Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

On reciprocal causation in the evolutionary process

Erik I. Svensson
doi: https://doi.org/10.1101/122457
Erik I. Svensson
Department of Biology, Lund University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: erik.svensson@biol.lu.se
  • Abstract
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Recent calls for a revision the standard evolutionary theory (ST) are based on arguments about the reciprocal causation of evolutionary phenomena. Reciprocal causation means that cause-effect relationships are obscured, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raises questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). Such an EES will supposedly replace the Modern Synthesis (MS), with its claimed focus on unidirectional causation. I critically examine this conjecture by the proponents of the EES, and conclude, on the contrary, that reciprocal causation has long been recognized as important in ST and in the MS tradition. Numerous empirical examples of reciprocal causation in the form of positive and negative feedbacks now exists from both natural and laboratory systems. Reciprocal causation has been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection and sexual selection. Such feedbacks were already recognized by Richard Levins and Richard Lewontin, long before the call for an EES and the associated concept of niche construction. Reciprocal causation and feedbacks is therefore one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory, and should be recognized as such. While reciprocal causation have helped us to understand many evolutionary processes, I caution against its extension to heredity and directed development if such an extension involves futile attempts to restore Lamarckian or soft inheritance.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
  • Posted April 13, 2017.

Download PDF

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
On reciprocal causation in the evolutionary process
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
Share
On reciprocal causation in the evolutionary process
Erik I. Svensson
bioRxiv 122457; doi: https://doi.org/10.1101/122457
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
On reciprocal causation in the evolutionary process
Erik I. Svensson
bioRxiv 122457; doi: https://doi.org/10.1101/122457

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (814)
  • Biochemistry (1127)
  • Bioengineering (718)
  • Bioinformatics (5722)
  • Biophysics (1946)
  • Cancer Biology (1382)
  • Cell Biology (1961)
  • Clinical Trials (71)
  • Developmental Biology (1340)
  • Ecology (2048)
  • Epidemiology (1096)
  • Evolutionary Biology (4335)
  • Genetics (3045)
  • Genomics (3926)
  • Immunology (838)
  • Microbiology (3291)
  • Molecular Biology (1220)
  • Neuroscience (8388)
  • Paleontology (62)
  • Pathology (169)
  • Pharmacology and Toxicology (304)
  • Physiology (401)
  • Plant Biology (1141)
  • Scientific Communication and Education (318)
  • Synthetic Biology (469)
  • Systems Biology (1598)
  • Zoology (210)