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Abstract 

Synthetic sick or synthetic lethal (SS/L) screens are a powerful way to identify 

candidate drug targets to specifically kill tumor cells but such screens generally suffer 

from low reproducibility. We found that many SS/L interactions involve essential 

genes and are therefore detectable within a limited range of knockdown efficiency. 

Such interactions are often missed by overly efficient RNAi reagents. We therefore 

developed an assay that measures viability over a range of knockdown efficiency 

within a cell population. This method, called variable dose analysis (VDA), is highly 

sensitive to viability phenotypes and reproducibly detects SS/L interactions. We 

applied the VDA method to search for SS/L interactions with TSC1 and TSC2, the 

two tumor suppressors underlying tuberous sclerosis complex (TSC) and generated 

a SS/L network for TSC. Using this network, we identified four FDA-approved drugs 

that selectively affect viability of TSC deficient cells, representing promising 

candidates for repurposing to treat TSC-related tumors.  
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Introduction 

A genetic interaction occurs when the combined disruption of two genes produces a 

phenotype that differs from that expected based on the effects of each individual 

gene disruption. One type of genetic interaction in which cell viability is reduced only 

following combined disruption of two genes but not following disruption of either gene 

alone is called a synthetic sick or synthetic lethal (SS/L) interaction depending on the 

severity of the viability effect. SS/L interactions have received considerable interest 

for the development of drug targets for cancers because targeting of a gene that has 

a SS/L interaction with a tumor suppressor is expected to specifically reduce viability 

of tumor cells but leave wild-type cells unaffected (Kaelin 2005; Nijman 2011; 

Thompson et al. 2015). In addition, large-scale knowledge of SS/L interactions can 

be used to gain functional insight into individual genes and network structures (Tong 

et al. 2001; Boone et al. 2007; Costanzo et al. 2016). 

 

SS/L screens have been performed covering most of the possible pairwise gene 

combinations in the yeast Saccharomyces cerevisiae, leading to insight into the 

global molecular wiring of a cell (Costanzo et al. 2016). Furthermore, SS/L screens 

have been performed with the aim of identifying drug targets in cultured mammalian 

cells, including tumor-derived lines (e.g. Luo et al. 2009; Cowley et al. 2014; Hart et 

al. 2015; Wang et al. 2017). However, SS/L screens in general have suffered from 

limited reproducibility and have resulted in the identification of relatively few effective 

drug targets (Kaelin 2005; Cox et al. 2014; Downward 2015; Vyse et al. 2017).  This 

may in part be due to the noisy nature of high-throughput screens.  However, a major 

contributor to this lack of concordance between studies is likely to be context 

dependence of cancer cell line dependencies, as illustrated by widely varying 

responses to existing therapeutic agents (Barretina et al. 2012; Garnett et al. 2012). 

Thus SS/L interactions can be classified as ‘hard’ interactions, which function 

independent of genetic or cellular context and ‘soft’ interactions which may reflect cell 
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context (i.e., the genes expressed in one cell line versus others or growth conditions) 

(Ashworth et al. 2011; Wang et al. 2017). Consistent with this, a recent study in 

which SS/L interaction screens were performed in multiple Ras-dependent and Ras-

independent AML cell lines found relatively few dependencies common specifically to 

Ras-dependent lines, suggesting that the majority of Ras-induced dependencies are 

specific to an individual context (Wang et al. 2017). These issues highlight the need 

to develop robust SS/L screening methods and assess SS/L interactions across 

diverse genetic backgrounds in order to find effective drug targets that will function in 

many contexts. 

 

Towards this goal, we reported previously the use of a cross-species screening 

approach to identify SS/L interactions with TSC1 and TSC2, the two tumor 

suppressor genes underlying tuberous sclerosis complex (TSC) (Housden et al. 

