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Abstract	
	
Structural	variations	(SVs)	are	the	largest	source	of	genetic	variation,	but	remain	poorly	
understood	because	of	limited	genomics	technology.	Single	molecule	long	read	sequencing	
from	Pacific	Biosciences	and	Oxford	Nanopore	has	the	potential	to	dramatically	advance	
the	field,	although	their	high	error	rates	challenge	existing	methods.	Addressing	this	need,	
we	introduce	open-source	methods	for	long	read	alignment	(NGMLR,	
https://github.com/philres/ngmlr)	and	SV	identification	(Sniffles,	
https://github.com/fritzsedlazeck/Sniffles)	that	enable	unprecedented	SV	sensitivity	and	
precision,	including	within	repeat-rich	regions	and	of	complex	nested	events	that	can	have	
significant	impact	on	human	disorders.	Examining	several	datasets,	including	healthy	and	
cancerous	human	genomes,	we	discover	thousands	of	novel	variants	using	long	reads	and	
categorize	systematic	errors	in	short-read	approaches.	NGMLR	and	Sniffles	are	further	able	
to	automatically	filter	false	events	and	operate	on	low	amounts	of	coverage	to	address	the	
cost	factor	that	has	hindered	the	application	of	long	reads	in	clinical	and	research	settings.	
	
Introduction	
	
Structural	variations	(SVs),	including	deletions,	duplications,	insertions,	inversions	and	
translocations	of	at	least	50bp,	account	for	the	largest	number	of	divergent	base	pairs	(bp)	
across	human	genomes1.	SVs	have	been	shown	to	contribute	to	polymorphic	variation,	
pathogenic	conditions,	and	large-scale	chromosome	evolution2,	and	several	human	
diseases	such	as	cancer3,	autism4,	or	Alzheimer’s5	have	been	associated	with	SVs.	SVs	have	
also	been	shown	to	impact	phenotypes	for	an	increasing	number	of	other	organisms6-10.	
Nevertheless,	SV	calling	is	still	in	an	early	stage	with	large	numbers	of	false	positives	(i.e.	
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erroneously	calling	a	SV	that	is	not	actually	present)	and	false	negatives	(i.e.	not	calling	a	
genuine	SV	that	is	present).		
	
One	of	the	first	reports	of	the	prevalence	and	importance	of	SVs	came	in	2004,	when	Sebat,	
et	al.	11	used	microarrays	to	discover	large-scale	copy	number	polymorphisms	were	
surprisingly	common	across	healthy	human	genomes.	Today,	SV	detection	is	most	
commonly	performed	using	short	paired-end	reads,	such	as	Illumina	sequencing,	where	
variances	in	coverage	or	paired-end	alignments	indicate	a	mutation	with	respect	to	a	
reference	genome.	Copy	number	variations	can	be	observed	as	decreases	(deletions)	or	
increases	(amplifications)	in	aligned	read	coverage12,	and	other	types	of	SVs	can	be	
identified	by	the	arrangement	of	paired-end	reads	or	split-read	alignments13-16.	Short	read	
approaches,	however,	have	been	widely	reported	as	lacking	sensitivity,	with	only	10%17	to	
70%6,8	of	SVs	detected,	very	high	(up	to	89%)	false	positive	rates	6,18-21	and	misinterpreting	
complex	or	nested	SVs6,22.			
	
The	advent	of	long	read	single	molecule	sequencing	by	Pacific	Biosciences	(PacBio)	and	
Oxford	Nanopore	has	the	potential	to	substantially	increase	the	reliability	and	resolution	of	
detecting	SVs.	With	read	lengths	averaging	around	10kbp	and	some	reads	exceeding	
100kbp,	the	reads	can	be	more	confidently	aligned	to	repetitive	sequences	that	often	
mediate	the	formation	of	SVs22.	In	addition,	long	reads	are	more	likely	to	span	a	SV	so	that	
the	breakpoints	can	be	captured	by	high-confidence	alignments.	Furthermore,	long	reads	
enable	improved	phasing,	which	is	necessary	to	study	overall	genome	structure	and	allele	
specific	characteristics.	Despite	these	advantages,	long	single	molecule	sequencing	reads	
also	introduce	new	challenges.	Most	significantly,	these	technologies	have	a	very	high	
sequencing	error	rate,	which	is	currently	around	10%	to	15%	for	PacBio,	and	5%	to	20%	
for	Oxford	Nanopore	sequencing23.	These	high	error	rates	exceed	the	capabilities	of	most	
aligners	or	SV	detection	algorithms	and	require	new,	specialized	methods.	A	few	aligners	
have	been	proposed,	including	BlasR24,	BWA-MEM25	and	more	recently	GraphMap26.	
However,	only	one	standalone	method,	PBHoney18,	is	available	to	detect	all	types	of	SV	
from	long	read	data,	although	a	few	others	have	been	proposed	for	subset	of	SVs	types	such	
as	SMRT-SV27	that	focuses	on	insertion,	deletions	(indels)	and	inversions.	
	
To	address	these	challenges,	we	introduce	a	pair	of	novel	open-source	analysis	algorithms,	
NGMLR	and	Sniffles,	for	comprehensive	long	read	alignment	and	SV	detection	(Figure	1).	
NGMLR	(https://github.com/philres/ngmlr)	is	a	fast	and	accurate	aligner	for	long	reads	
based	on	our	previous	seed-and-extend	short	read	aligner	NGM28,	extended	with	a	new	
segmented	convex	gap-cost	scoring	model	to	align	high	error	long	reads	across	SV	
breakpoints.	Its	partner	algorithm	Sniffles	(https://github.com/fritzsedlazeck/Sniffles)	
successively	scans	within	and	between	the	alignments	to	identify	all	types	of	SVs.	
Addressing	the	high	error	rate	of	the	reads,	Sniffles	employs	a	novel	SV	scoring	scheme	to	
exclude	false	SVs	based	on	the	size,	position,	type	and	coverage	of	the	candidate	SV.	This	is	
particularly	important	for	PacBio	sequencing	where	false-positive	indels	are	the	
predominant	error	type	and	Oxford	Nanopore	sequencing	which	shows	systematic	indel	
errors	in	homopolymer	sequences	and	other	contexts.		
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We	apply	our	methods	to	several	simulated	datasets	and	genuine	datasets	of	Arabidopsis,	
healthy	human	genomes,	and	a	cancerous	human	genome	to	demonstrate	the	increased	
accuracy	compared	to	alternate	short	and	long	read	callers.	A	particularly	novel	feature	of	
Sniffles	is	its	ability	to	detect	nested	SVs,	such	as	inverted	tandem	duplications	(INVDUP)	
or	inversions	flanked	by	insertions	or	deletions	(INVDEL).	These	are	poorly	studied	classes	
of	SVs,	although	both	have	been	previously	associated	to	genomic	disorders29-31	32.	
However,	as	no	alternative	methods	can	routinely	detect	them,	their	full	significance	is	
currently	unknown.	Finally,	we	show	that	our	methods	can	reduce	the	costs	per	sample	in	
both	the	sequencing	coverage	and	computational	resources	required,	making	it	
increasingly	feasible	to	apply	long	read	technologies	to	large	numbers	of	samples.	
	
Results	

Accurate	mapping	and	detection	of	SVs	using	long	reads	
	

		

Figure	1:	Overview	of	the	main	steps	implemented	in	NGMLR	(A)	and	Sniffles	(B).	For	details	
see	Supplementary	Sections	1	and	2	for	NGMLR	and	Sniffles,	respectively.	

NGMLR	is	our	novel	alignment	method	to	accurately	align	long,	high	error	reads,	even	in	
the	presence	of	SVs	(Figure	1a).	A	major	innovation	of	NGMLR	is	the	use	of	a	convex	gap	
scoring	model33,	which	allows	it	to	accurately	align	reads	spanning	genuine	indel	SVs	in	the	
presence	of	small	indels	(1-10bp)	that	commonly	occur	as	sequencing	errors.	Larger	or	
more	complex	SVs	are	also	captured	through	split-read	alignments	(Figure	2).	To	achieve	
both	high	performance	and	high	accuracy,	NGMLR	first	partitions	the	long	reads	into	256bp	
sub-reads	and	aligns	them	independently	to	the	reference	genome.	It	then	groups	co-linear	
sub-read	alignments	into	long	segments,	which	are	then	aligned	using	a	dynamic	
programming	algorithm	with	our	convex	gap-cost	scoring	scheme.	Finally,	NGMLR	selects	
the	highest	scoring	non-overlapping	combination	of	segments	per	read	and	outputs	the	
results	in	standard	SAM/BAM	format.	See	Methods	and	Supplementary	Section	1	for	
more	details.		
	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2017. ; https://doi.org/10.1101/169557doi: bioRxiv preprint 

https://doi.org/10.1101/169557
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

	
Figure	2:	Alignment	improvements	using	NGMLR	shown	for	a	228	bp	deletion	(left)	and	a	
150	bp	inversion	(right)	shown	in	IGV34.	Upper	track	shows	BWA-MEM	alignments	that	
indicate	these	events	but	is	not	able	to	localize	the	precise	event	and	breakpoints.	With	the	
improved	alignments	of	NGMLR,	Sniffles	can	precisely	pinpoint	the	location	and	type	of	the	
SV.	

