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Abstract  
 

The human eye has several specialized tissues which direct, capture, and pre-process 
information to provide vision. RNA-seq gene expression analyses have been used extensively, 
for example, to profile specific eye tissues and in large consortium studies, like the GTEx 
project, to study tissue-specific gene expression patterning. However, there has not been an 
integrated study of multiple eye tissues expression patterning with other human body tissues. We 
have collated current publicly available healthy human RNA-seq datasets and a substantial 
subset of the GTEx project RNA-seq datasets and processed all in a consistent bioinformatic 
workflow. We use this fully integrated dataset to probe the relatedness and biological processes 
between the cornea, retina, RPE-choroid complex, and the rest of the human tissues with 
differential expression, clustering, and GO term enrichment tools. We also leverage our large 
collection of retina and RPE-choroid tissues to build the first human weighted gene correlation 
networks and use them to highlight known biological pathways and eye gene disease enrichment. 
Finally, we make these data, analyses, and visualizations available via a powerful interactive web 
application (https://eyeintegration.nei.nih.gov/).  
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Introduction 
 
 The human eye is a highly specialized organ using several distinct tissues to focus and 
capture light and begin processing it into visual information. Light passes through the cornea and 
the lens which focus the light onto the retina (1). The rod and cone photoreceptors of the retina 
capture the light and transmits visual information through the optic nerve to the brain (2). The 
retinal pigment epithelium (RPE) is responsible for absorbing scattered light and providing 
nutrition, maintaining ionic homeostasis, and waste product processing for the photoreceptors, as 
well as mediating immune function for the retina and eye (3). The RPE and outer neural retina is 
supported and connected to the vascular system of the body via the choroid (4).  
 Many genetic disorders affect the function of the various eye tissues and cause vision 
perturbation or loss. The genetics of eye diseases range from monogenic Mendelian disorders to 
complex multi-gene system perturbations that are modified by environmental influences. While 
at least 316 identified genes underlying retinal disease have been identified, recent 
comprehensive next generation sequencing studies fail to find the cause of a variety of inherited 
retinal diseases like cone-rod dystrophies or retinitis pigmentosa 40-60% of the time (5–7). In an 
example of complex disease, age-related macular degeneration (AMD), which is believed to be 
caused by dysfunction of the RPE and choroid, genome-wide association studies (GWAS) have 
identified dozens of genomic locations associated with the disease. Still it is very difficult to 
pinpoint the causative gene or genes (8).  
  An important tool in understanding basic biology and unravelling the causes of disease 
has been the analysis of gene expression profiles. The Genotype-Tissue Expression 
 (GTEx) Project has compiled nearly 10,000 individual tissue human RNA-seq samples and 
shared the data via a powerful and easy-to-use web portal (9). GTEx data has been used to help 
filter variants in GWAS studies, to build networks to identify candidate testis cancer genes, to 
help identify pathogenic mutations in an epilepsy cohort, and to identify a genetic variant linking 
folate homeostasis to warfarin response (10–14). Notably, the eye was not included as a tissue 
for this project. Because the vision community has been adopting RNA-seq for profiling 
different components of the eye, there is a large and growing set of useful transcriptome data. 
However, each study uses different bioinformatic processes to analyze their transcriptomes and 
the full genome-wide expression values are difficult to obtain, analyze, and visualize across 
studies. Therefore, utility of these resources ought to be optimized to similar effect as for other 
tissues.  

We have collated all publicly available human eye tissue RNA-seq data and processed it 
with a robust and consistent bioinformatics process. We also have brought in a substantial 
portion of the GTEx project RNA-seq data to provide a comparison set to the eye tissues. Our 
full data-set holds 1027 samples. This comprehensive and consistently processed pan-eye and 
human data set allows for several novel analyses: first, to probe the relationships within cornea, 
retina, and RPE tissues and between eye tissues and other human tissues; second, to look for 
overarching patterns in gene expression and shared biology in differentially expressed genes 
between the eye tissues; and, finally, we use the large collated retina and RPE samples to build 
gene correlation networks for both. To maximize utility of this project to all researchers, we have 
also created a web application that allows quick and powerful access to the expression profiles of 
nearly 20,000 genes across 177 human eye tissue RNA-seq sets and 853 GTEx tissue RNA-seq 
sets and the two gene networks (https://eyeIntegration/nei.nih.gov/).  
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Results 
 
Hundreds of individual human eye tissue RNA-seq datasets publicly available across twenty-one 
research studies 
 
 To identify all publicly available human eye tissue RNA-seq datasets, the Sequence Read 
Archive (SRA) was queried on January 19th 2017 with the R package SRAdb for human 
transcriptomic studies with the keywords ‘RPE’, ‘macula’, ‘fovea’, ‘retina’, ‘choroid’, ‘sclera’, 
‘iris’, ‘lens’, ‘cornea’, and ‘eye’ across numerous fields in the SRA (15). This inclusive search 
identified 603 samples across 53 studies. Hand searching the studies to identify human eye tissue 
samples that did not have chemical, pharmacological, or genetic modifications or known eye-
disease pared the initial search down to 219 samples across 21 studies (Supplementary Material 
Table S1, Fig. 1A) (16–32). The metadata of the remaining eye samples was queried and parsed 
to label each sample by a tissue (cornea, retina, RPE) and origin (immortalized cell line, stem 
cell line, fetal tissue, adult tissue) (Fig. 1B). Before gene expression quantification and quality 
control to remove lower quality samples we had 110 retina, 85 RPE, 28 cornea, 16 human 
embryonic stem cell lines (ESC), 6 lens, and 4 eyelid tissue RNA-seq data sets.  
 
Efficient quantification tools allow for comparison of the eye transcriptome meta-set with dozens 
of other human tissues 
 
 The raw sequence data was obtained from the SRA or European Nucleotide Archive 
(ENA) and the transcript counts were quantified with the Salmon pseudo-alignment transcript 
quantification (33). To improve reliability of quantification, the transcript level counts were 
merged to the gene level (34). We then applied quantile normalization of the TPM (transcripts 
per million) values on a per-tissue basis with the qsmooth tool to reduce variability between 
different studies (35). Outliers with extremely low median gene counts and individual samples 
that clustered very far apart from similar samples were removed, leaving 171 eye samples (Fig. 
1A, Supplementary Material, Tables S2 and S3). Voom normalization was then applied to adjust 
for different library sequencing depths (36). See methods for further details.  