2015, 2017). We performed focused dsRNA screens targeting all kinases and 

phosphatases in wild-type, TSC1 and TSC2 mutant Drosophila cells. By comparing 

between screens, we identified three genes that specifically reduce viability of TSC1 

and TSC2 mutant cells when knocked down. All three had conserved SS/L 

interactions with TSC2 in mouse and human cell lines, illustrating the potential of this 

approach to identify candidate drug targets relevant to humans. By performing these 

screens in Drosophila and then validating hits in diverse mammalian systems, we 

hoped to identify core SS/L interactions that were not specific to a single human cell 

type. 

 

Here, we report an additional advance towards improved SS/L screening methods. 

Using a similar cross-species screening approach, we performed genome-wide 

screens to identify SS/L interactions with the TSC1 and TSC2 genes. Analysis of 

screen results and comparison between screens revealed that many SS/L 

interactions were missed in each screen, consistent with the low rate of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2017. ; https://doi.org/10.1101/176974doi: bioRxiv preprint 

https://doi.org/10.1101/176974
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5	

reproducibility between previous screens. Further investigation revealed that many 

SS/L interactions involve essential genes that were likely missed due to overly 

efficient knockdown, which reduced the viability of both wild-type and TSC1/2 mutant 

cells. We therefore developed a new RNAi-based screening assay that measures 

phenotypes over a range of knockdown efficiencies in a single sample. This method 

improved signal to noise ratio in viability assays by approximately 2.5-fold compared 

to dsRNA assays and detected 86% of positive control SS/L interactions. Using this 

method in combination with our previous screen results and other pre-existing 

datasets, we generated a high-confidence SS/L interaction network surrounding the 

TSC complex. Finally, using this network we identified four FDA-approved drugs 

showing selective effects on the viability of TSC deficient cells that may represent 

promising candidates for drug repurposing to treat TSC tumors. Importantly, all four 

of these drugs showed conserved effects in three mammalian cell culture models of 

TSC, including two diverse tumor-derived cell lines, illustrating that this screening 

approach improves the identification of context-independent candidate therapeutic 

drugs.  

 

Results 

SS/L interactions are enriched for essential genes 

To identify SS/L interactions with the TSC complex, we performed SS/L interaction 

screens using two dsRNA libraries. The first targeted 13,099 genes, representing the 

majority of the Drosophila genome. The second library targeted 466 Drosophila 

orthologs of putative targets of FDA-approved drugs. By screening this group of 

genes with high coverage, we improved the chances of identifying SS/L interactions 

with genes for which clinically-approved drugs already exist, which therefore may be 

rapidly repurposed for clinical use to treat TSC tumors. From these two screens, 288 

genes were identified that had SS/L interactions with TSC1 and/or TSC2 (Tables S1 

and S2). To confirm the validity of these hits, we selected six genes from the 
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genome-wide (GW) screen with varying confidence levels and tested whether their 

human orthologs also showed SS/L interactions with TSC2 in a tumor-derived human 

cell line. Similar to the high validation rate in mammalian systems observed in our 

previous studies (Housden et al. 2015), all six SS/L interactions were validated in this 

system (Figure 1A). 

 

Despite the apparent high quality of the SS/L interactions identified, relatively little 

overlap was observed between the independent libraries screened. For example, a 

total of 50 SS/L genes were screened in the combined KP/FDA libraries and the 

genome-wide screen, yet only 2 were identified as SS/L in both datasets (Figure 

1B). In addition, only 4.6% of the identified SS/L interactions in these screens were 

reproduced with multiple independent dsRNA reagents despite the fact that 67% of 

SS/L genes were represented by more than one dsRNA in the screens (Figure 1C). 

This observation is consistent with limited reproducibility in SS/L screens previously 

performed in mammalian systems. To investigate the reasons underlying the 

inconsistency between dsRNA reagents and screens, we assessed the effects of 

dsRNA reagents that did not identify SS/L interactions despite targeting genes that 

were identified as SS/L using independent dsRNA reagents. We found that 

approximately 72.5% of reagents had no detectable effect on viability in either wild-

type, TSC1 or TSC2 mutant cells and likely represent ineffective reagents. By 

contrast, 27.5% of reagents failed to identify SS/L interactions because they reduced 

viability of all cell types, suggesting that their targets are essential genes (Figure 1D 

and Table S3). In addition, the 288 SS/L genes identified from the three screens 

were highly enriched for known essential genes identified in multiple previous studies 

(Figure 1E). These results indicate that genes with SS/L interactions are enriched for 

essential genes, consistent with previous observations in yeast (Costanzo et al. 