We	further	present	Sniffles	to	detect	all	types	of	SVs	(deletions,	duplications,	insertions,	
inversions,	translocations,	and	nested	events)	from	long	read	alignments.	It	can	be	used	
with	any	aligner,	although	we	find	it	has	the	best	performance	with	NGMLR	as	it	produces	
the	most	accurate	alignments.	The	principal	steps	of	Sniffles	consist	of	scanning	the	
alignments	of	each	read	independently	for	potential	SVs	and	then	to	cluster	and	refine	the	
candidate	SVs	across	all	reads	(Figure	1b).	Sniffles	uses	both	within-alignment	and	split-
read	information	to	detect	SVs,	as	small	indels	can	be	spanned	by	a	single	alignment,	but	
large	or	complex	events	lead	to	split-read	alignments.	A	major	innovation	of	Sniffles	is	the	
novel	SV	scoring	it	uses	to	filter	false	SV	signals	from	the	noisy	PacBio	and	Oxford	
Nanopore	reads.	Like	other	variant	detectors,	filtering	by	minimum	read	support	(default:	
10	reads)	is	a	critical	feature,	but	it	also	considers	new	features	such	as	the	consistency	of	
the	breakpoint	position	or	size.	In	addition,	Sniffles	can	perform	read-based	phasing	of	SVs	
and	report	adjacent	or	nested	events	in	the	output	VCF	file.	See	Methods	and	
Supplementary	Section	2	for	more	details.		
	
Evaluation	of	NGMLR	on	simulated	human	data	
Using	the	error	profiles	and	read	lengths	measured	from	two	human	datasets	
(Supplementary	Section	3.2),	we	simulated	50x	PacBio-like	and	50x	Oxford	Nanopore-
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like	read	data	sets	from	two	human	chromosomes	(chr21	and	chr22).	In	the	simulation,	we	
included	a	total	of	840	SVs	consisting	of	equal	numbers	of	indels,	duplications,	balanced	
translocations,	and	inversions	ranging	from	100bp	to	50kbp	in	size	(Methods).	Figure	3a	
summarizes	the	results	when	evaluating	NGMLR,	BWA-MEM,	BLASR	and	GraphMap	
aligning	these	reads	to	the	entire	human	genome24-26.		Each	bar	represents	one	data	set	
consisting	of	20	SVs	of	a	certain	type	and	length,	and	categorizing	the	read	alignments	as:	
precisely	capturing	the	breakpoints	and	the	correct	type	of	the	SV	(green);	indicating	the	
type	but	without	exact	break	points	(yellow);	trimmed	so	that	the	region	of	the	read	
containing	the	SVs	was	not	aligned	(gray);	forced,	such	as	the	BWA-MEM	alignments	in	
Figure	2	(red);	fragmented	so	that	a	read	is	split	more	often	than	necessary	(brown);	or	the	
entire	read	was	unaligned	(white)	(Methods	and	Supplementary	Table	1).	Across	all	SV	
types,	NGMLR	outperforms	the	other	mappers	with	an	average	80.32%	precisely	aligned	
versus	26.31%	for	BWA-MEM	as	the	next	closest	competitor.	Even	when	counting	the	
precise	and	the	indicated	representation	together,	NGMLR	outperforms	with	an	average	
91.83%	versus	69.17%	for	BWA-MEM	as	next	closest	competitor.		
	

	
Figure	3:	Evaluation	of	NGMLR	and	Sniffles	using	simulated	data	with	840	SVs.	For	read	
alignments,	we	simulated	PacBio-like	(a)	and	Oxford	Nanopore-like	reads	(c),	and	
distinguish	between:	precise	(green),	indicated	(yellow),	forced	(red),	unaligned	reads	
(white),	or	trimmed	but	not	aligned	through	the	SV	(grey).	The	SV	analysis	(b,d)	used	the	
same	alignments	as	before,	and	distinguishes	between:	precise	(green),	indicated	(yellow),	
not	indicated	(red)	and	false	positive	calls	(brown).		

Next,	we	compared	the	performance	of	NGMLR,	BWA-MEM	and	GraphMap	in	mapping	
simulated	Oxford	Nanopore-like	reads,	using	their	respective	parameter	suggestions	
(BlasR	was	excluded,	as	it	is	only	applicable	to	PacBio	reads).	Again,	NGMLR	substantially	
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outperformed	other	mappers	for	precisely	aligning	reads	(72.42%	vs	24.90%	for	the	second	
best	BWA-MEM),	or	when	considering	both	precise	and	indicating	alignments	(88.57%	
versus	67.96%	for	BWA-MEM)	(Figure	3c).	GraphMap	performed	rather	poorly	on	these	
data,	with	on	average	only	18.19%	of	reads	aligned	precisely	or	indicating	the	SV	as	it	forces	
61.13%	the	reads	to	align	across	the	SV.		
	
Evaluation	of	Sniffles	based	on	simulated	human	data	
Next,	we	evaluate	the	performance	of	Sniffles	compared	to	alternate	short	and	long	read	SV	
detection	approaches	using	the	alignments	reported	above	14-16,18	(Figure	3b).	We	also	
extended	the	analysis	to	include	simulated	short	reads	to	be	analyzed	by	our	consensus	
algorithm	SURVIVOR8.	SURVIVOR	aggregates	the	outputs	from	Lumpy,	Manta	and	Delly	and	
excludes	variants	reported	by	only	a	single	caller.	We	find	this	increases	specificity	without	
sacrificing	much	sensitivity8.	Similar	to	the	read	alignments,	we	classified	SVs	to	be:	
precisely	detected	if	they	are	reported	within	+/-	10bp	(green);	indicated	if	they	are	within	
+/-	1kbp	and	ignoring	the	type	(yellow);	not	detected	(red);	and	false	positive	(brown)	
(Methods	and	Supplementary	Table	2).		
	
Over	all	SV	types,	the	combination	of	Sniffles	and	NGMLR	performs	the	best	with	an	
average	of	94.20%	precisely	detected	SVs	and	an	FDR	of	0.00%.	The	most	problematic	class	
was	short	(100bp)	tandem	duplications,	as	they	are	identified	as	insertions	rather	than	
tandem	duplications,	and	hence	classified	as	indicated.	The	second	best	result	was	achieved	
using	Sniffles	with	BWA-MEM	alignments,	with	on	average	79.11%	precisely	detected	SVs	
and	a	0.68%	FDR.	With	the	more	noisy	BWA-MEM	alignments,	Sniffles	detects	the	presence	
of	an	SV,	but	cannot	reliably	predict	the	exact	location	or	sometimes	even	the	type	of	SV.	
For	example,	both	deletions	and	inversions	cause	an	accumulation	of	mismatches	in	the	
BWA-MEM	alignments	(Figure	2).	PBHoney,	which	relies	on	BlasR	alignments,	precisely	
detected	only	32.58%	of	simulated	SVs	and	missed	25.18%.	Most	of	the	40.73%	indicated	
SVs	from	PBHoney	came	from	misinterpreting	tandem	duplications	as	insertions.	For	the	
short-read	analysis,	SURVIOR	precisely	detected	18.81%	and	57.89%	indicated	of	the	
simulated	SVs,	similar	to	what	has	been	previously	reported	for	short	read	analysis6,8,	
although	the	consensus-based	analysis	reduced	the	FDR	to	0.17%.	
	
Finally,	we	benchmarked	the	performance	of	Sniffles	using	BWA-MEM	and	NGMLR	on	the	
Oxford	Nanopore-like	reads	described	above	(Figure	3d).	Using	Sniffles	with	NGMLR,	
82.25%	of	SVs	are	precisely	identified,	whereas	76.35%	are	precisely	identified	with	BWA-
MEM.	Nevertheless,	due	to	the	higher	rate	of	sequencing	errors	in	the	Oxford	Nanopore-
like	data,	Sniffles	using	either	aligner	has	a	slight	FDR	of	calling	1-4	additional	events	per	
data	set.		
	
