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ABSTRACT 

Most genetic variants implicated in complex diseases by genome-wide association 

studies (GWAS) are non-coding, making it challenging to understand the causative 

genes involved in disease. Integrating external information such as quantitative trait 

locus (QTL) mapping of molecular traits (e.g., expression, methylation) is a powerful 

approach to identify the subset of GWAS signals explained by regulatory effects. In 

particular, expression QTLs (eQTLs) help pinpoint the responsible gene among the 

GWAS regions that harbor many genes, while methylation QTLs (mQTLs) help identify 

the epigenetic mechanisms that impact gene expression which in turn affect disease 

risk. In this work we propose multiple-trait-coloc (moloc), a Bayesian statistical 

framework that integrates GWAS summary data with multiple molecular QTL data to 

identify regulatory effects at GWAS risk loci. We applied moloc to schizophrenia (SCZ) 

and eQTL/mQTL data derived from human brain tissue and identified 52 candidate 

genes that influence SCZ through methylation. Our method can be applied to any 

GWAS and relevant functional data to help prioritize disease associated genes.  
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INTRODUCTION 

Genome-wide association studies (GWAS) have successfully identified 

thousands of genetic variants associated with complex diseases1. However, since the 

discovered associations point to non-coding regions, it is difficult to identify the causal 

genes and the mechanism by which risk variants mediate disease susceptibility. 

Advancement of high-throughput array and sequencing technology has enabled the 

identification of quantitative trait loci (QTLs), genetic variants that affect molecular 

phenotypes such as gene expression (expression QTL or eQTL) and DNA methylation 

(methylation QTL or mQTL). Integration of molecular QTL data has the potential to 

functionally characterize the GWAS results. Additionally, analyzing two datasets jointly 

has been a successful strategy to identify shared genetic variants that affect different 

molecular processes, in particular eQTL and GWAS2–5 and mQTL and GWAS6–9 

integration. All these previous efforts have focused on pairwise trait integration (e.g. 

eQTL and GWAS or mQTL and GWAS). Analyzing multiple datasets jointly has the 

potential to increase power for functional characterization of non-coding, risk variants. In 

addition, it has the potential to link changes in methylation with specific transcripts, 

avoiding the issues of arbitrary annotating GWAS-mQTL associations to the nearby 

genes. 

To our knowledge, a statistical approach to integrate multiple QTL datasets with 

GWAS is lacking. Therefore, we developed multiple-trait-coloc (moloc), a statistical 

method to quantify the evidence in support of a common causal variant at a particular 

risk region across multiple traits. We applied moloc to schizophrenia (SCZ), a complex 

polygenic psychiatric disorder, using summary statistics from the most recent and 
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largest GWAS by the Psychiatric Genomics Consortium10, which reported association 

for 108 independent genomic loci. eQTL data were derived from the CommonMind 

Consortium2, which generated the largest eQTL dataset in the dorsolateral prefrontal 

cortex (DLPFC) from SCZ cases and control subjects (N=467). Finally, we leveraged 

mQTL data that were previously generated in human DLPFC tissue (N=121) to 

investigate epigenetic variation in SCZ6. Integration of multiple phenotypes helps better 

characterize the genes predisposing to complex diseases such as SCZ. 

 

MATERIALS AND METHODS 

Overview of the Method 

We introduce an approach (moloc) to detect colocalization among any number of traits 

concurrently rather than pairwise colocalizatin (i.e. coloc11) . We first derive our model 

using three traits, then generalize to any number of traits. The input of the model is the 

set of summary statistics derived from three traits measured in distinct datasets of 

unrelated individuals, {1} GWAS (which we denote as G), {2} eQTL (E) and {3} mQTL 

(M). We define a genomic region containing Q variants, for example a cis region around 

expression or methylation probe. We are interested in a situation where summary 

statistics (effect size estimates and standard errors) are available for all datasets in the 

genomic region. If we consider three traits, there can be up to three causal variants and 

15 possible scenarios summarizing how the variants are shared among the traits. Each 

hypothesis can be represented by a set of index set according to which of the traits 

each SNP is associated with: 𝐻!- no association to any trait, 𝐻!- association only for 

trait {1}, 𝐻!- association only for trait {2}, 𝐻!- association only for trait {3}, 𝐻!- 
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association for traits {1 and 2}, 𝐻!- association for traits {2 and 3}, 𝐻!- association for 

traits {1 and 3}, 𝐻!- association for trait 1 and 2, but different causal variants for {1} and 

{2}, 𝐻!- association for traits 2 and 3, but different causal variants for {2} and {3}, 𝐻!- 

association for traits 1 and 3, but different causal variants for {1} and {3}, 𝐻!"- 

association for traits 1, 2 and 3, but different causal variants for {1} and {2,3}, 𝐻!!- 

association for traits 1, 2 and 3, but different causal variants for {3} and {1,2}, 𝐻!"- 

association for traits 1, 2 and 3, but different causal variants for {2} and {1,3}, 𝐻!"- 

association for traits 1, 2 and 3, but different causal variants for {1}, for {2} and for {3}, 

and 𝐻!"  SNP is associated with all 3 traits (GEM). 

