Abstract
Global dynamics in the brain can be captured using fMRI, MEG, or electrocorticography (ECoG), but models are often restricted by anatomical constraints. Complementary single/multi unit recordings have described local fast temporal dynamics. However, because of anatomical constraints, global fast temporal dynamics remain incompletely understood. Therefore, we compared temporal aspects of cross-area propagations of single-unit recordings and ECoG, and investigated their anatomical bases. First, we demonstrated how both evoked and spontaneous ECoGs can accurately predict latencies of single-unit recordings. Next, we estimated the propagation velocity (1.0-1.5 m/s) from brain-wide data and found that it was fairly stable among different conscious levels. We also found that the anatomical topology strongly predicted the latencies. Finally, Communicability, a novel graph-theoretic measure, could systematically capture the balance between shorter or longer pathways. These results demonstrate that macro-connectomic perspective is essential for evaluating detailed temporal dynamics in the brain.