This efficient bioinformatic process also enabled us to bring in 878 samples from the 
GTEx project to compare to our eye meta-set (9). We selected, when possible, 10 male and 10 
female non-gender specific tissues from the GTEx, ending up with 22 tissues, including blood, 
brain, heart, kidney, liver, lung, and thyroid (Supplementary Material, Tables S1 and S3). All 
raw data from the collated eye tissues or GTEx were processed identically with the above 
workflow. After outlier removal, using the same workflow as the eye tissue set above, we have 
853 GTEx samples across 22 tissues.  
 
Eye tissues from disparate studies cluster according to labelled eye component and tissue or 
cell-line origin 
 

Our first question was whether the collated eye tissues, which potentially have significant 
batch effects from merging data from disparate sources, would group together using 
dimensionality reduction approaches. We used the Barnes-Hut implementation of the t-
Distributed Stochastic Neighbor Embedding (t-SNE), which has been shown to work well in 
single-cell RNA-seq study analyses as well as the GTEx study set, to visualize relationships in 
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two dimensions between the processed eye tissues (Fig. 2A) (37–39). The DBSCAN algorithm 
was used on the t-SNE coordinates for each sample to identify nine distinct clusters (40).  

The adult tissue retina samples clustered together, though apart from their fetal or cell line 
based samples. The ESC retina samples have a variety of time points (37, 47, 67, 90 days) during 
their differentiation; we found no clustering by those criteria (data not shown) (20). The fetal and 
adult cornea samples, grouped closely together, but still clustered independently (Fig. 2A, 
clusters 8 and 9). Human embryonic stem cells (ESC), included because they are used across 
several studies to differentiate into different eye tissues, clustered together, generally closer to 
the cell-line derived samples (Fig. 2A, cluster 5).  

RPE is the only tissue with more than three different sources: fetal tissue, adult tissue 
immortalized cell-line, and cells differentiated from ESCs. It should be noted that the adult RPE 
tissues are a mixture of RPE and choroid tissue, which is a vascular layer of the eye, providing 
oxygen and nutrients to the RPE and outer retina. This tissue will be referred to as adult 
RPE/choroid. The four sources cluster into three groups, with the few RPE fetal tissues 
clustering with the ESC-derived RPE samples (Fig 2A, cluster 1). The RPE derived from ESC 
group (Fig 2A, cluster 1) is composed of samples from three studies (16, 23, 28). All three 
groups differentiated their RPE cells for about two to four months, according to their method 
section. Wu and Zeng et al. gave specific times of differentiation for the exact tissues used in the 
SRA metadata (40 or 100 days); we did not see any differences in clustering patterns based on 
length of differentiation (data not shown) (28). This close grouping of fetal and ESC RPE tissues 
are consistent across multiple runs of t-SNE with different perplexity parameters ranging from 
35-50 (data not shown). The adult RPE/choroid tissue clusters further away from the cell-line 
based tissues.  

Overall, the t-SNE dimensionality reduction demonstrates that the eye tissues consistently 
cluster in unique groups by their tissue and origin. This happens despite a variety of laboratory 
origins with disparate culturing conditions, tissue handling, RNA extraction, sequencing cores, 
and so on.  
 
Eye tissues distinct from most human tissues 
 
 To explore the relationship of eye tissues to other tissues in the human body, we 
leveraged the GTEx data we reprocessed to create a pan-human two-dimensional tissue 
relationship map with t-SNE (Fig. 2B). DBSCAN was then used, as before, to identify clusters. 
‘Tissue’ labels from GTEx metadata in the SRA were used with one exception; fibroblasts are 
labelled separately from ‘Skin’ as they consistently group independently of skin-punch tissues. 
From the t-SNE visualization (Fig. 2B) we observe most human tissues group close to each 
other, with the exception of brain. The eye tissues, except retina, group closer to the non-brain 
human tissues. While the cell-line versus tissue derived eye tissue distinctions are maintained 
with the pan-human set, the eye-tissues are generally more related to each other than non-eye 
tissues.  

The t-SNE 1 and 2 dimension coordinates generated by t-SNE are sensitive to the parameter 
perplexity, which controls the weighing of local to global relationships (41). Figures 2A and 2B 
used perplexities of 35 and 45, respectively. To more consistently demonstrate the pair-wise 
relationships between the tissues, the t-SNE dimensions were iteratively generated with 
perplexities from 35 to 50. Then means were taken, grouped by sample. The individual samples 
were then grouped by labelled tissue type and the t-SNE coordinates were again averaged. 
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Hierarchical clustering by Euclidean distance was done to group the tissues and a heatmap was 
generated (Fig. 2C) which displays the most closely related tissues. Because the hierarchical 
distances between cell-line derived eye tissues were inconsistent, they were removed from this 
analysis. We see that retina and brain tissues are individual outliers. We also see that the pituitary 
is grouped near RPE tissue and that fibroblasts group closely with the cornea (as denoted by the 
height of the dendrogram). 
 
Differential expression analysis identifies large sets of genes distinguishing separating eye 
tissues 
 
 The eye tissue set collected can be separated on two major axes: tissue type (cornea, 
retina, or RPE) and origin (immortalized cell line, stem cell line, fetal tissue, adult tissue). 
Labelling each set of tissues by these two criteria gives us ten sets of eye tissues (Fig. 1B). To 
compare expression against non-eye tissue, we created a synthetic human ‘body’ expression set, 
by evenly combining the 22 GTEx tissues. The total number of body samples was matched to the 
total number of eye tissues we have by taking a random set of 8 tissues from each human body 
tissue category (e.g. Brain, Pituitary). There are 55 two-way combinations possible among the 11 
sets.  

To calculate differential expression, we modeled expression with the limma linear fit 
function with voom to correct for library size differences. The limma empirical Bayes function 
was used to identify statistically significant differentially expressed genes (36, 42). To look for 
global changes between the eye tissues and the body, we will first compare all of the eye tissue 
groups individually against the synthetic body (Table 1). A second synthetic body set was 
created by sampling the un-used GTEx tissues from the first synthetic body set and we found 
very similar differential expression values (data not shown).  