Our aim is to find the evidence supporting 15 possible scenarios 𝐻!⋯𝐻!" , of sharing 

of SNPs among traits in the given genomic region. We compute the posterior probability 

of a configuration by weighting the likelihood of the data D given a configuration S, 

P(D|S), by the prior probability of a configuration, P(S). We obtain Bayes factors by 

dividing each likelihood to the baseline likelihood supporting the first model of no 

association with any trait 𝐻!. The Regional Bayes Factor (RBF) is then the sum over all 

configurations Sh which are consistent with the given hypothesis:  

 

     (1) 

 

where, P(D|S)/P(D|S0) is the Bayes Factor for each configuration compared to the 

baseline configuration of no association with any trait S0, P(S)/P(S0) is the prior odds of 

a configuration compared with the baseline configuration S0, and the sum is over Sh, 

the set of configurations supporting hypothesis 𝐻!to 𝐻!". Similar to pairwise 

This in turn can be represented by a set of tuples, indicating which SNP associates with
which trait,

{{(1, 1), (1, 2)}, {(2, 1), (2, 2)}, {(3, 1), (3, 2)}, {(4, 1), (4, 2)}} . (2)

Formally, let Sh denote the set of configurations supporting hypothesis h, then Sh can be
written as

Sh =
n

[|h|
k=1 {ik}⇥ hk | 8 i1...ik 2 {1, ..., Q}, i1 6= · · · 6= ik

o

, (3)

where hk represents the k-th element (an index set) in the set representation of the hypoth-
esis h.

Next, we aim to assess the support for each hypothesis. We can compute the posterior
probabilities given the data for each of these hypothesis by summing the probability of all
the causal configurations consistent with the hypothesis. We find the probability of the data
under each hypothesis using the following equation,

RBFh =
P (Hh|D)

P (H0|D)
=

X

S2Sh

P (D | S)
P (D | S0)

⇥ P (S)

P (S0)
, (4)

where the first ratio in this equation is a Bayes Factor for each configuration, and the second
ratio is the prior odds of a configuration compared with the baseline configuration S0.

We can now assess the evidence supporting each hypothesis. To define Region-level
Bayes factors, we need to define the prior of each hypothesis. Before we can define the prior
of each hypothesis, we need to define the prior probabilities that SNP i associates with traits
indexed in ⇡s.

1.1 Prior Probabilities that SNP i associates with traits in s

In our three-trait model, the prior probability that SNP i associates with all traits indexed
in a set is:

• ⇡�: SNP i associates with no trait

• ⇡{1}: SNP i associates with trait 1

• ⇡{2}: SNP i associates with trait 2

• ⇡{3}: SNP i associates with trait 3

• ⇡{1,2}: SNP i associates with trait 1 and 2

• ⇡{1,3}: SNP i associates with trait 1 and 3

• ⇡{2,3}: SNP i associates with trait 2 and 3

• ⇡{1,2,3}: SNP i associates with trait 1 and 2 and 3

These are mutually exclusive, so we have:

⇡� + ⇡{1} + ⇡{2} + ⇡{3} + ⇡{1,2} + ⇡{1,3} + ⇡{2,3} + ⇡{1,2,3} = 1 (5)

2
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colocalization11 we then estimate the evidence in support of different scenarios in a 

given genomic region using the posterior probability supporting hypothesis h among H 

possible hypothesis, is computed from: 

                                 

                       (2) 

 

Therefore, in our application, the algorithm outputs 15 posterior probabilities. We are 

most interested in the scenarios supporting a shared causal variant for two and three 

traits. All the computations are analytical and no iterative methods are required. 

We make three important assumptions in moloc, the same that are made in our 

previous coloc methodology. Firstly, that the causal variant is included in the set of Q 

common variants, either directly typed or well imputed. If the causal SNP is not present, 

the power to detect a common variant will be reduced depending on the linkage 

disequilibrium (LD) between other SNPs included in the model and the causal SNP 

(Figure S5). Secondly, we assume at most one causal variant is present for each trait. 

In the presence of multiple causal variants per trait, this algorithm is not able to identify 

colocalization between additional association signals independent from the primary one. 

Thirdly, as we do not explicitly model LD between SNPs, we assume the samples are 

drawn from the same ethnic population and therefore have identical allele frequencies 

and patterns of LD.  

 

Configurations and Notations 

The equations for the model with no colocalization can be re-written in terms of the model with colocalization.

For example, the RBF for non-colocalized signals above would be:

RBFa.b = RBFa ⇥RBFb �
⇡(1) ⇥ ⇡(2)

⇡(1,2)
⇥RBFab (18)

RBFb.c = RBFb ⇥RBFc �
⇡(2) ⇥ ⇡(3)

⇡(2,3)
⇥RBFbc (19)

RBFa.c = RBFa ⇥RBFc �
⇡(1) ⇥ ⇡(3)

⇡(1,3)
⇥RBFac (20)

RBFab.c = RBFab ⇥RBFc �
⇡(1,2) ⇥ ⇡(3)

⇡(1,2,3)
⇥RBFabc (21)

RBFa.bc = RBFa ⇥RBFbc �
⇡(1) ⇥ ⇡(2,3)

⇡(1,2,3)
⇥RBFabc (22)

RBFac.b = RBFac ⇥RBFb �
⇡(1,3) ⇥ ⇡(2)

⇡(1,2,3)
⇥RBFabc (23)

RBFa.b.c = RBFa ⇥RBFb ⇥RBFc �
⇡(1) ⇥ ⇡(2) ⇥ ⇡(3)

⇡(1,2,3)
⇥RBFabc (24)

If priors do not vary across SNPs under the same hypotheses, we can multiply the likelihoods by one common prior.

We set ⇡(1)
= ⇡(2)

= ⇡(3)
, i.e. we set the prior probability that SNP i is the causal one for each trait, to be identical,

and refer to this as p1. We also set ⇡(1,2)
= ⇡(1,3)

= ⇡(2,3)
, i.e. the prior probability that SNP i the causal one for

two traits, to be identical and refer to this as p2. We refer to the prior probability that SNP i the causal for all traits

as p3.