Benchmarking	NGMLR	and	Sniffles	with	genuine	long	human	reads	
The	simulated	read	results	establish	a	baseline	of	performance,	although	may	not	capture	
the	full	complexity	of	real	sequencing	data.	To	benchmark	more	realistic	datasets,	we	next	
analyzed	genuine	PacBio35	and	Oxford	Nanopore36	reads	from	the	well-studied	NA12878	
human	genome.	Since	a	complete	truth	set	of	SVs	is	not	available	for	this	genome,	we	
modified	the	reference	human	genome	to	introduce	700	SVs	at	random	locations:	140	
insertions	(by	deleting	from	the	reference),	140	deletions	(by	adding	new	sequence),	140	
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inversions,	and	140	balanced	translocations	creating	280	translocation	events.	The	mean	
indel	and	inversion	size	was	1.6kb.	We	did	not	attempt	to	simulate	tandem	duplications,	as	
this	would	require	detecting	and	modifying	tandem	duplications	preexisting	in	the	
reference.		
	
In	this	analysis,	we	can	only	evaluate	the	sensitivity	of	alignments,	but	not	false	positives	
since	there	are	additional	true	SVs	in	the	sample	compared	to	the	reference.	NGMLR	
showed	a	clear	improvement	over	BWA-MEM	(58.65%	vs	32.35%)	for	precisely	aligned	
reads	across	the	SVs	(Supplementary	Table	3),	although	the	shorter	average	length	of	the	
genuine	reads	limited	the	number	of	reads	that	could	be	precisely	aligned.	For	example,	if	
an	insertion	is	longer	than	the	read	length,	then	the	read	can	only	indicate	the	SV.	When	
counting	precise	and	indicated	together,	NGMLR	achieved	a	substantially	better	result	than	
BWA-MEM	(76.96%	vs	49.21%).	Furthermore,	NGMLR	considerably	reduced	the	number	
of	forced	aligned	reads	compared	to	BWA-MEM	(3.01%	vs	24.21%).	Using	the	Oxford	
Nanopore	reads	from	NA12878	we	observe	a	similar	trend	with	NGMLR	giving	the	most	
precise	alignments	(51.56%	vs.	27.35%)	with	the	lowest	percent	of	forced	reads	(5.94%	vs.	
29.15%).		
	
Using	these	alignments	and	the	alignment	of	50x	coverage	of	genuine	Illumina	sequencing	
from	this	sample6,	we	next	benchmarked	the	available	SV	callers	(Supplementary	Table	
4).	Sniffles	and	NGMLR	achieved	the	highest	rate	of	precisely	called	SVs	with	95.14%	and	
88.29%	SVs	using	the	PacBio	and	Oxford	Nanopore	reads,	respectively.	In	contrast,	the	
short	read-based	SURVIVOR	analysis	had	a	much	lower	sensitivity	(76.57%)	considering	
either	precise	or	indicated	variants.		
	

Trio-based	analysis	of	Structural	Variations		
	
Assessment	based	on	PacBio	sequencing	of	an	Arabidopsis	trio			
We	next	analyzed	an	Arabidopsis	trio	(Col-0,	CVI	and	the	Col-0	x	CVI	F1	progeny)	
previously	sequenced	using	both	PacBio	and	Illumina	sequencing37.	This	is	a	particularly	
challenging	dataset	as	the	rate	of	heterozygosity	in	the	F1	is	approximately	1	SNP	every	
200bp	along	with	thousands	of	reported	SVs	37.	Using	Sniffles	with	default	parameters,	we	
identified	355	(Col-0)	and	9,652	(CVI)	SVs	in	the	parents	(Table	1),	of	which	42	(Col-0)	and	
6,679	(CVI)	were	homozygous.	Based	on	Mendelian	inheritance,	we	expected	all	
homozygous	SVs	identified	in	the	parental	cultivars	to	be	in	the	F1	as	heterozygous	
variants.	Indeed,	when	comparing	the	homozygous	calls	from	Col-0	to	the	F1	only	4	SVs	
were	not	identified.	On	closer	inspection,	one	missed	insertion	was	reported	as	47bp	in	F1	
vs.	53bp	in	Col-0,	and	similarly	a	deletion	was	reported	as	48bp	in	F1	vs.	53bp	in	Col-0.	
Both	of	these	events	were	initially	not	found	due	to	the	minimum	size	cutoff	of	50bp.	
Sniffles	can	detect	the	remaining	two	SVs	–	another	deletion	and	a	duplication	–	in	the	F1	
by	reducing	the	coverage	threshold	as	the	deletion	was	supported	by	only	4	reads	and	the	
duplication	by	only	3	reads.		
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Data	Set	 Tech.	 Cov.	 Avg.	read	
length(bp)	

Total	SVs		 DEL	 DUP	 INS	 INV	 TRA	

Arabidopsis		
Col-0	

PacBio	 127x	 6,482	 355	 67	 63	 106	 68	 51	

Arabidopsis		
CVI	

PacBio	 123x	 6,073	 9,652	 3,822	 904	 1,823	 478	 2,625	

Arabidopsis		
Col-0	x	CVI	F1	

PacBio	 155x	 11,206	
11,935	 4,974	 582	 4,049	 567	 1,763	

Arabidopsis		
Col-0	X	CVI	F1	

Illumina	 40x	 250	
10,950	 4,324	 643	 0	 671	 5,312	

Giab	HG002	
(son)	

PacBio	 69x	 8,540	
19,131	 7,957	 1,084	 9,656	 232	 202	

Giab	HG002	
(son)	

Illumina	 80x	 148	
10,822	 5,018	 863	 0	 823	 4,118	

Giab	HG003	
(father)	

PacBio	 32x	 6,284	
11,964	 5,296	 408	 6,048	 99	 113	

Giab	HG003	
(father)	

Illumina	 80x	 148	
11,395	 5,553	 869	 0	 818	 4,155	

Giab	HG004	
(mother)	

PacBio	 30x	 7,285	
10,463	 4,590	 276	 5,436	 93	 68	

Giab	HG004	
(mother)	

Illumina	 80x	 148	
8,901	 5,000	 868	 0	 829	 2,204	

NA12878	
(healthy	female)	

PacBio	 55x	 4,334	
15,499	 6,734	 606	 7,880	 160	 119	

NA12878	
(healthy	female)	

Oxford	
Nanopore	

28x	 6,432	
17,155	 12,301	 323	 4,401	 87	 43	

NA12878	
(healthy	female)	

Illumina	 50x	 101	
7,275	 3,744	 553	 0	 731	 2,247	

SKBR3	
(Breast	Cancer)	

PacBio	 69x	 9,872	
19,165	 7,268	 1,019	 10,391	 328	 159	

SKBR3		
(Breast	Cancer)	

Illumina	 25x	 101	
5,046	 2,776	 483	 0	 627	 1,160	

Table	1:	Summary	of	detected	SVs	across	15	different	data	sets.	SVs	were	reported	with	a	
min.	size	of	50bp	using	SURVIVOR	based	on	Delly,	Lumpy	and	Manta	for	Illumina	or	Sniffles	
for	PacBio	or	Oxford	Nanopore	requiring	at	least	10	reads.	Supplementary	Table	5	shows	all	
the	data	sets	used.		

	
When	comparing	CVI	to	the	F1	calls,	Sniffles	initially	missed	370	(5.54%)	SVs	that	were	
reported	in	CVI	and	not	in	the	F1.	Most	of	the	missed	variants	are	explained	by	a	few	
straightforward	explanations:	159	lacked	sufficient	coverage	of	supporting	reads	in	the	F1;	
101	had	slightly	different	SV	sizes	reported	below	the	minimum	size;	43	were	interpreted	
as	different	SV	types;	and	50	occurred	within	Col-0	specific	regions	in	F1	(Supplementary	
Section	4.4).	After	considering	these	factors,	only	17	(0.25%)	SVs	present	in	the	CVI	data	
set	were	missed	by	Sniffles	for	the	F1	data	set.	In	contrast,	the	Illumina-based	SURVIVOR	
calls	in	the	F1	data	set	had	a	much	lower	recall	rate	compared	to	the	PacBio-based	Sniffles	
in	Col-0	(47.3%	recall)	and	CVI	(70.6%	recall).	
	