The differentially expressed genes identified for each test (Table 1) was filtered to retain 
only genes with log fold change (logFC) < -2 or > 2 relative to the baseline tissue and with a 
false discovery rate (FDR) corrected p-value less than 0.01. A logFC of more than two means 
that the detected transcript level is more than four times as much (or one quarter as much) 
compared to the body tissue.  
 
Biological term enrichment identifies eye-specific gene expression biology relating to visual 
function and body-specific gene expression relating to immunity and cell adhesion 
 

As we have hundreds to thousands of genes meeting these stringent differential 
expression criteria across the ten comparisons we did Gene Ontology (GO) biological process 
term enrichment to identify systems-level patterns. We did the GO term enrichment 
independently on the over- and under-expressed gene sets, relative to the synthetic body set; 20 
tests were performed. Overall, we found 2796 unique GO term IDs across the tests with a FDR 
corrected p value under 0.01 (Supplementary Materials, Table S4).  

We took the top forty GO term IDs from the over and under-expressed tests (ranked by p 
value) and plotted them in a heatmap to identify shared GO terms among the different 
comparisons and to find overall trends in eye tissues gene expression relative to the synthetic 
body gene expression set (Figure 3). Clustering was done on both rows and columns to group 
together shared patterns. Like the t-SNE based clustering, the retina is an outlier for GO term 
enrichment. The GO terms in the first 20 rows (Fig. 3, Block 1) is driven by genes that are more 
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highly expressed in the retina relative to other tissues. These over-expressed genes are highly 
enriched in GO terms relative to visual perception, light stimulus, synaptic signaling, and 
neurogenesis.  
 The next group (Fig. 3, Block 2) of enriched GO terms most strongly defines the ESC 
and the cornea and RPE immortalized cell lines and to a lesser extent, fetal cornea and stem cell 
retina tissue. These GO terms relate to cell cycle and division as well as DNA packaging and 
conformation. The last block (Fig 3., Block 3) is a set of GO IDs related to the body gene 
expression being higher than most of the eye tissues. This large block has GO terms involving 
migration, organismal process, adhesion, immune process, and stimulus. The full set of 
significantly (p < 0.01) enriched GO terms (2796) is available in Supplementary Materials Table 
S4. 
 
Within eye tissue differential expression comparisons identify cornea, retina, RPE, and 
RPE/choroid gene sets 
 

To more directly identify sets of genes enriched in particular eye tissue(s) relative to the 
remaining eye tissues, we compared all eye tissue differential expression pair-wise against each 
other and the synthetic body set (55 tests). To identify common gene sets, we used k-means 
clustering to group all genes into twenty groups; each group has a different overall gene 
expression pattern. We then plotted the relative gene expression for each eye tissue across the 
twenty k-means groups (Supplementary Materials, Figure S1). This produces a heatmap which 
identifies sets of genes that are more highly (or lowly) expressed in particular eye tissue(s) 
relative to the other eye tissues. We use this heatmap to identify genes defining the cornea, 
retina, RPE, and adult RPE/choroid and did GO term enrichment on these clusters (Table 2, 
Supplementary Table S5). The gene lists for each of the 20 groups are available in 
Supplementary File S1).  
  
The cornea is enriched for genes involved in the extracellular matrix and collagen relative to the 
other eye tissues 
 
 In the GO heatmap (Fig. 3) the cornea tissues (immortalized cell line, fetal, adult) lack a 
highly distinguishing set of GO terms from the other eye tissues. However, there is a cluster 
(Supplementary Materials, Figure S1, cluster 3), with enriched fetal and adult cornea expression 
compared to the other tissues. This cluster contains 157 genes and top GO terms enriched for this 
set relate to extracellular matrix organization, collagen metabolism, and developmental processes 
(Table 2, Supplementary Table S5). 
  
Adult retina and, to a lesser extent, retina stem cells enriched in visual function genes 
 
 Compared to the synthetic body set, the adult retina has many GO terms relating to visual 
function (Fig. 3, Block 1). This same GO enrichment is seen even when comparing adult retina 
against the other eye tissues, focusing on cluster 8 (Supplementary Materials, Figure S1, Table 
2). This cluster is very highly expressed in adult retina and somewhat highly expressed in stem 
cell retina, relative to the other eye tissues.  
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RPE, excluding hTERT RPE, is highly enriched in genes relating to pigmentation and visual 
perception,  
 
 Like cornea, the non-immortalized RPE tissues do not have a distinct block of GO terms 
(Fig. 3). In the k-means heatmap (Supplementary Materials, Figure S1) we see that cluster 14 is 
more highly expressed in stem cell RPE, fetal RPE, and adult RPE/choroid. The hTERT 
immortalized cell line RPE is not highly expressed for this gene set. The 92 genes in this cluster 
are enriched in GO terms for visual perception, melanin processing, and vitamin A metabolism 
(Table 2).  
 
Compared to other eye tissues, adult RPE/choroid is enriched for genes involved in immune 
function and adhesion 
 

The cluster with genes highly expressed in adult RPE/choroid compared to the other eye 
tissues (number 10), has 229 genes. As this cluster is not highly expressed in the other RPE 
tissues, this cluster may define the choroid. These genes are strongly enriched in immune 
function and adhesion (Table 2).  
 
hTERT RPE immortalized cell line has substantial gene expression differences relative to RPE 
derived from ESCs 
  
 As we had seen that the hTERT RPE clusters apart from the other RPE tissues, and there 
is a benefit to examining the differences between an immortalized RPE cell line model versus a 
differentiated RPE cell line model, we looked directly at differences in expression between 
hTERT RPE and stem cell RPE. We identified what genes and GO terms make these two cell 
lines different. There are over 1323 genes with a more than four-fold expression difference 
between RPE derived from human ESCs and the ATCC hTERT RPE immortalized cell line and 
1572 with four-fold lower expression (Supplementary Materials Table S6). The five genes most 
highly expressed in RPE derived from human ESCs relative to the ATCC hTERT RPE 
immortalized cell line are TTR (Transthyretin), DCT (Dopachrome Tautomerase), KIF1A 
(Kinesin Family Member 1A), SFRP5 (Secreted Frizzled Related Protein 5), and NELL2 (Neural 
EGFL Like 2). GO terms associated with higher stem cell RPE expression relate to ion transport 
and synaptic transmission, suggesting that stem cell derived RPE is a more faithful model to 
human biology (Fig. 4).  
 