Then, the posterior probability supporting configuration h among H possible configurations, is:

PPh = P (Hh|D) =

P (Hh|D)

PH
i=0 P (Hi)

=

P (Hh|D)
P (H0|D)

1 +

PH
i=1

P (Hi|D)
P (H0|D)

(25)

Model with i traits

P (Hh|D)

P (H0|D)

=

Y

i2m

⇡(i)
QX

j=1

BF
(i)
j �

Q
i2m ⇡(i)

⇡(1,2,...M)

QX

j=1

⇡(1,2,...M)BF
(1,2,...m)
j (26)

Correlation in the e↵ect sizes

This is at page 5 of Pickrell’s paper:

Cor(Z1, Z2) = E


n0

n1n2
⇢g +

Np
N1N2

⇢

�
⇡ E


Np
N1N2

⇢

�
(27)
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To compute the likelihood of the data, we need to first introduce the concepts of 

configurations and sets of configurations supporting each hypothesis listed above. Each 

trait at a region of Q variants can be described using a binary vector of (0,1) values, 

where a 1 means that the SNP is associated with the trait and only 1 SNP is non-zero. 

We call a configuration S a possible combination of M binary vectors, an array with 

dimensions Q X M, where M is the number of traits. The columns represent a particular 

sharing of any one SNP across the traits. We can combine the configurations into sets 

corresponding to different scenarios of SNP sharing to assess the evidence in support 

of each model. Thus, each hypothesis can be represented by a set of index set 

containing the traits each causal SNP associates with. 

To illustrate our notation, consider a region with 8 SNP. Four examples of configurations 

are show in Figure 1. The “.” in the subscript denotes scenarios supporting different 

causal variants. For instance, GE summarizes the scenario for one causal variant 

shared between traits GWAS and eQTL (Figure 1 - Right plot top panel); GE.M 

summarizes the scenario with one causal variant for traits GWAS and eQTL, and a 

different causal variant for trait mQTL (Figure 1 - Left plot bottom panel).  

Formally, let Sh denote the set of configurations supporting hypothesis h, then Sh can 

be written as: 

   (3) 

 

where hk represents the k-th element (an index set) in the set representation of the 

hypothesis h.  

This in turn can be represented by a set of tuples, indicating which SNP associates with
which trait,

{{(1, 1), (1, 2)}, {(2, 1), (2, 2)}, {(3, 1), (3, 2)}, {(4, 1), (4, 2)}} . (2)

Formally, let Sh denote the set of configurations supporting hypothesis h, then Sh can be
written as

Sh =
n

[|h|
k=1

�

i|h|
 

⇥ hk | 8 i1...i|h| 2 {1, ..., Q}, i1 6= · · · 6= i|h|

o

, (3)

where hk represents the k-th element (an index set) in the set representation of the hypoth-
esis h.

Next, we aim to assess the support for each hypothesis. We can compute the posterior
probabilities given the data for each of these hypothesis by summing the probability of all
the causal configurations consistent with the hypothesis. We find the probability of the data
under each hypothesis using the following equation,

RBFh =
P (Hh|D)

P (H0|D)
=

X

S2Sh

P (D | S)
P (D | S0)

⇥ P (S)

P (S0)
, (4)

where the first ratio in this equation is a Bayes Factor for each configuration, and the second
ratio is the prior odds of a configuration compared with the baseline configuration S0.

We can now assess the evidence supporting each hypothesis. To define Region-level
Bayes factors, we need to define the prior of each hypothesis. Before we can define the prior
of each hypothesis, we need to define the prior probabilities that SNP i associates with traits
indexed in ⇡s.

1.1 Bayes Factor for a SNP and a single trait

The Bayes factor quantities are estimated from summary statistics using the Asymptotic
Bayes Factor derivation ?. Let �̂ be the maximum likelihood estimate of �, and V be the
variance in that estimate from a regression analysis for a particular SNP. Since asymptot-
ically �̂ follows a normal distribution N(�, V ), combining this with a normal prior on the
true e↵ect size � ⇡ N(0,W ), the following analytic approximation can be used for com-
puting a Bayes factor that measures the relative evidence for a model in which the SNP is
associated with a trait compared to the null model of no association. For each SNP i and
trait j we compute:

WABF j
i =

1p
1� r

⇥ exp

"

�Z
2(j)
i

2
⇥ r

#

(5)

where Zj
i = �̂/

p
V is the usual Z statistic and the shrinkage factor r is the ratio of the

variance of the prior and total variance (r = W/(Vi + W )). Therefore, to compute the
WABF we only need Z-scores from a standard regression output, and

p
W , the standard

deviation of the normal prior N(0,W) on �. We set W to 0.15 for a continuous trait and
0.2 for the variance of the log-odds ratio parameter. Another possibility is to average over
Bayes factors computed with W = 0.01, W = 0.1, and W = 0.5 (Pickrell).

If the variance of the estimated e↵ect size Vi is not provided, it can be approximated
using the allele frequency of the variant fi, the sample size Ni and the case control ratio

2
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We can then assess the support for each hypothesis by assigning the possible 

combinations of causal configurations (binary vectors with at most 1 entry equal to 1) to 

one of the following 15 hypotheses listed above.  

 

Bayes Factor of a SNP with one trait 

We start by computing a Bayes Factor for each SNP and each of the trait (i.e GWAS, 

eQTL, mQTL). We assume a simple linear regression model to relate the phenotypes or 

a log-odds generalized linear model for the case-control dataset, and the genotypes. 

Using the Wakefield Approximate Bayes factors12 (WABF), only the variance and effect 

estimates from regression analysis are needed, as shown below and previously 

described11,13: 

 (4) 

 

where Zij = βˆ/√V is the usual Z statistic and the shrinkage factor r is the ratio of the 

variance of the prior and total variance (r = W/(V + W )). 

The WABF requires specifying the variance W of the normal prior. In the moloc method 

we set W to 0.15 for a continuous trait and 0.2 for the variance of the log-odds ratio 

parameter, as previously described 11. Another possibility is to average over Bayes 

factors computed with W = 0.01, W = 0.1, and W = 0.5 14. We provide this as an option 

that can be specified by the user. 