2016). Furthermore, we found that genes identified from SS/L screens in mammalian 
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systems with activated Ras or Myc, also showed enrichment of essential genes 

(Figure 1F), suggesting that this is a general property of SS/L interactions. 

 

Variable Dose Analysis (VDA) allows sensitive detection of viability phenotypes 

SS/L interactions involving essential genes are detectable within a limited range of 

target gene knockdown efficiency because weak knockdown is ineffective and strong 

knockdown is lethal to both wild-type and mutant cells. Therefore, to improve 

detection of this type of SS/L interaction, an assay is required that allows 

assessment of viability effects over a range of target gene knockdown efficiencies. 

To achieve this, we took advantage of the variable efficiency of plasmid transfections 

between individual cells in a population, resulting in variable plasmid copy number in 

each cell. By co-transfecting a GFP expressing plasmid and a shRNA expressing 

plasmid, the GFP intensity can be used as an indirect readout of shRNA expression 

and therefore target gene knockdown efficiency (Figure 2A). We named this method 

variable dose analysis (VDA). To test the correlation between GFP expression and 

knockdown efficiency using this approach, we used S2 cells that express mCherry 

from a genomic transgene insertion into the CLIC locus (Neumüller et al. 2012). VDA 

assays were performed in this cell line targeting either a control gene (white) or the 

mCherry transgene. mCherry fluorescence was then compared to GFP fluorescence 

and mCherry fluorescence was found to decrease as GFP intensity increased with a 

non-linear relationship (Figures 2B and S1). Therefore, GFP fluorescence is a 

robust measure of relative target gene knockdown efficiency. 

 

Next, we performed experiments to assess the sensitivity of this method relative to 

an established viability assay. We co-transfected the GFP reporter plasmid with 

shRNA plasmids targeting thread, an apoptosis inhibitor that robustly induces cell 

death when inhibited, or a control gene, white. Signal strength was varied by serially 

diluting the thread shRNA plasmid with white shRNA plasmid. In addition, the same 
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samples were analysed using CellTiter-glo (CTG) assays, a standard readout that 

has been widely used in high-throughput viability screens. We found that VDA 

outperformed CTG assays for detection of weak phenotypes and p-values remained 

highly significant even when the thread shRNA was diluted 256-fold compared to the 

standard dose (Figure 2C). 

 

Finally, in order to directly compare VDA with established dsRNA-based methods, 

we generated three pairs of positive and negative control shRNAs for cell viability 

targeting thread and white respectively. We then performed VDA assays in S2R+ 

cells and calculated Z’ scores for each pair of reagents. In addition, we used three 

pairs of positive and negative control reagents from the DRSC dsRNA collection 

(Boutros et al. 2004; Hu et al. 2017) and performed similar assays using a CTG 

readout. Comparison between these results showed that the Z’ scores for VDA 

assays were consistently higher than for dsRNA assays, corresponding to an 

increase in signal-to-noise ratio of approximately 2.5-fold (Figure 2D). In addition, 

VDA assays had reduced variation between control reagent pairs, indicating that 

these assays may be more robust to differences in reagent efficiency.  

 

Overall, these experiments demonstrate that VDA is a highly sensitive and robust 

method for the detection of viability phenotypes. 

 

VDA assays efficiently identify SS/L interactions with essential and non-essential 

genes 

In order to test whether VDA assays are able to robustly identify known SS/L 

interactions with both essential and non-essential genes, we generated three shRNA 

reagents per gene targeting 27 genes identified as SS/L in the dsRNA screens. In 

addition, to assess the ability of VDA assays to identify SS/L interactions with 

essential genes, we included 3 genes that were identified as essential (lethal to all 
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cell types) but that had Z-scores at least 1.5-fold lower in both TSC1 and TSC2 

mutant cells compared to wild-type. Of these 30 genes, 18 were identified as 

essential genes in previous screens (Boutros et al. 2004; Hart et al. 2014; Wang et 

al. 2015). 