Highly connected genes in retina and RPE gene networks recapitulate known eye biology  
 

To this point, we have used the full gene expression set to independently cluster samples 
by tissue type and origin. We then used differential expression between the eye tissues and the 
synthetic body set to highlight differences in GO terms. We delved further by clustering the 
differential expression patterns between the eye tissues to find how each eye tissue is different 
from each other. We can go even further, by examining the relationships of the genes to each 
other, within a tissue, by using gene correlation networks. These network use correlated 
fluctuations of all-by-all pairwise gene expression similarities to build networks of gene-to-gene 
relationships.  
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As we had collected a substantial amount of retina and RPE samples, we were able to 
build weighted gene correlation networks with the Weighted Gene Co-Expression Network 
Analysis (WGCNA) R tool (43). We also attempted to build a cornea network, but the network 
construction failed due to failure to both differentiate the genes cleanly into defined modules and 
achieve appropriate network topology within a reasonable parameter space; more cornea samples 
are needed (Supplementary Materials, Figure S2). The gene expression TPM values, with the full 
set of corrections described earlier for the differential expression analyses, were used as inputs. 
All retina and all RPE tissues that passed quality control steps were used to build independent 
retina and RPE networks. The parameters used in the WGCNA network construction are 
enumerated in the methods.  

There are 11101 and 10843 genes in the retina and RPE networks, respectively. 9621 of 
the genes are shared between the retina and RPE network. The kWithin metric from WGCNA 
measures the intramodular connectivity. Genes with higher connectivity are, theoretically, more 
likely to be important in gene regulation as perturbations in them will affect the system more 
than less connected genes. To get a sense of what the biology was of the most connected genes in 
the retina network, we took the 1017 genes with a kWithin greater than 20 and did GO 
enrichment (Supplementary Materials, Table S7), finding the top five GO terms all relate to 
visual perception. We did the same with the RPE network, using the 566 genes with a kWithin 
greater than 20. The top five GO terms in this RPE network connected list were related to 
endoplasmic reticulum function (Supplementary Materials, Table S7). The most similar modules, 
calculated by doing hypergeometric testing of GO terms and gene names, between the retina and 
RPE networks are the light cyan retina module and the pink RPE module. Both of these modules, 
by GO term enrichment, are involved in protein targeting to the ER (Supplementary Materials, 
Figure S3). 

 
Retina network module highly enriched in genes implicated in eye disease and crucial for visual 
function  
 

A key advantage of WGCNA networks over correlation networks is that genes can be 
partitioned into modules, presumably with shared biological function within each individual 
module. The retina network has 27 modules, with 64 to 1922 genes in each module. The RPE 
network has 23 modules, with 90 to 1458 genes in each module (Supplementary Materials, 
Figure S4). To determine whether the modules were enriched for known gene to gene 
interactions, we loaded each network module gene list into STRING and calculated whether 
there were more interactions than expected. For 23/27 retina modules and 20/23 RPE modules, 
the STRING p value for interaction enrichment was < 0.01 (Supplementary Materials, Table S8). 
We also ran GO term enrichment for each module within each network (Supplementary 
Materials, Table S11 and S14). While many modules have highly significant GO term 
enrichment, only the ‘green’ module is highly enriched for visual perception terms. Pinelli et al. 
built an unweighted retina gene correlation network and identified 14 candidate photoreceptor 
genes based upon their network (17). All 14 are in our retina network and 9 of the 14 are in our 
green visual function module (p < 2.8 x 10-10) (Supplementary Materials, Table S9).  

There are 617 genes within the green retina module and 178 of these have a kWithin 
greater than 20. Many of the top connected genes have known visual function or are implicated 
in retinal diseases. To demonstrate the strong enrichment of known eye function genes in this 
module we divided the genes in the green module into four categories: known to play a role in 
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eye disease, having GO terms relating to visual function, both, or neither (Fig. 5, Supplementary 
Materials, Table S10). From RetNet (http://www.sph.uth.tmc.edu/RetNet/) we have a list of 331 
genes that have been implicated in retinal diseases (5). There are 178 genes with kWithin > 20 in 
the green module; 14 of those genes are also in RetNet, 17 have a vision GO term, 31 have both, 
and the remaining 116 genes are neither in RetNet nor have a vision-related GO term.  

The human phenotype ontology (HPO) project is conceptually similar to gene ontology, 
except that they map abnormal human phenotype terms onto a graph and match them to genes 
(44). This provides a way to identify enrichment of abnormal human phenotypes. As there is no 
functioning package in R to systematically calculate HPO enrichment, we did bootstrapping and 
hypergeometric testing (see methods), looking for enrichment overall at the module level and for 
individual HPO terms within each module, respectively. The green module is highly enriched for 
HPO terms relating to eye disease, with terms like nyctalopia, abnormal electroretinogram, 
photophobia, cone-rod dystrophies, and blindness among the top terms (Fig. 5, Supplementary 
Materials, Table S12).  

Other highly significant GO terms in the remaining retina network modules also match 
known retina function. GO terms enriched relate to ion transport (greenyellow), developmental 
processes (darkorange, greenyellow, tan), mitochondrial function (midnight blue), and 
metabolism (turquoise) (Supplementary Materials, Table S11). The retina network darkgrey 
module also contains several genes implicated in retina diseases like ELOVL4, OPN1SW, 
SLC24A1, and PDE6A (see Supplementary Materials, Table S13 for full list). Additionally, the 
green, tan, brown, and blue modules are, overall, enriched for HPO disease terms 
(Supplementary Materials, Figure S5). 
 
Retina green module identifies visual transduction pathway and core upstream regulators 
 

The green module was further analyzed for known biological networks components, 
which were generated through the use of Ingenuity Pathways Analysis (Ingenuity® Systems, 
www.ingenuity.com). Visual transduction was the most significant pathway present, with 16 
components present in the green module. These components function predominantly in rod and 
cone photoreceptors in the conversion of photic energy to neural signaling in the retina 
(Supplementary Materials, Figure S6A and data not shown). Regulatory component analysis 
projected that CRX and NRL were predicted among the regulators of gene expression in the green 
module, upstream of several genes implicated in retinal photoreceptor degeneration also present 
in the green module (Supplementary Materials, Figure S6B). These two transcription factors 
drive rod photoreceptor differentiation and maintenance beginning in embryogenesis, and 
dysfunction of either of these is associated with retinal degeneration (45). In sum, the green 
module is enriched for photoreceptor function and recapitulates specific components of known 
biological and gene regulatory networks that are important causes of retinal disease. 