If the variance of the estimated effect size V is not provided, it can be approximated 

using the allele frequency of the variant f, the sample size N (and the case control ratio 

This in turn can be represented by a set of tuples, indicating which SNP associates with
which trait,

{{(1, 1), (1, 2)}, {(2, 1), (2, 2)}, {(3, 1), (3, 2)}, {(4, 1), (4, 2)}} . (2)

Formally, let Sh denote the set of configurations supporting hypothesis h, then Sh can be
written as

Sh =
n

[|h|
k=1

�

i|h|
 

⇥ hk | 8 i1...i|h| 2 {1, ..., Q}, i1 6= · · · 6= i|h|

o

, (3)

where hk represents the k-th element (an index set) in the set representation of the hypoth-
esis h.

Next, we aim to assess the support for each hypothesis. We can compute the posterior
probabilities given the data for each of these hypothesis by summing the probability of all
the causal configurations consistent with the hypothesis. We find the probability of the data
under each hypothesis using the following equation,

RBFh =
P (Hh|D)

P (H0|D)
=

X

S2Sh

P (D | S)
P (D | S0)

⇥ P (S)

P (S0)
, (4)

where the first ratio in this equation is a Bayes Factor for each configuration, and the second
ratio is the prior odds of a configuration compared with the baseline configuration S0.

We can now assess the evidence supporting each hypothesis. To define Region-level
Bayes factors, we need to define the prior of each hypothesis. Before we can define the prior
of each hypothesis, we need to define the prior probabilities that SNP i associates with traits
indexed in ⇡s.

1.1 Bayes Factor for a SNP and a single trait

The Bayes factor quantities are estimated from summary statistics using the Asymptotic
Bayes Factor derivation ?. Let �̂ be the maximum likelihood estimate of �, and V be the
variance in that estimate from a regression analysis for a particular SNP. Since asymptot-
ically �̂ follows a normal distribution N(�, V ), combining this with a normal prior on the
true e↵ect size � ⇡ N(0,W ), the following analytic approximation can be used for com-
puting a Bayes factor that measures the relative evidence for a model in which the SNP is
associated with a trait compared to the null model of no association. For each SNP i and
trait j we compute:

WABF j
i =

1p
1� r

⇥ exp

"

�Z
2(j)
i

2
⇥ r

#

(5)

where Zj
i = �̂/

p
V is the usual Z statistic and the shrinkage factor r is the ratio of the

variance of the prior and total variance (r = W/(Vi + W )). Therefore, to compute the
WABF we only need Z-scores from a standard regression output, and

p
W , the standard

deviation of the normal prior N(0,W) on �. We set W to 0.15 for a continuous trait and
0.2 for the variance of the log-odds ratio parameter. Another possibility is to average over
Bayes factors computed with W = 0.01, W = 0.1, and W = 0.5 (Pickrell).

If the variance of the estimated e↵ect size Vi is not provided, it can be approximated
using the allele frequency of the variant fi, the sample size Ni and the case control ratio
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s for binary outcome). For example, in the case-control setting, V is estimated using the 

following equation11:  

   (5) 

   

Bayes factor of a SNP across more than one trait 
 
To compute the BF where a SNP i associates with more than one trait, we use: 

      (6) 

Where s is the set of trait indices for which SNP i is associated with.  

Note that the computations under >1 trait multiply the individual Bayes Factors together. 

This is equivalent to the Bayes Factor under the maximum heterogeneity model used in 

Wen and Stephens15. Two key assumptions are necessary for the following 

computations. Firstly that the traits are measured in unrelated individuals, and secondly 

that the effect sizes for the two traits are independent. We will consider when these 

assumptions are appropriate in Discussion.  

 
Prior probabilities that SNP i associates with traits in s  
 
The prior probability that SNP i associates with all traits indexed in a set in our three trait 

model is: 𝜋!SNP i associates with no trait, with one trait, pairs or traits or all traits 𝜋{!,!,!} 

such that they sum to 1: 𝜋! +  𝜋{!} +  𝜋{!} + 𝜋{!} + 𝜋{!,!} + 𝜋{!,!} + 𝜋{!,!} + 𝜋{!,!,!} = 1 

 

Prior Probabilities of each configuration  

0.2 for the variance of the log-odds ratio parameter. Another possibility is to average over
Bayes factors computed with W = 0.01, W = 0.1, and W = 0.5 (Pickrell).

If the variance of the estimated e↵ect size Vi is not provided, it can be approximated
using the allele frequency of the variant fi, the sample size Ni and the case control ratio
si for binary outcome. For example, in the case-control setting, Vi is estimated using the
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Let s be the set of trait indices for which SNP i is associated with. For example, s = {�}
means SNP i is associated with no trait; and s = {{1, 2}} means SNP i is associated with
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in s is:
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Y
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WABF j
i (4)

Note that the computations under > 1 trait multiply the individual Bayes Factors to-
gether. This is equivalent to the Bayes Factor under the maximum heterogeneity model
used in Wen and Stephens (ref). Two key assumptions are necessary for the following com-
putations. Firstly that the traits are measured in unrelated individuals, and secondly that
the e↵ect sizes for the two traits are independent.

3 Region-level Bayes factors

To define regional Bayes factor, we need to define the prior of each hypothesis. Before we
can define the prior of each hypothesis, we need to define the prior probabilities that SNP
i associates with traits indexed in ⇡s.

3.1 Prior Probabilities that SNP i associates with traits in s

In our three trait model, the prior probability that a SNP i associates with traits indexed
in ⇡s is:

• ⇡�: SNP associated with no trait

• ⇡{1}: SNP is associated with trait 1

• ⇡{2}: SNP is associated with trait 2
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• ⇡{1,2}: SNP is associated with trait 1 and 2

• ⇡{1,3}: SNP is associated with trait 1 and 3
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• ⇡{1,2,3}: SNP is associated with trait 1 and 2 and 3
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Let s be the set of trait indices for which SNP i is associated with. For example, s = {�}
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trait 1 and 2. Then, to assess the strength of association of a SNP i with all traits indexed
in s is:
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i (4)

Note that the computations under > 1 trait multiply the individual Bayes Factors to-
gether. This is equivalent to the Bayes Factor under the maximum heterogeneity model
used in Wen and Stephens (ref). Two key assumptions are necessary for the following com-
putations. Firstly that the traits are measured in unrelated individuals, and secondly that
the e↵ect sizes for the two traits are independent.

