRI data analysis), which
approximately resulted in full width at half maximums
(FWHM) of 4.6, 7 and 9.3 mm. The various spatial
smoothing kernels enabled us to explore whether classi-
fication accuracy would improve by varying the spatial
smoothing kernels. The MRI preprocessing module was
applied to AD and NC data and produced two sets of four
4D images, which were called Structural MRI 0 fully pre-
processed without smoothing as well as three fully pre-
processed and smoothed datasets called Structural MRI 2,
3, 4, which were used in subsequent classification steps.

4. Results and Discussion

4.1. rs-fMRI Pipeline
The preprocessed rs-fMRI time series data were first

loaded into memory using neuroimaging package Nibabel
(http://nipy.org/nibabel/) and were then decomposed into
2D (x,y) matrices along z and time (t) axes. Next, the 2D
matrices were converted to PNG format using the Python
OpenCV (opencv.org). The last 10 slices of each time
course were removed since they included no functional
information. During the data conversion process, a to-
tal of 793,800 images were produced, including 270,900
Alzheimer's and 522,900 normal control PNG samples.
In the data conversion step, the 4D time courses of sub-
jects were randomly shuffled, and five random datasets
were created in order to repeat training and testing of
the CNN classifier (fivefold cross-validation against all
of the data). The random datasets were labeled for bi-
nary classification, and 75% of the images were assigned

to the training dataset, while the remaining 25% were
used for testing purposes. The training and testing im-
ages were resized to 28x28 pixels and were then converted
to the Lightning Memory-Mapped Database (LMDB)
for high throughput for the Caffe Deep Learning plat-
form (Jia et al., 2014) used for this classification exper-
iment. The adopted LeNet architecture was adjusted for
30 epochs and initialized for Stochastic Gradient Descent
with gamma = 0.1,momentum = 0.9, learningrate =

0.01,weight decay = 0.005, and the step learning rate
policy dropped the learning rate in steps by a factor of
gamma every stepsize iteration. The mean of images was
calculated and subtracted from each image. Training and
testing of Caffe models were performed and were repeated
five times on the Amazon AWS Linux G2.8xlarge, in-
cluding four high-performance NVIDIA GPUs, each with
1,536 CUDA cores and 4GB of video memory and 32
High Frequency Intel Xeon E5-2670 (Sandy Bridge) vC-
PUs with 60 GB memory overall. An average accuracy
rate of 99.9986% was obtained for five randomly shuf-
fled datasets using the adopted LeNet architecture shown
in Table 2. Alternatively, the first set of five randomly
shuffled datasets was resized to 256x256 and was then
converted to LMDB format. The adopted GoogleNet was
adjusted for 30 epochs and initialized with the same pa-
rameters mentioned above, and the experiment was per-
formed on the same GPU server. An accuracy testing rate
of 100%, as reported in the Caffe log file, was achieved (in
practice, Caffe rounded the accuracy up after the seventh
decimal), as shown in Table 2. A very high level of accu-
racy of testing rs-fMRI data was obtained from both of the
adopted LeNet and GoogleNet models. During the train-
ing and testing processes, the loss of training, loss of test-
ing and accuracy of testing data were monitored. In Fig-
ures 4 and 5, the accuracy of testing and the loss of testing
of the first randomly shuffled dataset are presented for the
adopted LeNet and GoogleNet models, respectively.

4.2. Structural MRI Pipeline
The preprocessed MRI data were then loaded into

memory using a similar approach to the fMRI pipeline
and were converted from NII to PNG format using Ni-
babel and OpenCV, which created two groups (AD and
NC) four preprocessed datasets (MRI 0,2,3,4). Addi-
tionally, the last 10 slices of subjects, as well as slices
with zero mean pixels, were removed from the data. This
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Figure 4: The accuracy and loss of the first testing dataset are shown
over 30 epochs. As seen, the accuracy of testing data reached almost
99.99%, and the loss of testing data dropped down to zero in the LeNet
classifier.

step produced a total number of 62,335 images, with
52,507 belonging to the AD group and the remaining
9,828 belonging to the NC group per dataset. The data
were next converted to the LMDB format and resized to
28x28 pixels. The adopted LeNet model was set for 30
epochs and initiated for Stochastic Gradient Descent with
a gamma = 0.1, amomentum = 0.9, abaselearningrate =

0.01, aweight decay = 0.0005, and a step learning rate
policy dropping the learning rate in steps by a factor of
gamma every stepsize iteration. Next, the model was
trained and tested by 75% and 25% of the data for four
different datasets. The training and testing processes were
repeated five times on Amazon AWS Linux G2.8xlarge
to ensure the robustness of the network and achieved
accuracy. The average of accuracies was obtained for
each experiment separately, as shown in Table 2. The
results demonstrate that a high level of accuracy was
achieved in all of the experiments, with the highest ac-
curacy rate of 98.79% achieved for the structural MRI
dataset, which was spatially smoothed by sigma = 3mm.
In the second run, the adopted GoogleNet model was
selected for binary classification. In this experiment,
the preprocessed datasets were converted to LMDB for-
mat and resized to 256x256. The model was adjusted
for 30 epochs using Stochastic Gradient Descent with a
gamma = 0.1, amomentum = 0.9, abaselearningrate =