 

SS/L interactions were identified as shRNA reagents that cause a significantly 

greater viability reduction in TSC1 cells compared to wild-type. 70.4% (19/27) of 

positive control genes were identified as having significant SS/L interactions with 

TSC1, illustrating the high sensitivity of this assay (Figure 2E, Table S4). In addition, 

the three genes that failed to score as SS/L in dsRNA assays due to viability effects 

in wild-type cells were all identified as SS/L using this assay. Finally, 33% of the 

genes assessed were identified as SS/L with multiple shRNA reagents (Figure 2E, 

Table S4), indicating a higher rate of reproducibility between reagents compared to 

dsRNA assays. 

 

Notably, SS/L interactions were not identified for 8 positive control genes. Viability 

phenotypes were detected for all but one of these genes, indicating that the failure of 

validation was not due to ineffective reagents. Another possible explanation is that, in 

addition to affecting cell viability, these genes alter cell size specifically in TSC1/2 

deficient cells and are therefore detected as SS/L in the ATP-based assays used in 

the dsRNA screens but not in cell count-based VDA assays. To assess this 

possibility, VDA data were re-analyzed as before but GFP measurements were 

normalized to cell sizes based on forward-scatter (FSC) readings collected in parallel 

with GFP fluorescence data. This allows detection of cell size phenotypes as well as 

viability effects. Using this analysis approach, 28/30 genes tested were identified as 

SS/L and 19 were identified with multiple reagents (Figure 2F, Table S4). This 

demonstrates the ability of VDA assays to detect multiple different phenotypes in a 

single assay and to characterize hits in more detail than simple ATP-based assays. 
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Given the improved ability of VDA assays to identify known SS/L interactions 

compared to dsRNA assays, we used this method to screen 154 genes that can be 

targeted with well-characterized FDA-approved drugs in wild-type, TSC1 and TSC2 

cells. 44 genes were identified as having SS/L relationships with TSC1 and/or TSC2 

(Table S5). Surprisingly, only 1 gene (porin) was identified by both VDA and dsRNA 

assays. TSC1 and TSC2 act together in a protein complex and are thought to share 

the majority of their functions. Therefore, as SS/L interactions are related to gene 

function, these genes are expected to have similar SS/L interaction profiles. To 

assess the relative quality of dsRNA and VDA screens, we therefore compared SS/L 

interactions identified with TSC1 or TSC2 for each method. We selected the top 20 

genes from dsRNA and VDA screens in TSC1 and TSC2 cells based on either VDA-

scores or differences in z-score compared to wildtype cells. For dsRNA assays, 11% 

(4/36) of top ranked SS/L genes were identified with both TSC1 and TSC2. By 

contrast, for VDA assays, 33% (10/30) top ranked SS/L genes were shared, 

suggesting that VDA is a much more robust method for identification of SS/L 

interactions. 

 

Integrated analysis of SS/L screen data results in a high-quality SS/L network that is 

predictive of selective drug effects 

Previous studies have shown that genes that physically interact and have related 

functions share SS/L interaction partners (Tong et al. 2001; Costanzo et al. 2016). 

Therefore, in order to identify the most robust hits from the screens and remove false 

positives, the hits from the dsRNA and VDA screens were pooled (331 genes) and 

mapped onto high-confidence (score >0.9) protein-protein interaction (PPI) network 

using the STRING database (Szklarczyk et al. 2017) to identify those most likely to 

have related functions. Due to the relatively low coverage of PPI data, we also 

manually assigned genes to clusters in cases where gene functions were similar 
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(Figure 3A, Table S6). Using this approach, we defined 18 biological processes, 

each of which were identified as SS/L with the TSC complex by multiple genes. 14 of 

these processes were supported by both dsRNA and VDA screen results. 