Genome-in-a-Bottle	(GiaB)	Human	Trio	Analysis	
Next,	we	investigated	the	performance	of	Sniffles	based	on	the	Ashkenazi	trio	data	set	from	
GiaB38	(Table	1	and	Supplementary	Table	6).	Similar	to	Arabidopsis,	we	analyzed	the	
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concordance	of	Mendelian	inheritance	between	samples	as	an	indicator	of	performance,	
although	some	SVs	(e.g.	mobile	element	insertions	in	the	son)	may	be	incorrectly	classified.	
We	adjusted	the	coverage	threshold	for	Sniffles	to	a	minimum	of	5	reads	(-s	5)	to	account	
for	the	reduced	coverage	of	the	parents	compared	to	the	son	(32x	compared	to	69x,	also	
see	downsampling	results	below).	We	compared	these	results	to	the	Illumina-based	call	
sets	from	80x	coverage	in	all	of	the	samples.		
	
Sniffles	reported	5,244	and	5,964	SVs	as	homozygous	in	the	father	and	mother,	
respectively.		Within	the	son	we	re-identified	93.84%	and	94.01%	of	the	SVs	from	the	
father	and	the	mother,	respectively.	Most	of	the	missed	variants	could	be	explained	
through	minor	adjustments	in	parameters.	For	example,	when	we	relax	the	size	cutoff	to	
consider	variants	just	below	50bp,	Sniffles	misses	only	187	(3.57%)	and	126	(2.11%)	for	
the	father	and	mother,	respectively,	and	most	of	the	remainders	have	slightly	less	coverage	
than	our	cutoff.	In	contrast,	when	using	SURVIVOR,	we	identified	only	1,586	and	1,668	
homozygous	SVs	for	father	and	mother,	respectively,	approximately	3	times	less	than	found	
using	Sniffles.	Of	these,	164	(10.34%)	and	203	(12.17%)	could	not	be	identified	in	the	son.		
	
We	next	tested	how	many	calls	are	in	the	son	that	are	not	within	the	parents	to	investigate	
potential	false	positive	calls	(Supplementary	Table	6).	Using	the	same	parameter	settings,	
Sniffles	had	the	lowest	number	of	such	calls	in	the	son	for	deletions	(515	vs.	677),	
inversions	(66	vs.	75)	and	translocations	(90	vs.	1,550)	compared	to	SURVIVOR.	Only	for	
tandem	duplications	SURVIVOR	has	75	events	that	are	unique	to	the	son	versus	115	that	
Sniffles	calls.	On	investigation,	most	of	the	Sniffles	calls	found	only	in	the	son	were	due	to	
the	lower	coverage	of	the	parents	
		
Overall,	Sniffles	and	NGMLR	had	the	highest	recall	rate	as	well	as	the	lowest	Mendelian	
discordance	rate.	In	contrast,	the	short	read	approaches	showed	an	unreasonably	high	
number	(1,550)	of	false	positive	translocations	in	the	son.	
	

Comparison	of	PacBio	and	Oxford	Nanopore	sequencing	for	human	SV	analysis	
	
As	a	new	sequencing	technology,	Oxford	Nanopore	has	not	yet	been	extensively	tested	for	
structural	variation	analysis,	especially	in	human	genomes.	Here	we	investigated	its	
capability	in	the	well-studied	NA12878	human	genome	using	three	publicly	available	
datasets:	28x	coverage	of	Oxford	Nanopore	data36	analyzed	with	NGMLR/Sniffles,	55x	
coverage	of	PacBio	data35	analyzed	with	NGMLR/Sniffles,	and	50x	coverage	Illumina	data39	
analyzed	by	SURVIVOR	(Table	1).	We	also	compared	these	results	to	two	previously	
published	call	sets,	the	GiaB	insertion	and	deletion	call	set	based	on	PacBio	sequencing35	
and	the	Illumina-based	deletion-only	call	set	from	the	1000	Genomes	Project	(1KGP)6.		
	
We	first	used	this	data	set	to	measure	the	runtime	of	the	different	aligners	and	Sniffles.	For	
this	we	subsampled	the	reads	to	1x	coverage	and	mapped	them	with	each	of	the	mappers.	
NGMLR	was	the	fastest	requiring	1.3	hours	using	10	threads	followed	by	BWA-MEM	(1.7	
hours).	GraphMap	did	not	finish	within	a	week	on	the	same	data	set	and	computer	using	10	
threads.	Sniffles	required	3.4	hours	and	2.2	hours	for	calling	SVs	based	on	the	55x	NGMLR	
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PacBio	and	28x	NGMLR	Oxford	Nanopore	mapping	from	NGMLR	(Supplementary	Table	
10).	
	
Overall,	Sniffles	identified	15,499	SVs	for	the	PacBio	reads,	and	17,155	SVs	for	the	Oxford	
Nanopore	reads,	while	SURIVOR	reported	7,275	(Table	1).	Sniffles	using	either	PacBio	
(1,298)	or	Oxford	Nanopore	(1,269)	reads	showed	the	largest	overlap	with	the	1KGP	
deletions	(Supplementary	Table	7).	Sniffles	also	recalls	the	most	deletions	from	the	
published	GiaB	NA12878	call	set	using	PacBio	(6,641)	and	Oxford	Nanopore	(6,557)	data,	
compared	to	only	3,009	for	the	Illumina	data.	For	insertions,	Sniffles	recalls	7,488	and	
6,234	of	the	GiaB	results	when	using	PacBio	or	Oxford	Nanopore,	respectively,	while	the	
short	read	consensus	calls	had	none.		
	
The	majority	(25,100	distinct	calls)	of	the	identified	SVs	are	present	in	only	one	call	set,	
while	16,277	SVs	were	identified	in	two	or	more	call	sets.	However,	most	(94.38%)	of	the	
PacBio	calls	were	confirmed	by	Oxford	Nanopore,	Illumina	or	the	existing	call	sets.		
Surprisingly,	Oxford	Nanopore	had	substantially	worse	concordance,	as	Sniffles	reports	
11,989	calls	unique	to	Oxford	Nanopore,	of	which	11,394	(96.19%)	were	deletions	and	the	
majority	(89.72%)	were	within	a	homopolymer	or	other	simple	repeats.	In	contrast,	the	
847	calls	only	found	by	PacBio	were	mainly	insertions	(68.12%)	and	only	352	(41.46%)	
were	overlapping	with	homopolymers	or	repeats	given	the	same	criteria.	This	systematic	
bias	for	deletions	in	the	Oxford	Nanopore	data	is	most	likely	an	error	in	the	base	calling,	as	
also	reported	by	Jain	et	al.	29.	The	majority	of	these	artifacts	are	small	deletions,	and	by	
increasing	the	minimum	SV	size	to	200bp,	Sniffles	reports	only	38.86%	of	the	SVs	calls	
within	homopolymers	and	low	complexity	regions.	The	Illumina-based	SV	calling	had	
relatively	low	concordance	to	alternative	approaches,	and	31.43%	of	their	calls	were	
unique	to	the	technology.	Interestingly,	the	majority	(53.89%)	of	the	unique	calls	were	
again	translocations	events,	but	most	of	these	appear	to	be	false	positives	(see	below).	
	

Detailed	investigation	of	unique	short	read	vs.	long	read	events		
	
Over	all	data	sets,	Sniffles	is	able	to	detect	far	more	indels	than	the	short	read	based	callers	
(Table	1).	Conversely,	using	the	short	read	approach	we	detect,	on	average,	27	times	more	
translocation	events	compared	to	using	Sniffles	within	presumably	healthy	human	data	
sets.	We	investigated	these	discrepancies	using	NA12878.		
	
We	first	investigated	the	small	insertion	(50bp-300bp)	and	deletion	(50bp-3kbp)	calls	
from	Sniffles	using	the	orthogonal	Illumina	reads	as	evidence	(Supplementary	Section	
4.5.1).	We	focused	on	these	size	ranges	since	they	should	be	best	captured	by	the	paired-
end	Illumina	data.	To	do	so,	we	used	a	derivative	of	the	compression-expansion	statistic40	
as	an	unbiased	measure	of	the	Illumina	paired-end	placements	near	predicted	indels.	
Briefly,	we	compare	the	genome-wide	observed	Illumina	insert	size	(average	311bp)	to	the	
insert	sizes	spanning	the	indel	breakpoints	as	aligned	using	BWA-MEM:	real	insertions	in	
the	sample	cause	the	pairs	to	map	closer	than	expected,	deletions	further	away.	Using	the	
Illumina	data	and	a	p-value	threshold	of	0.01	(two	sided,	one	sample	t-test),	we	could	
confirm	3,415	and	3,879	deletions	reported	by	Sniffles	in	the	PacBio	and	Oxford	Nanopore	
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data,	respectively	(Supplementary	Table	9).	For	insertions,	we	could	validate	2,685	and	
1,703	for	PacBio	and	Oxford	Nanopore,	respectively.	For	comparison,	using	SURVIVOR	we	
could	confirm	1,873	deletions.	Manta	performed	best	over	the	individual	short	read	based	
callers	with	2,868	confirmed	deletions	and	629	confirmed	insertions,	although	far	less	than	
using	Sniffles	with	either	long	read	technology.	We	assessed	the	performance	of	this	test	by	
shuffling	the	regions	with	the	same	sizes	across	the	genome	and	performing	the	test	again.	
On	average	only	10%	of	the	randomized	regions	showed	a	significant	alteration.			