3 Region-level Bayes factors

To define regional Bayes factor, we need to define the prior of each hypothesis. Before we
can define the prior of each hypothesis, we need to define the prior probabilities that SNP
i associates with traits indexed in ⇡s.

3.1 Prior Probabilities that SNP i associates with traits in s

In our three trait model, the prior probability that a SNP i associates with traits indexed
in ⇡s is:

• ⇡�: SNP associated with no trait
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In our model (Equation 1), P(S) is the prior probability of a configuration. We can define 

these priors from the prior probability that a SNP i associates with traits indexed in 𝜋! 

(section above). Additionally, since the prior probability P(S) of any one configuration in 

the different sets do not vary across SNPs that belongs to the same set Sh, we can 

multiply the likelihoods by one common prior supporting the different hypothesis11. P(S) 

depends on a ratio of 𝜋! and on Q, the number of SNPs in the region. Specifically, the 

prior probability of the configuration associated with no traits is P0 = π!
! , with one trait is 

e.g. P1 = Q X π!
!!!π{!}, with a pair of traits with a causal variant shared by trait {1} and 

{2} is e.g. P4 = Q X π!
!!!π{!,!}, with a pair of traits with a different causal variant for trait 

{1} and {2} is e.g. P7 = Q(Q-1) X π!
!!!π{!}π{!}, and with all three traits, each with a 

different causal variant is P13 = Q(Q-1) (Q-2) X π!
!!!π{!}π{!}π{!}.  

 

Regional Bayes factor (the 3-trait special case)  

The Regional Bayes Factor (RBF) can be computed by summing the probability of all 

the causal configurations consistent with a particular hypothesis (Equation 1).  

For example, the RBF for hypothesis 4 is: 

 

For example, the RBF for hypothesis 11 is: 

 

• RBF3 = P (H3|D)
P (H0|D) = ⇡{3} ⇥

PQ
i=1 BFi,{3} = ⇡{3} ⇥

PQ
i=1 WABF 3

i

• RBF4 = P (H4|D)
P (H0|D) = ⇡{1,2} ⇥

PQ
i=1 BFi,{1,2} = ⇡{1,2} ⇥

PQ
i=1 WABF 1

i WABF 2
i

• RBF5 = P (H5|D)
P (H0|D) = ⇡{2,3} ⇥

PQ
i=1 BFi,{2,3} = ⇡{2,3} ⇥

PQ
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i

• RBF6 = P (H6|D)
P (H0|D) = ⇡{1,3} ⇥

PQ
i=1 BFi,{1,3} = ⇡{1,3} ⇥

PQ
i=1 WABF 1

i WABF 3
i

• RBF7 = P (H7|D)
P (H0|D) = ⇡{1} ⇥ ⇡{2} ⇥

PQ
i=1

PQ
j=1 BFi,{1}BFj,{2}

= ⇡{1} ⇥ ⇡{2} ⇥
PQ

i=1

PQ
j=1 WABF 1

i WABF 2
j I[i 6= j]

• RBF8 = P (H8|D)
P (H0|D) = ⇡{2} ⇥ ⇡{3} ⇥

PQ
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j=1 BFi,{2}BFj,{3}
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j I[i 6= j]
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PQ
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• RBF10 = P (H10|D)
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j I[i 6= j]

• RBF11 = P (H11|D)
P (H0|D) = ⇡{3} ⇥ ⇡{1,2} ⇥
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= ⇡{3} ⇥ ⇡{1,2} ⇥
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• RBF12 = P (H12|D)
P (H0|D) = ⇡{2} ⇥ ⇡{1,3} ⇥
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• RBF13 = P (H13|D)
P (H0|D) = ⇡{1} ⇥ ⇡{2} ⇥ ⇡{3} ⇥
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• RBF14 = P (H14|D)
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i WABF 2

i WABF 3
i

where WABF are Wakefield’s Asymptotic Bayes Factors for each SNP and each trait 1,
2 and 3, I[i 6= j 6= k] is an indicator that evaluates to 1 if SNP i and j are di↵erent and 0
otherwise, ⇡ are the prior probabilities that SNP i is the causal SNP under a specific model.

Notably, the RBF for non-colocalized signals [7 . . . n � 1] can be derived from the colo-
calized signals. This generalization speeds up computation significantly.
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where WABF are Wakefield’s Asymptotic Bayes Factors for each SNP and each trait 1,
2 and 3, I[i 6= j 6= k] is an indicator that evaluates to 1 if SNP i and j are di↵erent and 0
otherwise, ⇡ are the prior probabilities that SNP i is the causal SNP under a specific model.

Notably, the RBF for non-colocalized signals [7 . . . n � 1] can be derived from the colo-
calized signals. This generalization speeds up computation significantly.
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where WABF are Wakefield’s Asymptotic Bayes Factors for each SNP and each trait 1, 

2 and 3,I[i ≠j] is an indicator that evaluates to 1 if SNP i and j are different and to 0 

otherwise, π are the prior probabilities that SNP i is the causal SNP under a specific 

model.  

Notably, the RBF for non-colocalized signals [7 . . . n − 1] can be derived from the colo- 

calized signals. This generalization speeds up computation significantly: 

 

In practice, we collapsed the prior probabilities to a smaller set for each kind of con- 

figuration. We set the prior probability that a SNP is causal in each trait to be identical 

(π{1} = π{2} = π{3}) and refer to this a p1. We also set the prior probability that is asso- 

ciated with two traits to be identical (π{1,2},π{2,3},π{1,3}) and refer to this as p2. We 

refer to the prior probability that SNP i the causal for all traits (π{1,2,3}) as p3. 