Furthermore, three of the identified processes have been identified previously as 

dependencies of TSC deficient cells (e.g. ROS (oxidative stress), proteasome 

(protein catabolism) and lipid metabolism (Kang et al. 2011; Siroky et al. 2012; 

Young et al. 2013; Zhang et al. 2014; Zhang and Manning 2015; Li et al. 2015; 

Medvetz et al. 2015)) indicating that the network is a robust representation of the 

functional interactions of the TSC complex. Finally, 86.4% (38/44) of the genes 

identified using VDA assays were assigned to clusters, compared to 68.4% 

(197/288) of genes identified using dsRNAs, suggesting that VDA is a more robust 

approach for detection of genuine SS/L interactions. 

 

Genes within the SS/L interaction network represent candidate drug targets to 

specifically reduce viability of TSC deficient tumor cells. We therefore selected nine 

FDA-approved drugs that target high-scoring components of the SS/L network and 

tested for specific viability effects on TSC2-deficient Drosophila cells. Of these, four 

had a greater effect on the viability of TSC2 cells compared to wild-type (Figure 3B). 

In addition, all four of these drugs had conserved effects on TSC2-deficient MEFs, 

TSC2-deficient AML derived human cells and TSC1-deficient bladder cancer derived 

human cells (Guo et al. 2013) (Figure 3C-E), although the quantitative difference in 

viability effect varied between cell types. Thus, the combined use of improved 

screening methods with a network-based analysis approach is a powerful method to 

identify drugs with reproducible viability effects specific to a given genetic 

background. 
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Discussion 

SS/L interaction screens have long been considered as a powerful approach for drug 

target discovery yet have resulted in the identification of relatively few effective 

drugs. This appears to be due at least in part to a lack of reproducibility between 

screens despite apparently robust results within studies (Downward 2015). Two 

technical factors likely contribute to this lack of reproducibility. First, high-throughput 

screens are inherently noisy, resulting in both false-positive and false-negative 

results. Second, as we and others have shown (Costanzo et al. 2016), SS/L 

interactions are enriched for essential genes, which are often missed due to overly 

efficient gene disruption, resulting in general toxicity to all cell types. In particular, this 

is likely to be an issue for CRISPR screens, which often result in null mutations of the 

target genes. 

 

In this study, we have addressed both of these issues. First, we developed a novel 

assay for synthetic lethality called VDA. This approach enables differences in viability 

between genetic backgrounds to be measured over a range of knockdown 

efficiencies and can therefore detect SS/L interactions with essential genes at sub-

lethal efficiency. In addition, the VDA method is more sensitive and robust to noise 

than other well-established methods to measure cell viability in Drosophila high-

throughput screens. Finally, by combining results from two independent screening 

technologies using a network-based analysis method we have generated a high-

confidence SS/L interaction network for the TSC complex. The quality of this network 

is illustrated by the identification of four effective FDA-approved drugs that represent 

promising candidates for new therapeutic strategies to treat TSC tumors.  

 

In addition to the technical issues associated with SS/L screens, context dependence 

of SS/L interactions is also likely to reduce reproducibility between screens in 

different experimental systems. A common approach to limit this effect is to perform 
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screens in systems that are as closely related to the target tumors as possible, often 

using tumor-derived cells. More recently, efforts to identify SS/L interactions in 

panels of divergent cell lines sharing a common tumorigenic driver mutation have 

been used to identify shared dependencies (Luo et al. 2008; Cowley et al. 2014; 

Wang et al. 2017). However, this approach requires extensive screening and is 

limited by high costs and available well-characterized cell lines. Instead, we chose an 

experimental paradigm in which screens are performed in Drosophila cells, which 

represent a genetic background highly divergent from the target human tumors. 

Given that many SS/L interactions are highly conserved (Srivas et al. 2016), our 

expectation was that SS/L interactions identified in Drosophila cells that could be 

validated in mouse or human cell lines would represent fundamental context-

independent interactions (‘hard’ interactions), which may therefore have a higher 

success rate when transferred between mammalian systems and to clinical use. 