	
Figure	4:	Systematic	error	in	short	read	based	SV	calling.	A)	An	example	of	a	putative	
translocation	identified	in	the	short	read	data	(top	alignments)	that	overlaps	an	insertion	
detected	by	both	PacBio	(middle)	and	Oxford	Nanopore	sequencing	(bottom).	B)	An	example	
of	a	putative	inversion	identified	in	the	short	read	data	(top)	that	overlaps	an	insertion	
detected	by	both	PacBio	(middle)	and	Oxford	Nanopore	reads	(bottom)	

Next,	we	investigated	the	large	number	of	translocations	reported	in	the	Illumina-based	
consensus	calls	(2,247)	compared	to	Sniffles	(PacBio:	119	and	Oxford	Nanopore:	43).	Note	
that	the	number	of	Illumina-based	translocations	is	even	higher	before	computing	the	
consensus:	3,117	for	Delly,	3,007	for	Lumpy,	and	3,261	for	Manta.	(Supplementary	
Section	4.5.2	and	Supplementary	Table	9)	We	noted	a	large	overlap	(48.87%)	of	the	
Illumina-based	translocation	sites	with	insertion	calls	from	Sniffles	using	both	long	read	
technologies.	Figure	4a	shows	a	representative	example,	with	an	insertion	called	using	
both	long	read	data	types	exactly	at	the	location	where	the	candidate	translocation	is	
called.	As	the	insertion	falls	within	a	low-complexity	region,	it	causes	the	short	reads	to	be	
mis-mapped	to	a	similar	repeat	on	a	different	chromosome.	These	mis-mapped	reads	are	
therefore	incorrectly	identified	as	a	translocation	instead	of	an	insertion.	We	also	observed	
clusters	of	soft-clipped	Illumina	reads	(displayed	as	red	endings	of	the	reads),	which	
further	indicates	an	insertion	rather	than	a	translocation	event.	Overall,	we	could	rule	out	
1,869	(83.18%)	of	the	Illumina-based	translocation	calls	as	false,	with	most	overlapping	an	
insertion	(48.87%)	or	deletion	(8.86%),	or	a	few	other	SV	types	(1.20%).	The	remaining	
Illumina-based	translocation	calls	are	also	questionable,	with	404	(17.98%)	being	in	low	
complexity	regions	and	141	(6.28%)	translocations	lying	within	a	region	with	abnormally	
high	coverage	without	any	evidence	for	them	in	the	long	read	data.	A	similar	pattern	is	also	
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seen	for	the	inversions,	where	60%	of	the	calls	overlap	with	a	different	SV	type	identified	
by	long	reads	(Figure	4b)	or	align	to	low	complexity	sequences.	
		
Overall,	the	majority	of	PacBio-based	insertions	and	deletions	calls	from	Sniffles	were	
validated	by	either	the	Oxford	Nanopore	calls	or	the	Illumina	paired-end	reads.	In	contrast,	
the	majority	of	calls	unique	to	the	Illumina-based	methods	were	false,	with	false	
translocations	caused	by	mis-mapped	reads	intersecting	insertions	being	especially	
prominent.		

Detection	of	Nested	SVs	
	
Next,	we	investigated	the	performance	of	Sniffles	on	more	complex,	nested	SV	types	such	as	
inverted	duplications	(INVDUP)	and	inversions	flanked	by	deletions	(INVDEL).	While	these	
variant	types	are	poorly	studied,	they	have	been	associated	with	a	number	of	diseases:	
INVDUPs	have	been	reported	in	PLP1	(associated	with	Pelizaeus-Merzbacher	disease	30)	
and	MECP2	region29	and	shown	impact	on	the	VIPR2	gene41.	INVDELs	have	been	reported	
in	Haemophilia	A	genetic	deficiency	using	long	range	PCRs32.		
	
To	start,	we	simulated	nested	SV	types	of	different	sizes	(280	SVs	total)	in	the	human	
genome	along	with	simulated	PacBio-like,	Oxford	Nanopore-like,	and	Illumina-like	reads	
(Figure	5	and	Supplementary	Table	2).	We	evaluated	each	SV	separately	e.g.	an	inversion	
flanked	by	two	deletions	was	evaluated	based	on	all	three	SV.	For	the	short	read	based	
caller	we	observe	a	reduced	ability	to	detect	these	complex	events,	and	none	of	the	
approaches	were	able	to	identify	the	correct	breakpoints	of	the	inversion	flanked	by	
deletions.	Nevertheless,	nearly	all	methods	predicted	an	inversion	to	be	present.	For	the	
inverted	duplications	SURVIVOR	correctly	predicted	almost	all	the	inversions,	but	missed	
the	fact	that	the	region	is	duplicated.	We	observed	a	similar	result	for	PBHoney	using	
PacBio-like	reads	where	it	called	the	inversion	in	0.00%	and	5.32%	precisely	for	INVDEL	
and	INVDUP,	respectively.	Only	Sniffles	was	able	to	detect	the	full	types	due	to	its	dynamic	
splitting	of	events,	and	precisely	called	67.88%	of	the	nested	SVs	(Supplementary	Section	
2).	This	includes	SVs	that	are	larger	than	the	read	length	and	thus	highlights	the	ability	of	
Sniffles	to	accurately	infer	such	complex	events.	When	using	the	Oxford	Nanopore-like	
reads,	our	ability	for	precisely	calling	these	events	is	slightly	reduced	due	to	the	more	
complex	sequencing	error	model	and	reduced	read	length	(average	of	6kbp).	However,	we	
were	still	able	to	precisely	call	67.34%	of	SVs	on	average	over	INVDEL	and	INVDUP	events	
of	different	length.	
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Figure	5:	Nested	SVs	in	SKBR3	cancer	cell	line.	A:	Evaluation	of	Sniffles	+	NGMLR	using	simulated	data	to	identify	
nested	SVs.	B:	A	3kb	region	including	two	deletions	flanking	an	inverted	sequence	clearly	visible	and	detected	by	
Sniffles	using	NGMLR	(above)	and	not	detected	by	the	Illumina	methods	(below).	C:	The	start	of	an	inverted	
duplication.	The	breakpoints	were	reported	by	Sniffles	as	the	start	of	an	inverted	duplication	(above)	and	not	
correctly	detected	by	short	read	methods	(below).		

	
To	highlight	this	capability	in	real	data,	we	examined	a	PacBio-based	data	set	for	the	SKBR3	
breast	cancer	cell	line	(Nattestad	et	al,	in	submission).	Sniffles	and	NGMLR	was	used	to	
investigate	this	data	set	revealing	15	gene	fusions	joined	by	1	to	3	chained	events,	which	
were	all	validated	by	PCR.	Figure	5	shows	an	INVDEL	(B)	and	INVDUP	(C)	in	SKBR3	in	
comparison	to	Illumina	short	read	data	(lower	panel).	The	short	reads	indicate	an	
inversion	(colored	reads)	but	the	poor	resolution	makes	it	impossible	to	detect	and	
interpret	the	entire	event.	In	contrast,	Sniffles	detects	the	events,	and	the	read	phasing	
allows	for	the	complex	regions	to	be	fully	resolved	(Supplementary	Section	2).	Although	
these	were	the	only	two	nested	types	we	evaluated,	Sniffles	is	capable	to	detect	and	report	
multiple	combination	of	SVs	based	on	the	IDs	assigned	in	the	reported	VCF	file.		
	

How	much	coverage	is	required?	
	
Our	final	analysis	is	to	assess	how	much	coverage	is	required	to	detect	SVs	using	PacBio	or	
Oxford	Nanopore	reads.	This	is	an	important	consideration	since	long	read	technologies	
are	more	expensive	than	short	read	technologies	in	generating	the	same	amount	of	
coverage23.	From	a	purely	statistical	analysis,	assuming	Poisson	coverage	and	that	an	SV	
can	be	detected	by	reads	that	span	50bp,	about	10x	coverage	should	be	sufficient	to	infer	
all	SV	breakpoints	using	10kbp	long	reads	whereas	about	25x	coverage	is	needed	for	
2x100bp	short	reads	(Figure	6a	and	Methods).	However,	this	analysis	represents	an	
idealized	case	(e.g.	lack	of	repeats	or	coverage	biases)	and	is	a	weak	estimate	for	the	true	
amount	of	coverage	required.		
	