 

Regional Bayes factor (the general case)  

Across a set of M traits {1,2,3...,M}, for a hypothesis h, where there are more than one 

independent associations among the M traits (i.e. |h| > 1), we can compute the Regional 

Bayes factor supporting h using a generalization which speeds up computation 

significantly: 

 

     (7) 
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• P (H11|D)
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

⇡{3}⇥⇡{1,2}
⇡{1,2,3}

⇥ P (H14|D)
P (H0|D)

�

• P (H12|D)
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
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�

In practice, we collapsed the prior probabilities to a smaller set for each kind of con-
figuration. We set the prior probability that a SNP is causal in each trait to be identical
(⇡{1} = ⇡{2} = ⇡{3}) and refer to this a p1. We also set the prior probability that is asso-
ciated with two traits to be identical (⇡{1,2},⇡{2,3},⇡{1,3}) and refer to this as p2. We refer
to the prior probability that SNP i the causal for all traits (⇡{1,2,3}) as p3.

1.6 Regional Bayes factor (the general case)

In general, across a set of M traits {1, 2, 3...,M}, for a hypothesis h, where there are more
than one independent associations among the M traits (i.e. |h| > 1), the regional Bayes
factor supporting h can be written as

RBFh =
P (Hh|D)

P (H0|D)
=
Y

s2h

⇡s

Q
X

i=1

BFi,s �
Q

s2h ⇡s

⇡t

Q
X

i=1

⇡tBFi,t, (9)

where t is the union of the index set in h, i.e. t = [|h|
j=1hj .

For example, let there be three traits {1, 2, 3} with two independent associations. The
first signal colocalizes with traits 1 and 2 while the second is an independent association
with trait 3. Hence, M = 3, h =

�

{1, 2} , {3}
 

and:

P (Hh|D)

P (H0|D)
= ⇡{1,2}⇡{3}

Q
X
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BFi{1,2}

Q
X

j=1
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Q
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⇡{1,2,3}BFi{1,2,3} (10)

We pre-compute the single terms in the above equation, so that in practice we have:

P (Hh|D)

P (H0|D)
= RBF{1,2} ⇥RBF{3} �

⇡12 ⇥ ⇡3

⇡123
⇥RBF{1,2.3} (11)

Similarly, let there be five traits {1, 2, 3, 4, 5} with two independent associations. First
one is common to traits 1, 2, the second one common to traits 4 and 5. Hence, M = 5,
h = {{1, 2}, {4, 5}} and:
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(12)
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In practice, we collapsed the prior probabilities to a smaller set for each kind of con-
figuration. We set the prior probability that a SNP is causal in each trait to be identical
(⇡{1} = ⇡{2} = ⇡{3}) and refer to this a p1. We also set the prior probability that is asso-
ciated with two traits to be identical (⇡{1,2},⇡{2,3},⇡{1,3}) and refer to this as p2. We refer
to the prior probability that SNP i the causal for all traits (⇡{1,2,3}) as p3.

1.4 Regional Bayes factor (the general case)

In general, across a set of M traits {1, 2, 3...,M}, for a hypothesis h, where there are more
than one independent associations among the M traits (i.e. |h| > 1), the regional Bayes
factor supporting h can be written as

RBFh =
P (Hh|D)

P (H0|D)
=
Y

s2h
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Q
X

i=1

BFi,s �
Q

s2h ⇡s

⇡t

Q
X

i=1

⇡tBFi,t, (7)

where t is the union of the index set in h, i.e. t = [|h|
j=1hj .

For example, let there be three traits {1, 2, 3} with two independent associations. The
first signal colocalizes with traits 1 and 2 while the second is an independent association
with trait 3. Hence, M = 3, h =

�

{1, 2} , {3}
 

and:
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P (H0|D)
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where s is the set of trait indices for which SNP i is associated with, and t is the union of 

the index set in h, i.e.  

For example, let there be three traits {1,2,3} with two independent associations. The first 

signal colocalizes with traits 1 and 2 while the second is an independent association 

with trait 3. Hence, M = 3, h =  {1,2},{3}  and: 

 

We pre-compute the single terms in the above equation, so that in practice we have:  

 

Similarly, let there be five traits {1,2,3,4,5} with two independent associations. First one 

is common to traits 1, 2, the second one common to traits 4 and 5. Hence, M = 5, h = 

{{1, 2}, {4, 5}} and:  

 

 

GWAS dataset 

Summary statistics for genome-wide SNP association with Schizophrenia were 

obtained from the Psychiatric Genomics Consortium-Schizophrenia Workgroup (PGC-

SCZ) primary meta-analysis (35,476 cases and 46,839 controls) 10. 

 

Expression QTL (eQTL) analysis 

• P (H10|D)
P (H0|D) = ⇡{1} ⇥ ⇡{2,3} ⇥

PQ
i=1 BFi,{1}

PQ
j=1 BFj,{2,3} �



⇡{1}⇥⇡{2,3}
⇡{1,2,3}

⇥ P (H14|D)
P (H0|D)

�

• P (H11|D)
P (H0|D) = ⇡{3} ⇥ ⇡{1,2} ⇥

PQ
i=1 BFi,{3}

PQ
j=1 BFj,{1,2} �



⇡{3}⇥⇡{1,2}
⇡{1,2,3}

⇥ P (H14|D)
P (H0|D)

�

• P (H12|D)
P (H0|D) = ⇡{2} ⇥ ⇡{1,3} ⇥

PQ
i=1 BFi,{2}

PQ
j=1 BFj,{1,3} �



⇡{2}⇥⇡{1,3}
⇡{1,2,3}

⇥ P (H14|D)
P (H0|D)

�

In practice, we collapsed the prior probabilities to a smaller set for each kind of con-
figuration. We set the prior probability that a SNP is causal in each trait to be identical
(⇡{1} = ⇡{2} = ⇡{3}) and refer to this a p1. We also set the prior probability that is asso-
ciated with two traits to be identical (⇡{1,2},⇡{2,3},⇡{1,3}) and refer to this as p2. We refer
to the prior probability that SNP i the causal for all traits (⇡{1,2,3}) as p3.