 
RPE/choroid network contains many modules related to cell metabolism 
 
 Unlike the retina network, there are no strongly associated GO terms relating to visual 
function. However, there are numerous modules with strongly significant GO terms relating to 
metabolic processes and active transcription and translation (blue, brown, dark turquoise, green, 
light cyan, light green, red, turquoise). One module (yellow) relates to catabolism, one to 
immune function (tan), one to the endoplasmic reticulum (ER) (pink), and two the mitochondria 
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(dark green, dark yellow) (Supplementary Materials, Table S14). Among the top HPO terms 
across the RPE modules are ones relating to anemia (pink), optic disc pallor (green), and 
respiration (dark green). Overall, the green, midnightblue, turquoise, lightyellow, magenta, and 
brown RPE modules are enriched for HPO terms (Supplementary Materials, Figure S5).  
  
Retina and RPE networks in retinal diseases and AMD 
 
 Higher connected genes are theoretically more important in the function of the retina and 
RPE. From RetNet we have 331 genes that are associated with retinal diseases (though some 
unknown proportion affect the retina via the RPE). From a recent large AMD GWAS study, 
there is a list of 33 loci strongly associated with AMD, and thus likely related to RPE or choroid 
dysfunction (8). To see whether these retina or RPE gene lists have higher connectivity relative 
to the other genes in the networks we used density plots of the kWithin value to see whether we 
see any left-ward (less connectivity) or right-ward (more connectivity) shifts in our gene list 
kWithin connectivity.  
 We see that the RetNet gene list has a higher connectivity than non-RetNet genes in the 
retina module; this right-ward shift is highly significant (p = 3.26 x 10-8). The  connectivity of 
the RetNet gene list in the RPE network is significantly different than the non-RetNet genes (p = 
0.28). 53 RetNet genes are in the green retina module, which is a 4.1 fold enrichment over 
chance. The darkgrey module has a similar enrichment in RetNet genes with 10, which is a 3.8 
fold enrichment over chance.  

The 33 genes associated with AMD have a higher connectivity the remaining genes in the 
RPE network ; this right-ward shift is also significant (p = 0.049). Like the RetNet retinal disease 
gene list in the RPE network, the 33 AMD genes are not significantly more connected than the 
other genes in the retina network (p = 0.49) (Supplementary Materials, Figure S7).  
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Discussion 
 

We collected all publicly available human eye RNA-seq datasets, the largest collection to 
date, and carefully performed a lengthy series of normalization and quality control procedures to 
robustly quantify gene expression within three major eye tissues and between the eye and other 
human tissues. We used the gene expression data to accurately cluster samples by tissue and 
origin and further demonstrated that only 75 genes can be effectively used to cluster. We used 
differential gene expression analysis with GO term enrichment to identify biological processes 
that best distinguish the eye tissues both from each other and from a synthetic human expression 
set. We then leveraged the large sets of retina and RPE tissues to build the first human weighted 
gene correlation networks for retina and RPE. We demonstrated the power of the networks to 
highlight genes known to be crucial in eye biology. Finally, we make the data and analyses 
available in a powerful web application (https://eyeIntegration.nei.nih.gov).  
 The structures of the eye are epithelial, neuroepithelial, and neural crest in origin. We 
were expecting some of the eye tissues to cluster closely with the skin, but instead we found that 
the retina was a very unique tissue, that transformed fibroblasts most closely matched the cornea, 
and the RPE was nearest the pituitary. Embryologic origins and specialized functions likely 
create these similarities and divisions, respectively. Cornea is derived from the same surface 
ectoderm as skin and from neural crest cells, while retina and RPE are derived from the neural 
tube epithelium from the ventral diencephalon, along with the hypothalamus and posterior 
pituitary. Corneal epithelium is replenished by limbal stem cells that remain into adulthood, 
which may explain the proximity of corneal and ESC clusters. That retina was separated from 
other ocular and non-ocular tissues likely related to the exclusivity and high expression burden of 
the visual transduction cycle in cone and rod photoreceptors.  
 The systems-level study of differential gene expression across cornea, retina, RPE, and 
RPE-choroid tissue highlights core functions of these tissues. Cornea-specific genes specify the 
structural aspect of the cornea with extracellular matrix organization and collagen metabolism 
and catabolism. The corneal epithelium is replenished continuously with limbal stem cells, which 
may be reflected in the enrichment of GO terms relating to development. The retinal tissues are 
strongly defined by genes involved in visual processes. The RPE and RPE-choroid tissues are 
also distinguished, with the former being more involved in visual processes and pigmentation 
while the latter is involved with immune system processes.   
 The creation of the first human retina and RPE weighted gene correlation networks has 
allowed us to identify dozens of modules with co-regulated genes. It is important to stress that 
these networks were built only with gene expression information and were optimized using 
network-specific metrics, such as how well the topological overlap matrix placed genes into 
well-defined modules. Only afterwards did we evaluate the significance of connected genes and 
modules to GO terms and known eye biology.  