Surprisingly, we found that of nine SS/L interactions identified in our Drosophila 

screens that were tested in human cell lines, all could be validated in a highly 

divergent system (human AML tumor-derived cells) (Figure 1A and (Housden et al. 

2015)). One possible explanation of this is that the increased complexity of 

mammalian genomes compared to Drosophila results in greater network plasticity 

and therefore more ‘soft’ interactions. In this case, SS/L interactions identified in 

Drosophila have a greater chance of being context independent and therefore more 

likely to be conserved between divergent systems. This possibility is supported by 

the similar effects observed for the four identified drugs in diverse backgrounds 

including mouse and human tumor-derived cell lines. In particular similar effects were 

observed in bladder cancer-derived cells, which have one of the highest mutation 

rates of any cancer type (Cancer Genome Atlas Research Network 2014), likely 

resulting in a highly divergent genetic background compared to the mouse and AML-

derived cells. 
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Previous screening approaches have generally focused on developing the most 

efficient RNAi reagents possible to maximize resulting phenotypes (Fellmann et al. 

2013; Kampmann et al. 2015; Housden et al. 2016). More recently, CRISPR has 

emerged as a powerful screening technology to generate primarily null mutations in 

target genes and therefore further increases phenotype strength (Shalem et al. 2014; 

Wang et al. 2014). However, these screening paradigms, based on maximizing 

target gene disruption efficiency, may often be less representative of effects that can 

be achieved with small molecule inhibitors, which generally incompletely inhibit their 

targets (Housden et al. 2016). It is therefore possible that approaches that are 

optimized for efficient gene disruption may result in a lower rate of reproducibility with 

pharmacological assays. In this case, genes identified using VDA may be expected 

to have more reproducible effects using pharmacological assays because 

phenotypes can be detected at a relatively low gene disruption efficiency. Consistent 

with this, three of the four drugs identified in this study were detected only using VDA 

assays and only one (vorinostat) was identified by both VDA and dsRNA assays. 

However, neither approach was able to quantitatively predict specific drug effects 

with no correlation detected between screen score and pharmacological selectivity 

(Figure S2), likely due to differences in the mechanism of disruption between RNAi 

and small molecule inhibitors (Housden et al. 2016). Thus, identification of the most 

promising targets for pharmacological targeting remains a complex and unresolved 

issue. 
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Materials and Methods 

Construction of the FDA RNAi libraries 

We retrieved the FDA drug list from DrugBank (Version 4.0, www.drugbank.ca) and 

extracted drug gene targets using the DrugBank.xml file. Human drug target genes 

were mapped to Drosophila genes using DIOPT vs4.0 (Hu et al. 2011) and only the 

high-confident orthologous relationships supported by at least 7 different algorithms 

were selected for Drosophila FDA target libraries.  The final FDA library contains 458 

Drosophila genes. 2 quality amplicons were selected to make the dsRNA library (Hu 

et al. 2017) while 3 different shRNAs were designed based on DSIR tool (Vert et al. 

2006) and were cloned into Valium20 vector (Perkins et al. 2015) to make the shRNA 

library for VDA assays. 

 

dsRNA screens 

dsRNA screens were performed using the genome-wide, FDA and 

Kinase/phosphatase libraries available from the Drosophila RNAi Screening Center 

(http://fgr.hms.harvard.edu), following the bathing protocol 

(http://fgr.hms.harvard.edu/fly-cell-rnai-384-well-format).  

 

VDA assays 

VDA assays were performed by first transfecting a mixture of 10ng actin-GFP, 45ng 

actin-Gal4 and 45ng shRNA plasmids into wild-type, TSC1 or TSC2 cells seeded into 

96-well plates with 30,000 cells per well, following the standard Effectene 

transfection reagent protocol (Qiagen – 301427). Following 5 days of culture at 25°C, 

culture plates were analyzed using a BD LSR II flow cytometer. 20,000 events were 

measured per sample and GFP intensities and FSC measurements were exported 

for all GFP expressing cells as .csv files for further analysis. 
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Cytometry data were analyzed using custom Matlab scripts by first normalizing all 

GFP intensities to cell size measurements (FSC). Next, events were divided into 500 

bins based on GFP fluorescence and GFP distributions normalized between all 

samples. Finally, area under cumulative GFP distribution plots were calculated and 

compared to negative and positive control samples to calculate viability scores. 