1.6 Regional Bayes factor (the general case)

In general, across a set of M traits {1, 2, 3...,M}, for a hypothesis h, where there are more
than one independent associations among the M traits (i.e. |h| > 1), the regional Bayes
factor supporting h can be written as
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Similarly, let there be five traits {1, 2, 3, 4, 5} with two independent associations. First
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In practice, we collapsed the prior probabilities to a smaller set for each kind of con-
figuration. We set the prior probability that a SNP is causal in each trait to be identical
(⇡{1} = ⇡{2} = ⇡{3}) and refer to this a p1. We also set the prior probability that is asso-
ciated with two traits to be identical (⇡{1,2},⇡{2,3},⇡{1,3}) and refer to this as p2. We refer
to the prior probability that SNP i the causal for all traits (⇡{1,2,3}) as p3.
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Similarly, let there be five traits {1, 2, 3, 4, 5} with two independent associations. First
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In practice, we collapsed the prior probabilities to a smaller set for each kind of con-
figuration. We set the prior probability that a SNP is causal in each trait to be identical
(⇡{1} = ⇡{2} = ⇡{3}) and refer to this a p1. We also set the prior probability that is asso-
ciated with two traits to be identical (⇡{1,2},⇡{2,3},⇡{1,3}) and refer to this as p2. We refer
to the prior probability that SNP i the causal for all traits (⇡{1,2,3}) as p3.

1.4 Regional Bayes factor (the general case)

In general, across a set of M traits {1, 2, 3...,M}, for a hypothesis h, where there are more
than one independent associations among the M traits (i.e. |h| > 1), the regional Bayes
factor supporting h can be written as
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where t is the union of the index set in h, i.e. t = [|h|
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Similarly, let there be five traits {1, 2, 3, 4, 5} with two independent associations. First

one is common to traits 1, 2, the second one common to traits 4 and 5. Hence, M = 5,
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For the eQTL associations, we used pre-QC’ed expression and imputed 

genotypes, on case-control of European-ancestry (N=467) collected by the 

CommonMind Consortium. Briefly, gene expression was assayed data from post-

mortem DLPFC (Brodmann areas 9 and 46) with RNA-seq and mapped to human 

Ensembl gene reference (v70) using TopHat version 2.0.9 and Bowtie version 2.1.0. 

Genes with less than 1 CPM (counts per million) in at least 50% of the samples were 

discarded and RNA-seq data for a total of 16,423 Ensembl genes were considered for 

downstream analyses. After RNA sample QC, and retaining only genetically-identified 

European-ancestry individuals, a total of 467 samples were used for downstream 

analyses. These comprised 209 SCZ cases, 52 AFF (Bipolar, Major depressive 

disorder, or Mood disorder, unspecified) cases, and 206 controls. The expression data 

was voom-adjusted for both known covariates (RIN, library batch effect, institution, 

diagnosis, post-mortem interval, age and sex) and hidden confounds identified based 

on surrogate variable analysis.  

Samples were genotyped at 958,178 markers using the Illumina Infinium 

HumanOmniExpressExome array. Genotyped variants were QC’d, phased, and 

imputed based on the Phase 1 reference panel from the 1,000 Genomes Project. 

Variants with INFO < 0.8 or MAF < 0.05 were filtered out, and approximately 6.4 million 

variants were included in further analysis. Further details on processing of raw data, 

normalization, and quality control procedures, can be found in 2. 

The R package MatrixEQTL 16 was used to fit an additive linear model between 

the expression of 16,423 genes and SNP dosage data at 6.4 million markers within a 1 

Mb window around the transcription start site for each gene, including covariates for 
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diagnosis, five ancestry covariates and known and hidden variables detected by 

surrogate variable analysis.  

Following eQTL identification, summary statistics on 72,441,005 SNPs and 15,791 

autosomal genes were retained for downstream analyses. Overall, the model identified 

2,154,331 significant cis-eQTL, (i.e., SNP–gene pairs within 1 Mb of a gene) at a false 

discovery rate (FDR) ≤ 5%, for 13,137 (80%) genes.  

 

Methylation QTL (mQTL) analysis 

For the mQTL dataset, we used pre-QC’d DNA methylation data and imputed 

genotypes on non-psychiatric adult Caucasian control donors (age > 13, N=121). We 

briefly summarize here the procedures to process the raw data. More details on data 

processing, normalization, and QC can be found in 6. 

DNA methylation was assessed on postmortem tissue homogenates of the dorsolateral 

prefrontal cortex (DLPFC, Brodmann areas 9 and 46) on 534 unique subjects using the 

Illumina HumanMethylation450 (“450k”) microarray (which measures CpG methylation 

across 473,058 probes covering 99% of RefSeq gene promoters). The average intensity 

was used to check for low quality samples, intensities from the sex chromosomes were 

used to drop samples that had predicted sex which was different from its recorded 

value, and across-sample quantile normalization was used. DNA for genotyping was 

obtained from the cerebella of samples with either the Illumina Human Hap 650v3, 1M 

Duo V3, or Omni 5M BeadArrays. Genotypes were called, QC’d, phased and imputed to 

the 1000 Genomes Phase 3 variant set, separately by genotyping platform. Imputed 

genotypes were then merged across the three platforms, and SNPs with MAF > 5% and 
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imputation quality above 90% were retained across the samples. Multidimensional 

scaling (MDS) components were obtained for quantitative measures of ancestry. 