0.01, aweight decay = 0.0005, and a step learning rate
policy. The GoogleNet model resulted in a higher level of

Figure 5: Adopted GoogleNet training and testing resulted in a very
high level of accuracy of almost 100%. As seen, the loss of testing
approached zero in the 10th epoch. The accuracy rates of both the LeNet
and GoogleNet networks were close. However, the final accuracy of
GoogleNet was slightly better than the LeNet model.

accuracy than the LeNet model, with the highest overall
accuracy rate of 98.8431% achieved for MRI 3 (smoothed
by sigma = 3mm). However, the accuracy rate of the un-
smoothed dataset (MRI 0) reached 84.5043%, which was
lower than the similar experiment with the LeNet model.
This result may demonstrate the negative effect of interpo-
lation on unsmoothed data, which may in turn strengthen
the concept of spatial smoothing in MRI data analysis. In
practice, most classification questions address imbalanced
data, which refers to a classification problem in which the
data are not represented equally and the ratio of data may
exceed 4 to 1 in binary classification. In the MR analy-
ses performed in this study, the ratio of AD to NC images
used for training the CNN classifier was around 5 to 1. To
validate the accuracy of the models developed, a new set
of training and testing was performed by randomly select-
ing and decreasing the number of AD images to 10,722
for training, while the same number of images 9,828 was
used for the NC group. In the balanced data experiment,
the adopted LeNet model was adjusted for 30 epochs us-
ing the same parameters mentioned above and was trained
for four MRI datasets. In Table 2, the new results are iden-
tified with labels beginning with the B. prefix (Balanced).
The highest accuracy rate obtained from the balanced data
experiment only decreased around 1% (B. Structural MRI
3 = 97.81%) compared to the same datasets in the origi-
nal training. This comparison demonstrates that the new
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results were highly correlated to the initial results, con-
firming that even a precipitous decrease in the data ratio
from 5:1 to 1:1 had no impact on classification accuracy,
which validated the robustness of the trained models in
the original MRI classification.

Figure 6: A total of 14 values, including five averaged accuracies and
nine single accuracies from a total of 29 training CNN-based classi-
fiers (adopted LeNet and GoogleNet), are demonstrated. Almost perfect
accuracy was achieved using the ADNI fMRI data from both models.
Additionally, the ADNI MRI data were successfully classified with an
accuracy rate approaching 99%. These results demonstrate that CNN-
based classifiers are highly capable of distinguishing between AD and
NC samples by creating low- to high-level shift and scale invariant
features. The results also demonstrate that in MRI classification, spa-
tially smoothed data with sigma = 3 mm produced the highest accuracy
rates.(L:LeNet, G:GoogleNet)

Differentiation between subjects with Alzheimer's dis-
ease and normal healthy control subjects (older adults)
requires solid preprocessing and feature learning, which
reveal functional and structural dissimilarities between
Alzheimer's damage and routine effects of age on the
brain. In this study, two robust pipelines were designed
and implemented that were capable of producing consis-
tent and reproducible results. In the first block of the
pipelines, extensive data preprocessing was performed
against fMRI and MRI data, which removed potential
noise and artefacts from the data. Next, a convolutional
layer of CNN architecture consisting of a set of learn-
able filters, and which also serves as a shift and scale in-
variant operator, extracted low- to mid-level features (as
well as high-level features in GoogleNet). In the fMRI
pipeline, both adopted LeNet and GoogleNet architecture
were trained and tested by a massive number of images
created from 4D fMRI time series. Furthermore, removal
of non-functional brain images from data improved the
accuracy of recognition when compared to previous ex-

Figure 7: A middle cross-section of fMRI data (22, 27, 22) with thin-
ness of 4 mm, representing a normal healthy brain (top-right), and an
Alzheimer's brain are shown (top-left). A middle cross-section of struc-
tural MRI (45, 55, 45) with thickness of 2 mm, representing a normal
brain (bottom-left), and an Alzheimer's subject (bottom-right) are also
demonstrated. In both fMRI and MRI modalities, different brain pat-
terns and signal intensities are identified.

perience (Sarraf and Tofighi, 2016). In the MRI pipeline,
four sets of images (smoothed with different kernels) were
used to train and test the CNN classifier to ensure that
the best preprocessed data were employed to achieve the
most accurate trained model. The results demonstrate that
spatial smoothing with an optimal kernel size improves
classification accuracy (Figure 6). Certain differences in
image intensity (Figure 7), brain size of AD and NC sub-
jects, and lack of signals in brain regions of AD samples,
such as the frontal lobe, are strong evidence in support of
the success of the pipelines.