It is striking that the some of the most significant GO terms, by p-value and enrichment, 
in the retina network are associated with a single 617-gene module underlying visual function. 
This module represents the visual transduction pathway, which is relatively unique to the retina 
and is associated with isolated and nonsyndromic retinal degenerative conditions.  
 As the RPE has a high-energy role in transferring nutrients and clearing waste products 
for the photoreceptors of the retina, it is not surprising that a plurality of the modules are 
enriched for genes important in RNA translation, protein modification and production, 
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catabolism, and mitochondrial function. The enrichment of highly connected AMD associated 
genes in the RPE network further emphasizes the value of this network.  
 Finally, the value of this extensive and carefully curated data-set is enhanced by the 
creation of the eyeIntegration web app (http://eyeIntegration.nei.nih.gov; Supplementary 
Materials, Figure S8). The site serves two roles, first as an interactive extension of this 
manuscript and second as a platform for researchers to identify interesting genes in eye function 
via searchable gene expression plots across many tissues, 55 pair-wise differential expression 
tests, and two gene networks. We also make the source code and accompanying data-sets fully 
and freely available for other researchers (see methods). The unravelling of eye biology and 
function has been furthered by genetic eye diseases, animal models, and functional assays. We 
hope that this open data sharing and powerful web application will provide a fourth way to 
decipher eye biology in health and disease. 
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Materials and Methods 
 
Identification of normal human eye RNA-seq data-sets and tissue labelling 
 

The entire SRA data was downloaded as a SQL file on January 19th, 2017 with the 
SRAdb R package. The following keywords were used in a partial-matching case-insensitive 
(e.g. ‘retina’ would match ‘RETINAL’) search: ‘RPE’, ‘macula’, ‘fovea’, ‘retina’, ‘choroid’, 
‘sclera’, ‘iris’, ‘lens’, ‘cornea’, and ‘eye.’ These keywords were matched against the following 
fields in the SRA: ‘study_abstract’, ‘experiment_name’, ‘study_name’, ‘sample_ID’, 
‘sample_name’, ‘study_title’, ‘study_description’ in human samples with a ‘library_source’ of 
‘transcriptomic’ and filtering out miRNA studies. Study titles, abstracts, and other fields were 
checked by hand for inclusion in this study for whether they were genuine eye studies of normal 
(non-disease, non-mutated, no chemical modification) human eye tissue. The SRA metadata for 
the GTEx project was also pulled by searching for the study_accession ‘SRP012682.’ Our script 
enabling search of the SRA for eye tissues is provided as ‘sraDB_search_select.R’ 

For reproducibility, the meta-data for each sample was parsed with our script 
‘parse_sample_attribute.R’ to label the eye tissue (cornea, lens, eye-lid, retina, RPE, ESC) and 
its origin (immortalized cell-line, cell-line derived from ESC, fetal tissue, or adult tissue). This 
script has been written to handle the wide variety of metadata usage by the 21 research projects 
and the script must be edited to handle new eye samples. The GTEx tissue were labeled by tissue 
or sub tissue by parsing the GTEx SRA metadata for ‘histological type’ and ‘body site’, 
respectively with the ‘parse_sample_attribute.R’ script.  
 
Efficient quantification of gene expression across 1027 samples 
 
 Two studies had their raw RNA-seq data accessioned with dbGaP (9, 19). We obtained 
access to these studies under dbGaP study #115588. Raw sequence data for these two studies 
were pulled and converted to fastq with the sratoolkit (2.8.0) fastq-dump tool. The remaining raw 
fastq data was pulled from NCBI via ftp, with the wget calls created by the script 
‘sra_to_fastq.R’. The one exception was the E-MTAB-4377 resource which was only available 
as bam files as of January 19th 2017 from European Bioinformatics Institutes ArrayExpress 
archive (17). The bam files were downloaded, then converted to fastq with the Picard 
SamToFastq (2.1.1) program (https://broadinstitute.github.io/picard/). 
 The raw fastq read files were loaded into salmon (0.7.2) with –seqBias and –gcBias flags 
against the Gencode Release 25 protein-coding transcript sequences fasta file to perform 
transcript-level quantification (33, 46). The Gencode gene names are used across this study. To 
improve specificity of the gene expression, transcripts with low abundance across all tissues 
were removed from the fasta file, and Salmon was re-run as per Soneson et. al (47). The filtered 
fasta file is provided in the source code as ‘gencode.v25.pc_transcripts.commonTx.fa.gz.’ and 
the Salmon script as ‘run_salmon.sh.’ To improve sensitivity and specificity, the transcript-level 
quantifications were merged to the gene-level and the length scaled transcripts per kilobase 
million (TPM) calculations were done with the R library tximport (1.2.0) (34) in our 
‘calculate_lengthScaledTPM.R’ script.  
 
Multi-step process to remove samples with low overall gene expression counts, quantile 
normalize samples by tissue, then cluster to identify outliers 
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 A multi-stage process was then used on the full data set to remove outlier samples (either 
because of overall low gene expression levels or from clustering with the incorrect tissue group) 
and genes with zero to extremely low expression across the entire data-set were removed. While 
we found several mislabeled GTEx samples, this has been noticed before (39). Samples with a 
median TPM value < 50 were removed as these were outliers in terms of overall gene expression 
coverage. This step alone removed all of the lens samples, 20 RPE, 15 retina, and 16 ESC 
samples (Supplementary Materials, Table S2 and Figure S2). To alleviate potential batch effects 
between the samples from different studies, the TPM values were quantile normalized within 
tissues and globally simultaneously with the qsmooth algorithm (35) (Supplementary Materials, 
Figure S7).  

Finally, the remaining samples were dimensionality reduced with t-SNE, then clustered 
with DBSCAN. The performance of t-SNE is sensitive to the perplexity parameter, which 
weighs local versus global relationships. We found for our study that perplexities ranging from 
30-50 performed the most reliably (data not shown). For the all-sample t-SNE we used a 
perplexity of 45. For the eye-only sample t-SNE, we used a perplexity of 35. The t-SNE 
coordinates were clustered by DBSCAN with the eps parameter set to 1.3. The cluster 
assignments from DBSCAN were then aggregated to the tissue and origin level, to identify small 
numbers of samples that clustered with other tissues; these are likely sample swaps. These 
outliers were removed. The script for this process is ‘outlier_identification.Rmd.’  
 
Differential gene expression analysis with pair-wise testing 
 
 A synthetic pan-human gene expression set was created by randomly sampling 8 tissues 
from each of the 22 GTEx tissue samples. This was used with the nine different eye tissue-origin 
sample sets and the ESC set, totaling 11 different groups. All 55 pair-wise tests (11 choose 2 
equals 55) were done with the limma package with voom library size normalization, using the 
quantile-normalized TPM values as the input (36, 42). The script ‘differential_expression.Rmd’ 
contains the code for these steps.  
  
