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Abstract. Recently the topic of computational pan-genomics has gained
increasing attention, and particularly the problem of moving from a
single-reference paradigm to a pan-genomic one. Perhaps the simplest
way to represent a pan-genome is to represent it as a set of sequences.
While indexing highly repetitive collections has been intensively studied
in the computer science community, the research has focused on efficient
indexing and exact pattern patching, making most solutions not yet suit-
able to be used in bioinformatic analysis pipelines.
Results: We present CHIC, a short-read aligner that indexes very large
and repetitive references using a hybrid technique that combines Lempel-
Ziv compression with Burrows-Wheeler read aligners.
Availability: Our tool is open source and available online at
https://gitlab.com/dvalenzu/CHIC

1 Introduction

Research in computational pan-genomics has gained increasing attention, spe-
cially since recent initiatives are curating huge repositories of human genomes
[4, 3, 5], posing the challenge of how to handle those large repositories efficiently.

While there is no consensus on how to represent a pan-genomic reference [2],
many bioinformatics research projects have studied pan-genomic read alignment
using a specific structure like a graph or a reference plus variations [18, 10, 19,
6, 7, 14]. On the other hand, the simpler model of the pan-genome as a set of
sequences has been mostly studied from a computer science perspective [15, 16,
8], where the focus has been on efficient indexing and exact pattern matching,
but to the best of our knowledge, no off-the-shelf solution for read alignment has
been provided.

Here we introduce CHIC aligner, an off-the-shelf read aligner that is capable
of indexing very large and repetitive references to align short reads to them very
efficiently.

CHIC is a generalized version of the exact pattern matching tool CHICO [20]
which uses an Hybrid Index [8] that combines Lempel-Ziv compression tech-
niques with Burrows-Wheeler based indexing.
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2 Methods

Index construction. CHIC’s first step to index the reference is to compute a
LZ77-compatible parsing [20]. This stands for greedy or non-greedy LZ77 pars-
ing [21] , Relative Lempel-Ziv (RLZ) [11] or variants of these. Those algorithms,
originally designed to compress a sequence, tokenize the reference into phrases
of two types. The first one, a ’copying phrase’, corresponds to a substrings that
have a previous occurrences in the input, and therefore can be represented as a
copy using a pair of integers indicating the previous occurrence in the text and
the length of the repetition. The second type, a ’literal phrase’, corresponds to
a string that does not have a known previous occurrence and therefore must be
represented explicitly when these algorithms are used to compress the input. As
the text is more repetitive, the copying phrases became longer, which accounts
for the compression effectiveness of the LZ algorithms.

CHIC’s second step uses the LZ parsing and the input reference to build the
so called kernel sequence [9]. The idea of the kernel sequence is to remove most
of the redundancy from the input sequence, preserving only crucial substrings.
The kernel sequence is initially empty, and the text is scanned once from left
to right. Each time a literal phrase is found, its content is entirely appended
to the kernel sequence. Each time a copying phrase is found only the first and
the last M characters of the phrase are appended to the kernel sequence, where
M is a user-defined parameter that sets an upper bound on the length of the
queries. The remaining characters of the copying phrases can be safely discarded
because there is a previous occurrence of them that have been already added to
the kernel sequence.

CHIC’s third step is to index the kernel sequence using a standard read
aligner. By default, it uses Bowtie2 [12], but the user can indicate through a
parameter to use BWA instead.

The fourth step is to encode the LZ parsing so that at query time the align-
ments and its repetitions can be reported efficiently. This includes an encoding of
the phrase boundaries in the input reference and the corresponding projections
into the kernel sequence, and a succinct representation of the copying phrases.

Read alignment. First the reads are aligned into the kernel sequence using
the designated read aligner (by default Bowtie2). Then those alignments are
mapped back to the original reference sequence, using rank and select [17] queries
on the phrase boundaries. These are the sole output in the default reporting level
(primary occurrences).

The second level of reporting (maximum) considers that for each primary
occurrence there might be identical copies were discarded when content from the
copying phrases was discarded. Using the encoding of the copying phrases and
the phrase boundaries CHIC can report all the identical copies of the primary
occurrences.

CHIC’s two reporting levels can be combined with the reporting levels ac-
cepted by Bowtie2 (or BWA) in the kernel sequence. That is, the user can specify
that he wants to retrieve the k best alignments from the kernel sequence, and
whether or not he wants to retrieve the identical copies of them.
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Resource usage. Computing the LZ77 parsing can require significant re-
sources and it can be a bottleneck to build the index, specially when the input
reference is too big to fin in main memory. In this case, CHIC aligner can re-
sort to RLZ algorithms, avoiding the use of external memory algorithms and
leveraging parallelism to achieve a fast index construction.

Input and output. Similar to standard read aligners, CHIC uses a reference
sequence in multi-fasta format, reads in FASTQ format, and the alignments are
output in the BAM format [13]. This makes our tool ready to use in sequencing
pipelines.

Experimental results. To demonstrate the practical performance of CHIC
we build references using different number of human genomes from the 1000
genomes project.

The input reference sequence was built based on GRCh37 plus variation
observed in a subset of individuals from the 1000 genomes project [4]. A subset
of either 10 or 100 individuals was taken, each individual was represented as a
diploid genome yielding in total 20 or 200 reference sequences on top of GRCh37.

To carry out our experiment in a realistic set we aligned reads from an
individual that is not part of the pan-genome reference. We took a sample of 106

paired-end reads from a recent study on the genome of a Mongolian individual [1].
We measured the indexing time for each pan-genomic reference, the size of the
resulting index and the total time to align the reads to the reference. Also we
report the number of mapped reads. As a baseline, we compare against Bowtie2
using a single human genome as a reference. Table 1 summarize the results.

Table 1. Scalability of CHIC aligner. Time required to build the index, to align a
set of 106 paired-end reads, and the number of unaligned reads. BOWTIE21 indexes
the human reference, CHICx indexes x different versions of the human genome (only
numbered chromosomes).

Indexing Alignment

Aligner Input size Time Index Size Time Mapped reads

BOWTIE21 2.7GB 1h 3.708GB 5.32s 782883

CHIC21 57GB 5h 25GB 2m 785552
CHIC201 540GB 35h 180GB 24m 786026

3 Discussion

Our results show that CHIC can effectively handle very large reference sequences
and align reads to them. As expected, the use of a pan-genomic reference instead
of a single reference results in an increased number of mapped reads.

An important open problem is how to define a meaningful scoring functions
in the pan-genomic context. While in the traditional (single-reference) setup, an
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alignment that is not unique is not desirable, for pan-genomic references unique
maps are much rare and non-unique alignments should not be discarded a priori,
hence the need of a scoring function that is pan-genome- aware.
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