To	investigate	this	with	real	data,	we	subsampled	reads	from	the	NA12878	PacBio	and	
Oxford	Nanopore	datasets	as	well	as	the	more	complex	SKBR3	PacBio	sample	to	5x,	10x,	
15x,	20x	and	30x	coverage.	We	then	aligned	those	reads	using	NGMLR	and	used	Sniffles	
with	different	parameter	settings	(-s	1	to	–s	10	to	vary	the	minimum	number	of	reads)	to	
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compare	the	results	to	the	original	call	set.	For	this	analysis,	we	measured	precision	and	
recall	with	respect	to	the	full	coverage	dataset	(Figure	6b-d).	As	expected,	using	a	
minimum	support	of	only	one	or	two	reads	(red	dots,	blue	triangles)	to	support	an	SV	leads	
to	many	false	positives.	Consequently,	we	focus	on	those	settings	that	have	a	precision	rate	
of	80%	or	higher.		
	

	
Figure	6:	Analysis	of	SV	detection	accuracy	with	different	amounts	of	coverage.	A:	Theoretical	assessment	of	
recall	vs	coverage	for	different	read	lengths	requiring	a	50bp	overlap	of	each	breakpoints	for	SV	events.	B:	
Subsampling	experiment	of	the	55x	PacBio	NA12878	data;	C:	Subsampling	experiment	using	28x	Oxford	
Nanopore	NA12878	data;	D:	Subsampling	experiment	of	the	70x	PacBio	SKBR3	breast	cancer	cell	line	dataset.	For	
plots	B-D,	Sniffles	and	NGMLR	were	run	on	subsampled	data	(rate	indicated	by	lines)	and	using	different	
thresholds	for	Sniffles	(s:	1-10	indicated	in	symbols	and	colors).	In	every	data	set	we	could	show	the	success	for	
Sniffles	using	NGMLR	with	only	10x	to	30x	coverage	that	recovers	around	80%	of	the	calls	with	a	precision	~80%	
or	higher.	

	
For	both	PacBio	datasets	(Figure	6	b,d)	we	obtain	similar	results	that	show	15x	coverage	
has	a	precision	of	~80%	and	recall	of	69.64%	and	67.24%	for	NA12878	and	SKBR3	for	
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homozygous	and	heterozygous	SVs	of	any	type,	respectively.	The	difference	in	recall	is	
largely	due	to	the	complexity	of	the	SKBR3	cancer	sample,	which	displays	high	copy	(>20	
fold)	amplifications	in	different	regions	of	the	genome.	Increasing	the	coverage	to	30x,	
Sniffles	has	an	80.05%	to	76.63%	recall	with	a	precision	of	~85%	for	NA12878	and	SKBR3,	
respectively.		
	
For	the	Oxford	Nanopore	NA12878	data	set,	the	highest	recall	rate	(84.23%)	had	a	
precision	of	82.24%	for	20x	coverage	(Figure	6	c).	The	higher	apparent	accuracy	in	this	
case	is	not	too	surprising,	since	the	original	data	set	has	only	28x	coverage,	so	this	
constitutes	a	less	dramatic	down	sampling.	Interestingly,	we	see	a	greater	loss	in	precision	
than	the	PacBio	data,	due	to	the	stringent	minimum	number	of	supporting	reads	(-s	10)	
used	throughout	the	study.	
	
Overall,	we	could	demonstrate	that	using	NGMLR	and	Sniffles	we	can	detect	the	vast	
majority	of	heterozygous	and	homozygous	SVs	using	only	a	fraction	of	the	original	
coverage.	
	
Discussion	
	
In	this	paper,	we	introduced	NGMLR,	a	novel	long	read	mapper,	and	Sniffles,	a	novel	long	
read	based	SV	caller.	The	versatility	of	these	methods	enables	an	unprecedented	view	into	
structural	variations	in	the	human	genome	and	other	genomes	from	long	read	single	
molecule	sequencing	data.	We	demonstrated	their	reliability	over	several	simulated	and	
genuine	data	sets,	where	the	new	methods	outperformed	existing	tools	in	sensitivity	and	
specificity.	In	particular,	by	leveraging	long	reads	we	demonstrated	that	we	can	overcome	
the	sensitivity	issues	reported	for	short	read	callers,	which	can	miss	between	30%6,8	and	
90%17	of	the	SVs.	This	allows	us	to	detect	tens	of	thousands	of	additional	variants	beyond	
what	has	been	reported	by	large-scale	short-read	sequencing	projects	such	as	the	1000	
Genomes	Project.	Furthermore,	prototype	versions	of	our	methods	were	used	in	a	recent	
study	to	identify	the	causal,	pathogenic	SV	in	a	patient	who	presented	with	multiple	
neoplasia	and	cardiac	myxomata42.		We	could	also	use	the	long	read	data	to	identify	
systematic	errors	in	short	read	structural	variation	analysis,	where	the	vast	majority	
(>85%)	of	the	translocations	are	false	positives	due	to	mis-mapped	reads.	
	
The	assessment	of	SVs	from	long	reads	is	a	challenging	problem.	Errors	and	artifacts	can	
originate	anywhere	in	the	process,	including	in	sequencing,	base	calling,	alignment,	or	in	SV	
calling.	While	the	predominate	error	mode	for	PacBio	sequencing	is	insertions	or	deletions	
of	a	few	bases,	we	have	discovered	that	it	also	introduces	larger	false	insertions	at	a	low,	
but	noticeable	rate	(Supplementary	Section	2.2.4).	We	have	controlled	for	this	artifact	by	
requiring	the	size	and	composition	of	candidate	SVs	are	consistent	across	the	spanning	
reads,	although	this	artifact	limits	accuracy	in	very	low	coverage	data	sets.	Within	the	
Oxford	Nanopore	dataset,	we	have	highlighted	major	artifacts	in	base	calling	that	form	
systematic	artificial	deletions	in	low	complexity	repeats.	Consequently,	they	appear	as	
genuine	variants	to	the	SV	caller,	and	while	we	fully	expect	this	to	improve	in	time,	it	is	
currently	necessary	to	exclude	small	SVs	when	using	Nanopore	sequencing.	Beyond	
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sequencing	errors,	we	highlighted	how	various	alignment	artifacts	can	lead	to	miscalling	or	
missing	of	SVs.	For	example,	some	long	read	mappers	align	reads	through	a	SV	without	
indication	of	the	underlying	events.	Although	Sniffles	is	able	to	recognize	such	errors	
through	the	increase	in	mismatches	in	the	alignment,	it	is	clear	that	using	NGMLR	is	a	
better	choice	to	accurately	align	the	long	reads.	Finally,	we	showed	a	deficiency	in	detecting	
nested	variations	such	as	INVDUP	or	INVDEL	in	all	examined	methods	except	for	Sniffles.	
While	several	diseases	are	already	known	to	be	associated	with	these	SV	types,	we	expect	
their	importance	will	rapidly	increase	as	more	samples	are	analyzed	using	our	methods.	
	
The	last	remaining	barrier	to	perform	a	detailed	analysis	of	SVs	across	a	large	number	of	
samples	is	cost.	Long	read	technologies	from	both	PacBio	and	Oxford	Nanopore	are	
becoming	less	expensive	every	year,	but	still	remain	more	expensive	than	short	read	
sequencing23.	We	have	addressed	this	by	investigating	how	much	coverage	is	needed	for	
accurate	SV	calling,	and	have	shown	how	high	accuracy	is	possible	with	only	15x	to	30x	
coverage	for	a	healthy	or	cancerous	human	genome.	This	translates	to	a	potential	price	
reduction	of	several	tens	of	thousands	of	dollars	per	sample.	These	requirements	will	be	
reduced	even	more	in	the	years	to	come	as	the	throughput	and	read	length	increase	and	
sequencing	error	rates	decrease.	Altogether,	these	improvements,	aided	by	our	methods,	
will	usher	in	a	new	era	of	high	quality	genome	sequences	for	a	broad	range	of	research	and	
clinical	applications,	and	lead	to	new	insights	into	polymorphic	variation,	pathogenic	
conditions,	and	the	forces	of	evolution.		
	