 

Viability scores were calculated as the area between cumulative distribution plots for 

each sample and median negative control cumulative distribution plot for each plate 

(based on 5 negative controls targeting the white gene per plate) divided by the area 

between the sample curve and the median positive control curve (based on 5 

positive controls targeting the thread gene per plate). VDA scores were calculated as 

viability score in TSC1 or TSC2 cells minus viability score in wild-type cells. 

 

The VDA-score cutoff of 0.1 used to identify SS/L interactions was determined by 

performing 12 replicate VDA assays on each of 6 shRNA reagents determined 

previously to have no selective effect on TSC deficient cells (Housden et al. 2015). 

We then determined the VDA-score corresponding to a Z-score of 1.5 based on the 

distribution of VDA-scores from this negative control dataset. 

 

shRNA assays in human AML tumor-derived cells 

Angiomyolipoma cells with stable vector (621-102) or TSC2 (621-103) addback (Li et 

al. 2014) were cultured in DMEM (VWR #45000-312) +10% heat inactivated Fetal 

Bovine Serum (ThermoFisher Scientific #10437-028) +1X penicillin/streptomycin, 

(CellGRO 30-002-CI). Cells were transfected with shRNA targeting ARCN1, 

CRNKL1, SNW1, CTNS, POLR2A, or MFN1 (3 non-overlapping shRNAs per target) 

in pLKO.1 vector using Lipofectamine 3000 transfection reagent (ThermoFisher 

Scientific #L3000015) according to manufacturer’s instructions. A scrambled shRNA 

in pLKO.1 vector was transfected as a control. 6hrs after transfection, cells were 
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washed with 1X PBS and fresh growth media was added. Cell viability was 

measured 48hr later using the Cell Titer Glo Luminescent Cell Viability Assay 

(Promega #G7573) according to manufacturer’s instructions. The following shRNA 

constructs were purchased from the Dana Farber/Harvard Cancer Center Plasmid 

Information Database (PlasmID): HsSH00157011, HsSH00157016, HsSH00157036, 

HsSH00167269, HsSH00167262, HsSH00167285, HsSH00152131, 

HsSH00152139, HsSH00152225, HsSH00116873, HsSH00116854, 

HsSH00116860, HsSH00129709, HsSH00129751, HsSH00129745, 

HsSH00157364, HsSH00157314, HsSH00157319. 

  

Network analysis 

SS/L genes identified from dsRNA and VDA screens were pooled and the online 

STRING database tool (Szklarczyk et al. 2017) used to identify high confidence 

(score ≥ 0.9) protein-protein interactions (PPIs) and cluster the genes. In addition, 

gene functions were annotated manually based on Drosophila or human data in 

cases where clear orthologs could be identified. Additional SS/L genes were added 

to network clusters and new clusters created in cases where several genes shared 

similar functions. The network map was generated using Cytoscape (Shannon et al. 

2003). 
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Figure legends: 

 

Figure 1: SS/L interactions are enriched with essential genes. A) Histogram showing 

relative viability of TSC2-deficient AML-derived cells with either TSC2 cDNA (blue 

bars) or empty vector (red bars) addback transfected with the indicated shRNA 

constructs relative to control shRNA transfection, measured using CellTiter-glo 

assays. Bars represent average values from nine replicates in each case and error 

bars indicate standard error of the mean. Asterisks indicate cases where viability of 
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empty vector cells is significantly lower than TSC2 cDNA addback cells (p<0.05) as 

determined using t-tests. B) Venn diagram illustrating overlap of SS/L genes 

identified from the genome wide screen (GW screen) and combined FDA and 

kinase/phosphatase (Housden et al. 2015) screens (FDA + KP screens). Only genes 

that were targeted by both sets of libraries were considered in this analysis. C) Pie 

charts illustrating the proportion of SS/L genes that were identified with multiple 

independent dsRNA reagents. D) Pie chart illustrating screen results for dsRNA 

reagents targeting SS/L genes that did not detect the SS/L interaction. Reagents 

were classed as “Ineffective” if no viability effect was detected in wild-type, TSC1 or 