GO, HPO, and STRING enrichment 
 

For GO enrichment, the biomaRt package was used, in R, to get the entrez IDs from the 
‘dec2016’ ‘hsapiens_gene_ensembl’ mart. The GOstats package, in R, was used to calculate GO 
enrichment by the hypergeometric test, only keeping over-enriched terms. The background gene 
list across the different tests was defined as all genes in the original TPM expression matrix. The 
function for this analysis is provided as ‘GO_enrichment.R.’ 
 For HPO enrichment, no working R package was available. To identify modules that 
mapped to a higher than expected number of HPO terms we used bootstrapping, comparing the 
number of HPO terms mapped to a module (proportional to its size) against a bootstrap 
distribution of the same metric. To analyze overabundance of HPO terms in a module we used 
hypergeometric testing, comparing the number of HPO terms in a module against the 
background of all genes and their associated HPO terms. The 
‘ALL_SOURCES_FREQUENT_FEATURES_genes_to_phenotype.txt’ file from ‘Build #124’ 
was downloaded on April 4th, 2017 from 
http://compbio.charite.de/jenkins/job/hpo.annotations.monthly/lastStableBuild/ . This file links 
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gene names to HPO terms. The script that did the hypergeometric testing is provided as 
‘HPO_enrichment_function.R.’  
 STRING enrichment p-values were computed with the STRINGdb R package. We placed 
all genes in each module, up to 400 (the max input possible for STRINGdb). For modules with 
more than 400 genes (7 retina modules and 10 RPE modules), we used the 400 genes in the 
module with the highest kWithin connectivity. The script for this is ‘stringDB.R.’  
 
Tissue-level gene block analysis with KMeans clustering and gene ontology enrichment 
 
 The differential gene expression patterns across the 55 pair-wise tests were grouped into 
twenty clusters, each holding groups of genes with shared expression patterns. The grouping was 
done with the k-means algorithm, in R, with 10,000 iterations and the ‘MacQueen’ algorithm. 
The cluster assignments for each gene was joined with the eye-tissue TPM values for the gene. 
The TPM values were averaged for each eye tissue, then the overall gene expression in each 
cluster was averaged. The TPM values, averaged by tissue, then cluster, were plotted in a 
heatmap. The code for this analysis is in ‘kmeans_de_cluster_heatmap.Rmd’ and the cluster 
assignments for each gene are available as ‘DE_Kmeans_cluster_Gene_Lists.zip’.  
 
Gene network construction with WGCNA 
 

Weighted co-expression networks were constructed separately on both retina and RPE 
samples using the Weighted Gene Co-Expression Network Analysis (WGCNA) framework with 
the corresponding WGCNA R package. TPM expression matrices were used for the construction 
of both networks. Genes with consistently low levels of expression (less than 30 TPM in at least 
5% of samples for the retina network, less than 40 TPM in at least 5% of samples for the RPE 
network) were removed prior to network construction. We found that less stringent cut-offs for 
low expression resulted in poor clustering of these genes (data not shown).  

Average-linkage hierarchical clustering and t-distributed Stochastic Neighbor Embedding 
(t-SNE) were used to assess batch issues stemming from sample origin and study source, using 
the WGCNA and Rtsne R packages, respectively. Following the observation of batch effects, the 
ComBat R package was used to correct for batch issues stemming from an interaction variable 
between sample origin and study source. Following batch correction, a log$-transformation was 
applied to each expression matrix. the following transformation was applied to each expression 
matrix: 

𝑓 𝑙𝑠𝑇𝑃𝑀 = log$(𝑙𝑠𝑇𝑃𝑀 + 1) 
WGCNA identifies co-expression patterns using a weighted correlation matrix. The un-

weighted correlation matrix is raised to a soft-thresholding power (𝛽) in order to satisfy the 
scale-free law (43). This means that 𝑝(𝑖), the probability that a node has degree 𝑖, follows a 
power law distribution 𝑝 𝑖 ~𝑖45. In choosing 𝛽 for each of the networks, it is suggested by the 
WGCNA developers to choose a 𝛽 which produces a negative correlation between log(𝑖) and 
log(𝑝(𝑖)), with 𝑅$ > 0.8. Using the pickSoftThreshold function in the WGCNA R package, a 
range of soft-thresholding powers (𝛽) were evaluated for both networks. The suggested criteria 
were met with soft-thresholding powers of 4 and 7 for the retina and RPE networks, respectively. 
Each co-expression network was constructed in the following manner using the log$-transformed 
expression matrices: 
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1. Compute a Pearson correlation matrix of all gene pairs:	𝑆 = 𝑆=> , where 𝑆=> =
𝑐𝑜𝑟(𝑖, 𝑗) , where 𝑖 and 𝑗 are distinct genes. 

2. Compute an adjacency matrix as: 
𝐴 = 𝑎=> , where 𝑎=> = 𝑝𝑜𝑤𝑒𝑟 𝑆=>, 𝛽 = 𝑆=>

H
 

3. Compute an unsigned topological overlap matrix (TOM) as: 
𝑇𝑂𝑀=> =

JKLM JKNJNLNOK,L

PQR SK,SL MT4JKL
	, where 𝑘= = 𝑎=VVW= , and 𝑘> = 𝑎>VVW>  

4. Define a dissimilarity matrix as 𝑑=> = 1 − 𝑇𝑂𝑀=>. Use average-linkage hierarchical 
clustering on the dissimilarity matrix to cluster the genes. 

5. Use the cutreeDynamic function to place genes into distinct modules. For this function, 
parameters of deepSplit = 0 and minClusterSize = 30 were used. 

The script used to generate the networks is provided as ‘WGCNA_networks.Rmd.’ 
 
Identifying Similar Modules Across Retina and RPE Networks 
 

Similarities in module compositions between the retina and RPE networks were assessed. 
This was performed through pair-wise cross-network comparison of retina and RPE modules in 
terms of the genes that were assigned to each pair of modules, as well as the GO terms that were 
associated with the modules being compared. For each cross-network module comparison, the 
number of overlapping genes was calculated and subjected to a hypergeometric test to assess 
significance. This process was repeated with examining overlap in GO terms between modules. 
In both analyses, p-values were adjusted using the FDR correction method. 
 
Web app, other tools, and source code 
 

The fastq file transfer and salmon quantification were run in the bash environment. The 
salmon-based RNA-seq quantification and random forest calculations used the computational 
resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov). 

 All other statistical analyses and visualization was done in the R environment (see 
‘session_info_R.txt’ for packages used and versions). The heatmaps were made with the 
superheat package. All other figures were made with ggplot2.  