	
Online	Methods	

NGMLR	
	
NGMLR	is	designed	to	accurately	map	long	single	molecule	sequencing	reads	from	either	
Pacific	Biosciences	or	Oxford	Nanopore	to	a	reference	genome	with	the	goal	of	enabling	
precise	structural	variation	calls.	We	follow	the	terminology	used	by	the	SAM	specification	
43	where	a	read	mapping	consists	either	of	one	linear	alignment	covering	the	full	read	
length	or	multiple	linear	alignments	covering	non-overlapping	segments	of	the	read	(i.e.	
split	reads).		
	
The	main	challenge	when	mapping	high	error	long	reads	is	to	evaluate	whether	a	read	
should	be	mapped	to	the	reference	genome	with	one	linear	alignment,	or	must	be	split.	For	
example,	the	correct	mapping	for	a	read	that	spans	an	inversion	can	only	be	found	when	
splitting	the	read	into	three	segments.	Reads	that	do	not	span	a	structural	variation	should	
always	be	mapped	with	a	single	linear	alignment.	However,	error	rates	are	high,	and	are	
not	always	uniform	with	some	regions	having	an	error	rate	of	over	30%.	These	segments	
can	cause	read	mappers	to	falsely	split	a	read.	Furthermore,	the	high	insertion	and	deletion	
sequencing	error	of	long	read	technologies	cause	current	read	aligners	to	falsely	split	up	
large	SVs	into	several	smaller	ones	and	make	it	difficult	to	detect	exact	break	points.		
	
To	address	these	challenges,	NGMLR	implements	the	following	workflow	(Figure	1a):		
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1. NGMLR	identifies	sub-segments	of	the	read	and	of	the	reference	genome	that	show	

high	similarity	and	can	be	aligned	with	a	single	linear	alignment.	These	segments	
can	contain	small	insertions	and	deletions,	but	must	not	span	a	larger	structural	
variation	breakpoint.	In	reference	to	BLAST’s	High-scoring	Segment	Pairs	(HSPs),	
we	call	those	segment	linear	mapping	pairs	(LMPs).		

	
2. For	each	LMP,	NGMLR	extracts	the	read	sequence	and	the	reference	sequence	and	

uses	the	Smith-Waterman	algorithm	to	compute	a	pairwise	sequence	alignment	
using	a	convex	gap	cost	model	that	accounts	for	sequencing	error	and	SVs	at	the	
same	time.		

	
3. NGMLR	scans	the	sequence	alignments	for	regions	of	low	sequence	identity	to	

identify	small	SVs	that	were	missed	in	step	(1)	and	(3).		
	

4. Finally,	NGMLR	selects	the	set	of	linear	alignments	with	the	highest	joint	score,	
computes	a	mapping	quality	for	each	alignment	and	reports	them	as	the	final	read	
mapping	in	a	SAM/BAM	file.	

	

Convex	scoring	model	
	
When	aligning	high	error	long-reads	it	is	crucial	to	choose	an	appropriate	gap	model	as	
there	are	two	sources	of	insertions	and	deletions	(indels).	Sequencing	error	predominantly	
causes	very	short	randomly	distributed	indels	(1-5bp)	while	longer	indels	(20bp+)	are	
caused	by	genomic	structural	variations.	A	linear	or	affine	gap	model	appropriately	models	
indels	originating	from	sequencing	error,	but	cannot	account	for	longer	indels	from	
genomic	variation	as	these	large	blocks	occur	as	a	single	unit,	not	as	the	combination	of	
multiple	single	base	insertions	or	deletions.	However,	for	noisy	long	reads,	the	gap-open	
penalty	falsely	causes	short	indels	from	sequencing	error	to	cluster	together	and	has	only	
little	effect	on	longer	indels,	especially	in	repetitive	regions	of	the	genome.	With	the	convex	
scoring	model	of	NGMLR,	extending	an	indel	is	penalized	proportionally	less	the	longer	the	
indel	is.	Therefore,	the	convex	scoring	model	encourages	large	alignment	gaps,	such	as	
those	occurring	from	a	structural	variation,	to	be	grouped	together	into	contiguous	
stretches	(extending	a	large	indel	has	relatively	low	cost),	while	small	indels,	which	
commonly	occur	as	sequencing	errors,	to	remain	separate	(extending	a	1	bp	gap	has	almost	
the	same	cost	as	opening	a	new	gap).	
	
Using	a	convex	gap	model	to	compute	optimal	alignments	increases	computation	time	
substantially	as	each	cell	in	the	alignment	matrix	not	only	depends	on	three	other	cells,	but	
on	the	full	row	and	column	it	is	located	in	33.	This	would	make	it	infeasible	to	use	convex	
gap	costs	for	aligning	large	long-read	datasets,	so	we	adapted	a	heuristic	implementation	of	
the	convex	gap	cost	algorithm	found	in	the	swalign	library	
(https://github.com/mbreese/swalign).	Instead	of	scanning	the	full	cell	and	row	while	
filling	the	alignment	matrix,	we	use	two	additional	matrixes	to	store	indel	length	
estimations	for	each	cell.	Furthermore,	we	use	the	initial	sub-segment	alignments	to	
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identify	the	part	of	the	alignment	matrix	that	is	most	likely	to	contain	the	correct	alignment	
and	skip	all	other	cells	of	the	matrix	during	alignment	computation.	(Supplement	Section	
1).		
	

Sniffles	
	
Sniffles	operates	within	and	between	the	long	read	alignments	to	infer	SVs.	It	applies	five	
major	steps	(Figure	1b).		

1. Sniffles	first	estimates	the	parameters	to	adapt	itself	to	the	underlying	data	set,	such	
as	the	distribution	in	alignment	scores	and	distances	between	indels	and	
mismatches	on	the	read,	as	well	as	the	ratios	of	the	best	and	second	best	alignments	
scores.		

2. Sniffles	then	scans	the	read	alignments	and	segments	to	determine	if	they	
potentially	represent	SVs.		

3. Putative	SVs	are	clustered	and	scored	based	on	the	number	of	supporting	reads,	the	
type	and	length	of	the	SV,	consistency	of	the	SV	composition,	and	other	features.		

4. Sniffles	optionally	genotypes	the	variant	calls	to	identify	homozygous	or	
heterozygous	SVs.		

5. Sniffles	optionally	provides	a	clustering	of	SVs	based	on	the	overlap	with	the	same	
reads,	especially	to	detect	nested	variants.		
	

For	details	on	each	step	see	Supplementary	Section	2.	In	the	following,	we	focus	on	the	
methods	that	are	unique	to	Sniffles,	which	are	the	detection	and	analysis	of	alignment	
artifacts	to	reduce	falsely	called	variants	and	the	clustering	of	variants.		

Putative	Variant	Scoring	
	
The	high	error	rate	of	the	long	reads	induces	many	alignments	that	falsely	appear	as	SVs.	
Sniffles	addresses	these	by	scoring	each	putative	variant	using	several	characteristics	that	
we	have	determined	to	be	the	most	relevant	to	detecting	SVs.	The	two	main	user	
thresholds	are	the	number	of	high	quality	reads	supporting	the	variant	(set	using	the	–s	
parameter)	as	well	as	the	standard	deviation	of	the	coordinates	in	the	start	and	stop	
breakpoint	across	all	supporting	reads.	The	minimum	variant	size	reported	defaults	to	
50bp,	but	can	also	be	adjusted	using	the	–l	parameter.	To	account	for	additional	noise	in	
the	data	and	imprecision	of	the	breakpoints	we	use	a	quantile	filtering	to	ignore	outliers	
given	a	coverage	of	more	than	8	reads.	The	computed	standard	deviations	for	both	
breakpoints	are	compared	to	the	standard	deviation	of	a	uniform	distribution	representing	
spurious	SV	breakpoints	reported	in	the	region.	SVs	are	only	reported	if	both	breakpoints	
are	below	this	threshold.	If	the	standard	deviation	for	both	breakpoints	is	<	5bp,	the	
coordinates	are	marked	as	PRECISE	in	the	VCF	file.	See	Supplement	Section	2.2.4.	

Variant	Scoring	and	Genotyping	
	
At	the	start	of	the	program	the	user	may	specify	that	the	VCF	output	should	be	genotyped.	
In	this	case,	Sniffles	stores	summary	information	(coordinates	and	orientation)	about	all	
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high	quality	reads	that	do	not	include	a	SVs	in	a	binary	file.	This	includes	those	reads	that	
support	the	reference	sequence	that	pass	the	thresholds	for	MQ	and	alignment	score	ratio.	
After	the	detection	of	SVs,	the	VCF	file	is	read	in,	and	Sniffles	constructs	a	self-balancing	
tree	of	the	variants.	With	this	information,	Sniffles	then	computes	the	fraction	of	reads	that	
support	each	variant	versus	those	that	support	the	reference.	Variants	below	the	minimum	
allele	frequency	(default:	below	30%)	are	considered	unreliable;	variants	with	high	allele	
frequency	(default:	above	80%)	are	considered	homozygous;	and	variants	with	an	
intermediate	allele	frequency	are	considered	heterozygous.	Note	Sniffles	does	not	currently	
consider	higher	ploidy,	however	this	will	be	the	focus	of	future	work.	See	Supplement	
Section	2.3.	