TSC2 cells or “Lethal” if the reagent reduced viability of wild-type cells. E) Histogram 

showing fold enrichment of essential genes amongst SS/L genes identified from the 

genome wide screen. Three independent datasets were used to define essential 

(Hart (Hart et al. 2014), Boutros (Boutros et al. 2004) and Wang (Wang et al. 2015)) 

or non-essential genes (Hart-NE (Hart et al. 2014)). Asterisks indicate statistically 

significant enrichment (p<0.05) based on z-tests to compare with 1000 permutations 

of randomly selected genes. F) Histogram illustrating the % of genes identified as 

SS/L with Ras or Myc overexpression or activation in previous studies. “Genome” 

indicates the % essential genes in the whole genome assessed using the same 

datasets as in E combined to define essential genes (Boutros et al. 2004; Hart et al. 

2014; Wang et al. 2015). 
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Figure 2: Variable Dose Analysis (VDA) is an effective method to measure viability 

phenotypes and detect SS/L interactions. A) Schematic illustrating the experimental 

setup of VDA assays. B) Graph illustrating the relationship between GFP 

fluorescence and target gene knockdown efficiency. mCherry fluorescence was used 

as a measure of knockdown efficiency and is displayed as a fold change to cells with 

no detectable GFP expression. Each line represents an independent shRNA reagent 

targeting mCherry (dashed lines) or white (solid lines). The graph illustrates results 

from a single representative experiment from three replicates (see Figure S1 for 

additional replicates). C) Graph illustrating the improved ability of VDA assays (blue 

line) to detect viability phenotypes compared to CellTiter-glo assays (red line) 

performed on the same populations of cells. The lines represent median –log10 p-

values calculated from six replicate experiments using t-tests. Dashes represent 

results from three independent groups of six replicates. D) Histogram illustrating 

average Z-prime scores from three independent replicate experiments, each 

consisting of 30 biological positive control replicates and 30 biological negative 

control replicate measurements. Each bar represents a different pair of positive and 

negative control reagents measured using dsRNA/CellTiter-glo or VDA assays as 

indicated. Error bars indicate standard error of the mean. E) Results from VDA 

assays targeting 30 different genes as indicated. Each bar represents a different 

shRNA reagent (3 per gene). Blue bars indicate samples with VDA-score greater 

than 0.1 and black bars represent VDA-scores less than 0.1. F) Graph displaying 

VDA results as in panel E but with VDA analysis performed including cell size 

correction. 
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Figure 3: An integrated network analysis approach to identify drugs with selective 

viability effects on TSC deficient cells. A) Network diagram showing genes identified 

as SS/L with TSC1 and/or TSC2. Circles represent individual genes identified from 

dsRNA screens (blue) or VDA screens (red). Solid black lines indicate physical 

interactions within gene clusters and dashed lines indicate physical interactions 

between components of separate gene clusters. Gene cluster functions were defined 

based on manual curation of component functions. B-E) Histograms illustrating cell 
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viability as measured using CellTiter-glo assays in the presence of the indicated 

drugs, normalized to vector alone. Bars represent the average of at least six replicate 

measurements in either wild-type (blue bars) or TSC1/2-deficient (orange bars) (B 

and C) or TSC1/2-deficient cells with empty vector (orange bars) or TSC1/2 cDNA 

(blue bars) addback (D and E) cells as indicated. Error bars indicate standard error of 

the mean. Human-AML indicates human AML-derived cells and human-BC indicates 

human bladder cancer-derived cells. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2017. ; https://doi.org/10.1101/176974doi: bioRxiv preprint 

https://doi.org/10.1101/176974
http://creativecommons.org/licenses/by-nc-nd/4.0/