The interactive web app was built with the R Shiny framework and hosted on a R Shiny 
Server (https://shiny.rstudio.com). Plotly (https://plot.ly) was used to turn ggplot images into 
interactive images. The visNetwork R package was used to visualize the network modules. For 
the purpose of limiting the number of edges to a number that would be tractable for interactive 
visualization, the network edges were filtered so that each node would have its 𝑘-nearest within-
module genes (𝑘-strongest edges to genes in the same module) remain in the network, for a range 
of 𝑘 values. 

The source code for the web page is available at 
https://gitlab.com/davemcg/Human_eyeIntegration_App. The scripts mentioned in the methods 
underlying the data processing and analysis for this paper are available as supplemental file 
scripts.zip and the data used in the scripts is available at Zenodo (10.5281/zenodo.569870).  
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Legends to Figures 
 
Figure 1 
Identifying 177 unique human eye and ESC samples across 16 studies and four tissue types 
 

A. Counts for unique cornea, ESC, retina, and RPE (choroid) human RNA-seq samples by 
study accession 

B. Counts by tissue and origin. * is adult RPE – choroid 
 
Figure 2 
Gene expression information sufficient to both accurately cluster eye and GTEx tissue 
independently and demonstrates that eye tissues are generally more closely related to other than 
other body tissues 

A. Dimensionality reduction by t-SNE of human eye tissues and ESC, colored by clustering 
assignment, and labelled by tissues in cluster. Shape of point corresponds to tissue origin 

B. Eye tissues with GTEx tissues, colored by clustering assignment, labelled by tissues in 
cluster 

C. Pair-wise euclidean distance between each tissue. Closer tissues have a smaller height in 
the dendrogram and are more yellow in color. More distant tissues have a larger height in 
the dendrogram and are more blue.  

 
Figure 3 
Major differences in systems relating to visual function, active cell division, adhesion, and 
immunity between the eye tissues and the other tissues in the human body 
 Top 80 GO Terms (40 with eye > body and 40 with body > eye) across eye-tissue to body 
differential expression tests. Yellow is more significant, blue is less. Hierarchical clustering of 
both rows and columns place more related GO terms and tissue comparison sets together.  
 
Figure 4 
Genes crucial in eye function are highly differentially expressed between stem cell derived RPE 
and hTERT RPE 

A. The top 5 genes overexpressed in ESC-derived RPE and immortalized cell line hTERT 
RPE along  

B. Word cloud of enriched GO terms 
 
Figure 5 
Retina network green module highly enriched for important visual function genes 

A. Top 50 connected genes in green module in the retina network. Colored by group (see 
C.) 

B. Word cloud of top GO terms in green retina module 
C. kWithin connectivity (higher is more connected) for top 20 connected genes, labelled 

to indicate whether the gene is in RetNet, has a GO term relating to visual function, 
both, or none.  
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Legends to Tables 
 
Table 1 
 
  Log Fold Change 

Comparison < -2 > 2 

Cornea (adult) vs Body (adult) 1969 1249 

Cornea (fetal) vs Body (adult) 172 873 

Cornea (immortalized cell) vs Body (adult) 2611 1475 

ESC (stem cell) vs Body (adult) 2738 2177 

Retina (adult) vs Body (adult) 2607 1978 

Retina (stem cell) vs Body (adult) 3443 2622 

RPE - choroid (adult) vs Body (adult) 1200 1258 

RPE (fetal) vs Body (adult) 1510 1402 

RPE (immortalized cell) vs Body (adult) 2446 1398 

RPE (stem cell) vs Body (adult) 2270 1308 

 
Thousands of highly differentially expressed genes between the eye tissues and the synthetic 
body 
 
 Number of genes with logFC < -2 or > 2 (0.25 or 4 fold, p value < 0.01) between each 
eye tissue against the synthetic body set 
 
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2017. ; https://doi.org/10.1101/136960doi: bioRxiv preprint 

https://doi.org/10.1101/136960
http://creativecommons.org/licenses/by/4.0/


 25 

Table 2 
 

Tissue(s)-Specific Set Cluster GO BP ID P value 
(FDR) 

Odds 
Ratio Term 

Cornea 3 GO:0030198 1.16e-13 11.27 extracellular matrix organization 

Cornea 3 GO:0030574 1.07e-11 30.51 collagen catabolic process 

Cornea 3 GO:0032502 1.50e-09 3.20 developmental process 

Adult Retina 8 GO:0050953 8.43e-65 38.80 sensory perception of light stimulus 

Adult Retina 8 GO:0007601 1.50e-62 37.74 visual perception 

Adult Retina 8 GO:0060041 3.87e-19 17.14 retina development in camera-type eye 

non-immortalized RPE 14 GO:0007601 1.57e-10 18.39 visual perception 

non-immortalized RPE 14 GO:0042438 1.70e-07 104.91 melanin biosynthetic process 

non-immortalized RPE 14 GO:0006776 1.39e-05 163.77 vitamin A metabolic process 

Adult RPE - choroid 10 GO:0002376 1.35e-20 5.06 immune system process 

Adult RPE - choroid 10 GO:0006952 5.03e-18 5.39 defense response 

Adult RPE - choroid 10 GO:0007155 1.64e-13 4.25 cell adhesion 

 
Top GO terms for tissue-specific cluster groups relate to eye tissue specific function 
 
 Three representative GO terms were selected for GO term enrichment done on the 
differentially expressed Kmeans cluster sets 3, 8, 10, and 14 (see Supplementary Materials, 
Figure S1) which represent over-expressed genes in cornea, adult retina, adult RPE/choroid, and 
non-immortalized RPE, respectively  
 
 
 
Abbreviations 

Age-related macular degeneration (AMD) 
Human Embryonic Stem Cells (ESCs) 
Gene Ontology (GO) 
Gene Tissue Expression Project (GTEx) 
Human Phenotype Ontology (HPO) 
log Fold Change (logFC) 
Retinal Pigment Epithelium (RPE) 
Sequence Read Archive (SRA) 
length-scaled Transcripts Per Million (TPM) 
t-Distributed Stochastic Neighbor Embedding (t-SNE) 
Weighted Gene Co-Expression Network Analysis (WGCNA) 
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