Clustering	and	Nested	SVs	
	
To	enable	the	study	of	closely	positioned	or	nested	SVs,	Sniffles	optionally	clusters	SVs	that	
are	supported	by	the	same	set	of	reads.	Note	that	Sniffles	does	not	fully	phase	the	
haplotypes,	as	it	does	not	consider	SNPs	or	small	indels,	but	rather	identifies	SVs	that	occur	
together.	If	this	option	is	enabled,	Sniffles	stores	the	names	of	each	read	that	supports	a	SVs	
in	a	hash	table	keyed	by	the	read	name,	with	the	list	of	SVs	associated	with	that	read	name	
as	the	value.	The	hash	table	is	used	to	find	reads	that	span	more	than	one	event,	and	later	
to	cluster	reads	that	span	the	one	or	more	of	the	same	variants.		In	this	way	Sniffles	can	
cluster	two	or	more	events,	even	if	the	distance	between	the	events	is	larger	than	the	read	
length.	Future	work	will	include	a	full	phasing	of	hapolotypes	including	SVs,	SNPs	and	other	
small	variants.	See	Supplement	Section	2.4.	
	
	

Mapping	and	SV	Evaluation	

Simulation	of	SV	and	reads	
	
As	described	above,	SVs	were	simulated	on	chromosome	21	and	22	of	the	human	genome	
(GRCh37).	Data	sets	were	generated	with	20	variants	for	each	type	of	SV	(tandem	
duplication,	indel,	inversion,	translocation	and	nested)	and	sizes	of	these	events	(100,	250,	
500,	1kb,	5kb,	10kb	and	50kb).	Illumina	reads	were	simulated	as	100bp	paired	end	reads	
using	the	default	parameters	of	dwgsim.	For	Pacbio	and	Oxford	Nanopore	we	scanned	the	
alignments	of	HG002	(GiaB)	and	NA12878,	respectively,	and	measured	their	error	profile	
using	SURIVOR	(option	2).	The	error	profiles	and	read	lengths	were	used	to	simulate	the	
reads	for	each	simulated	SV	data	set	(Supplementary	Section	3.2).	
	

Modified	reference	analysis	
	
To	allow	for	a	more	realistic	scenario,	we	also	modified	the	human	reference	(GRCh37)	and	
used	real	reads	to	assess	the	introduced	SVs.	Here	we	could	only	simulate	a	subset	of	SV	
types	to	be	insertions,	deletions,	inversions	and	translocations.	We	simulated	140	variants	
of	each	type	on	the	human	genome	(GRCh37)	using	SURVIVOR	(option	1).	
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Software	Versions	and	Parameter	settings	
	
BWA-MEM	(version	0.7.12-r1039)	25	was	used	with	“-M”	parameter	to	map	the	short	reads	
and	with	“-X	pacbio	-M”	to	follow	the	recommended	parameter	settings	for	PacBio	reads.	
The	parameter	–M	is	used	to	mark	only	one	alignment	as	primary	and	the	subsequent	
alignments	as	secondary.	BlasR	(version	1.3.1)24	was	run	using	the	parameters	“-sam	-
bestn	1	-nproc	15”	to	obtain	only	the	best	alignment	in	SAM	format	using	15	threads.	
Furthermore,	Blasr	was	run	with	the	parameters	suggested	by	PBHoney	18	“-nproc	15	-
bestn	1	-sam	-clipping	subread		-affineAlign	-noSplitSubreads	-nCandidates	20	-
minPctIdentity	75	-sdpTupleSize	6”.	SAMTools	(version	0.1.19-44428cd)	43	was	used	to	
convert	the	SAM	alignment	files	to	BAM	and	to	sort	the	aligned	reads.	
	
Delly	(version	v0.7.3)	15,	Lumpy	(version	0.2.13)	14	and	Manta	(version	1.0.3)	16	were	used	
to	call	SVs	over	the	Illumina	reads	followed	by	SURVIVOR	(version	0.0.1)	44	to	combine	the	
calls	and	report	the	consensus	variants.	To	allow	for	the	uncertainty	with	short	read	
variant	positioning,	SVs	were	considered	to	be	the	same	if	their	start	and	stop	coordinates	
fell	within	1kb	of	another	and	were	of	the	same	type.	PBHoney	(version	PBSuite_15.8.24)18	
with	default	parameters	was	used	to	infer	SV	based	on	the	specified	BlasR	alignments.	The	
output	was	converted	into	a	VCF	using	SURVIVOR	(option	10).	
	

Evaluation	of	long	read	mappings	
	 	
All	simulated	reads	were	mapped	to	the	human	reference	genome	(GRCh37)	using	BWA-
mem	25,	BLASR	24,	GraphMap	26	and	NGMLR.	Reads	that	overlap	or	map	in	close	proximity	
to	a	simulated	SV	were	extracted	from	the	BAM	files	and	used	for	evaluation.	For	the	
genuine	datasets,	we	first	mapped	the	reads	to	the	unmodified	reference	genome	(without	
SV)	using	BWA-MEM	and	extracted	all	reads	that	would	span	our	simulated	SV	by	at	least	
500	bp.	Only	these	reads	were	then	mapped	to	the	modified	reference	genome	using	the	
four	read	mappers	and	used	for	evaluation.	
	
Both	simulated	and	genuine	reads	were	then	divided	into	six	categories	(Supplementary	
Figure	3.5):	
	

1. Read	mappings	are	considered	“precise”	if	they	fully	identify	the	SV	they	cover.	To	
fall	into	this	category,	read	mappings	have	to	cover	all	parts	of	the	SV	that	are	
required	for	identification,	e.g.	a	read	mapping	to	an	inversion	has	to	cover	the	
inverted	part	of	the	genome	as	well	as	the	non-inverted	sequences	flanking	the	
inversion.	Furthermore,	correct	mappings	have	to	be	split	at	the	simulated	
breakpoints	(+/-	10bp)	of	the	SV.		

	
2. Read	mappings	are	considered	“indicated”	if	they	show	the	presence	of	the	correct	

SV	but	as	the	wrong	type,	e.g.	a	duplication	that	is	represented	as	an	insertion,	or	
show	the	correct	SV	but	do	not	show	the	exact	borders	(>10bp	away).	
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3. Read	mappings	are	considered	“forced”	if	they	indicated	the	wrong	number	of	SVs	

(e.g.	several	small	instead	of	a	single	long	insertion)	or	contain	a	significant	portion	
of	mapping	artifacts	(eg.	not	simulated	mismatches)	over	>	10%	of	the	SV	length.	
These	include	mappings	such	as	a	read	that	is	aligned	through	an	deletion	or	
inversion	(Figure	2,	top).		

	
4. Read	mappings	are	considered	“trimmed”	if	they	have	been	soft-clipped	or	

otherwise	trimmed	so	that	they	cannot	indicate	the	SV	and	do	not	contain	randomly	
aligned	base	pairs	(ie.	noisy	regions)		
	

5. Read	mappings	that	are	split	into	more	parts	than	required	to	cover	the	underlying	
SV	are	classified	as	“fragmented”.	

	
6. Read	mappings	that	are	supposed	to	map	across	the	SV	but	are	not	mapped	are	

considered	“unaligned”.		
	

For	all	simulated	SV	types	and	sizes	and	all	mappers,	we	count	how	many	reads	fall	into	the	
above	categories,	normalize	by	the	number	of	simulated	reads	and	visualize	the	result	as	
barplots.		

Evaluation	of	SV	callers	
	
After	the	SV	calling	each	VCF	file	was	evaluated	using	SURVIVOR	44	with	appropriate	
parameter	sets	to	compare	the	variants	to	the	truth	set.	A	SV	is	considered	precise	if	its	
start	and	stop	coordinate	is	within	10bp	of	the	simulated	start	and	stop	coordinate	and	the	
caller	predicted	the	correct	type.	A	SV	is	considered	indicated	if	the	start	and	stop	
coordinate	of	the	SV	is	within	+-1kb	of	the	simulated	event	regardless	of	the	inferred	type	
of	SV.	A	simulated	SV	is	considered	not	detected	if	there	is	no	call	that	fulfill	the	two	
previous	criteria.	A	SV	is	considered	false-positive	if	the	event	was	not	simulated.		
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