A common strategy employed is to visualize the
weights of filters to interpret the conv layer results. These
are usually most interpretable on the first conv layer,
which directly examines the raw pixel data, but it is also
possible to find the filter weights deeper in the network.
In a well-trained network, smooth filters without noisy
patterns are usually discovered. A smooth pattern with-
out noise is an indicator that the training process is suf-
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Table 2: The accuracy of testing datasets is demonstrated below. As shown, a very high level of accuracy in testing datasets was achieved in both
fMRI and MRI modalities in all of the runs. The experiment of the cells with asterisks * was not required in this study. Therefore, no value was
assigned. The datasets used for testing balanced data begin with the prefix B. Abbreviation: MRI 0, the structural MRI dataset without spatial
smoothing. MRI 2,3,4 are the datasets spatially smoothed by Gaussian kernel sigma = 2,3 and 4 mm.

Accuracy of Testing per Experiment (out of 1)
Dataset Architecture 1 2 3 4 5 Average

resting-state fMRI Adopted LeNet 0.99999 1 0.99998 0.99997 0.99999 0.999986
Adopted GoogleNet 1 * * * * 1

Structural MRI 0

Adopted LeNet

0.9755 0.9732 0.9746 0.9737 0.9753 0.97446
Structural MRI 2 0.9851 0.9874 0.9849 0.9848 0.9861 0.98566
Structural MRI 3 0.9862 0.9874 0.9885 0.9889 0.9885 0.9879
Structural MRI 4 0.9875 0.9864 0.9864 0.986 0.9873 0.98672
Structural MRI 0

Adopted GoogleNet

0.845043 * * * * 0.845043
Structural MRI 2 0.98452 * * * * 0.98452
Structural MRI 3 0.988431 * * * * 0.988431
Structural MRI 4 0.987758 * * * * 0.987758
B. Structural MRI 0

Adopted LeNet

0.9572 * * * * 0.9572
B. Structural MRI 2 0.975 * * * * 0.975
B. Structural MRI 3 0.9781 * * * * 0.9781
B. Structural MRI 4 0.9746 * * * * 0.9746

ficiently long, and likely no overfitting occurred. In ad-
dition, visualization of the activation of the networks fea-
tures is a helpful technique to explore training progress. In
deeper layers, the features become more sparse and local-
ized, and visualization helps to explore any potential dead
filters (all zero features for many inputs). Filters and fea-
tures of the first layer for a given fMRI and MRI trained
LeNet model were visualized using an Alzheimer's brain
and a normal control brain.

5. Conclusion

In order to distinguish brains affected by Alzheimer's
disease from normal healthy brains in older adults, this
study presented two robust pipelines, including extensive
preprocessing modules and deep learning-based classi-
fiers, using structural and functional MRI data. Scale
and shift invariant low- to high-level features were ex-
tracted from a massive volume of whole brain data using
convolutional neural network architecture, resulting in a
highly accurate and reproducible predictive model. In this
study, the achieved accuracy rates for both MRI and fMRI
modalities, as well as LeNet and GoogleNet state-of-the-
art architecture, proved superior to all previous methods

employed. Furthermore, fMRI data were used to train a
deep learning-based pipeline for the first time. This suc-
cessful and cutting-edge deep learning-based framework
points to a number of applications in classifying brain
disorders in both clinical trials and large-scale research
studies. This study also demonstrated that the developed
pipelines served as fruitful algorithms in characterizing
multimodal MRI biomarkers. In conclusion, the proposed
methods demonstrate strong potential for predicting the
stages of the progression of Alzheimer's disease and clas-
sifying the effects of aging in the normal brain.

Figure 8 and Figure 9 demonstrate 20 filters of 5x5 pix-
els for fMRI and MRI models, respectively. Additionally,
20 features of 24x24 pixels in Figure 10 and Figure 11
reveal various regions of the brain that were activated in
AD and NC samples.
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Figure 8: In the first layer of LeNet in a given trained fMRI model, 20
filters of 5x5 pixels were visualized. The weights shown were applied
to the input data and produced activation, or features, of a given sample.

Figure 9: In a trained LeNet model, 20 filters with a kernel of 5x5 were
visualized for the first layer. The filters shown were generated from a
model in which MRI data smoothed by sigma = 3 mm were used for
training.

Figure 10: 20 activations (features) of the first layer of LeNet trained
using MRI data were displayed for a given AD MRI sample (45, 55, 45).
A smooth pattern without noise reveals that the model was successfully
trained.

Figure 11: Features of the first layer of the same MRI trained model
were displayed for a normal control (NC) brain slice (45, 55, 45). A
basic visual comparison reveals significant differences between AD and
NC samples.
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