For the mQTL association analysis, we only considered 121 adult Caucasian 

individuals (age > 13). The analysis was conducted using the R package MatrixEQTL 16, 

fitting an additive linear model up to 20kb distance between each SNP and CpG 

analyzed, including as covariates the first five MDS components from the genetic data 

and the first 8 PCs (based on the 100,000 most inter-individual variable probes for 

computational efficiency). Summary statistics on 47,675,913 SNPs and 473,058 

Illumina 450k probes were used for downstream analyses. Overall, the model identified 

3,601,681 significant cis-mQTL, (i.e., SNP–probe pairs within 20kb distance of a probe) 

at a false discovery rate (FDR) ≤ 5%, for 127,237 (27%) probes. 

 

Moloc Analysis 

The GWAS, eQTL, mQTL datasets were filtered by minor allele frequency 

greater than 5% and had individually been filtered by imputation quality (Methods).. The 

Major Histocompatibility (MHC) region (chr 6: 25 Mb - 35 Mb) was excluded from all co-

localization analyses due to the extensive linkage disequilibrium. We applied a genic-

centric approach, defined cis-regions based on a 50kb upstream/downstream from the 

start/end of each gene, since our goal is to link risk variants with changes in gene 

expression. We evaluated all methylation probes overlapping the cis-region. The 

number of cis-regions/methylation pairs is higher than the count of genes because, on 

average, there are more than one methylation sites per gene. Common SNPs were 

evaluated in the colocalization analysis for each gene, and each methylation probe, and 
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GWAS. In total, 12,003 cis-regions and 481,995 unique cis-regions/methylation probes 

were tested. Genomic regions were analyzed only if greater than 50 SNPs were in 

common between all the datasets. Across all of the analyses, a posterior probability 

equal to, or greater than, 80% for each configuration was considered evidence of 

colocalization. 

In order to compare existing methods for colocalization of two trait analyses with 

three traits, we applied moloc using the same region definitions across the same set of 

SNPs, using a previously developed method (coloc11). Effect sizes and variances were 

used as opposed to p-values, as this strategy achieves greater accuracy when working 

with imputed data11.  

Simulations 

We simulated genotypes from sampling with replacement among haplotypes of 

SNPs with a minor allele frequency of at least 5% found in the phased 1000 Genomes 

Project within 49 genomic regions that have been associated with type 1 diabetes (T1D) 

susceptibility loci (excluding the major histocompatibility complex (MHC) as previously 

described17. These represent a range of region sizes and genomic topography that 

reflect typical GWAS hits in a complex trait. For each trait, two, or three “causal 

variants” were selected at random. We have simulated continuous traits, and assume 

that causal effect follow a multivariate Gaussian distribution, with each causal variant 

explaining 0.01 variance of the trait in the GWAS data, and 0.1 in the eQTL and mQTL 

datasets. For the null scenario, the causal variants explain zero variance of the traits. 

Each scenario was simulated 1,000 times. To quantify false positive rates on a large 
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number of tests, we simulated the null 500,000 times. We simulated the 15 possible 

scenarios with different sharing patterns between the GWAS, eQTL, and mQTL 

datasets. We used sample sizes of 82,315, 467, and 121 individuals to reflect our true 

sample sizes. We also used different combinations of sample sizes to explore power to 

detect the correct hypothesis.  

We estimated the number of false positives within each simulated scenario, by 

counting the proportion of simulations under the null that passed a posterior probability 

supporting each of the 14 hypothesis at a particular threshold  (PPA>=threshold). We 

also report the false positives using the sum of the posteriors (PPA.ab + PPA.abc + 

PPA.abc). The false positive rate is the number of false positives over 1,000 

simulations. We repeated this procedure using 500,000 simulations under our true 

sample sizes.  

We next sought to compare the misclassification rates, and power to detect the 

correct hypothesis. To compute the number of misclassified calls within each simulated 

scenario, we counted the proportion of simulations that passed a posterior probability 

supporting a different hypothesis from the one simulated at a particular threshold 

(PPA>=threshold). We estimated power to distinguish a particular hypothesis from the 

others by counting the proportion of simulations that did not reach a posterior probability 

supporting each scenario at a particular threshold (PPA(true)<threshold). 

To explore the effect of linkage disequilibrium (LD) on estimated posterior 

probability, we first computed an LD score for each SNP in the region, defined as the 

sum of the squared correlation between a SNP and all the SNPs in the region. To 

assess the degree of LD at a locus we took the average of these scores.  
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All analyses were conducted in R. 
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RESULTS  

Sample Size Requirements  

We explored false positive rates and the posterior probability under different 

sample sizes. Figure S1 illustrate the posterior probability distribution across all of the 

possible scenarios that includes three traits: GWAS, eQTL and mQTL.  With a GWAS 

sample size of 10,000 and eQTL and mQTL sample sizes of 300, the method provides 

reliable evidence to detect a shared causal variant behind the GWAS and another trait 

(median posterior probability of any hypothesis >50%). Although in this paper we 

analyze GWAS, eQTL and mQTL, our method can be applied to any combinations of 

traits, including 2 GWAS traits and an eQTL dataset. We explored the minimum sample 

size required when analyzing two GWAS datasets (GWAS1, GWAS2) and one eQTL 

(Figure S2).  The method provides reliable evidence for all hypotheses when the two 

GWAS sample sizes are 10,000 and eQTL sample size reaches 300. False positive 

rates are below 0.05 even if a threshold of 0.3 for posteriors is used, and where the 

causal variant is masked (Tables S4, S5, S6). When samples are greater than 10000 

for GWAS and 300 for eQTL and mQTL, our misclassification rates are all below 0.05 

(Table S8). Where the causal variant is masked, sample sizes need to reach 10000 for 

GWAS and 500 for eQTL and mQTL, for our misclassification rates to be below 0.05 

(Table S9). Given the small sample size for the mQTL data, the algorithm has trouble 

detecting a different causal variant for the mQTL dataset (Table S7). For example, 

evidence pointing to two different causal variants between GWAS and eQTL could be 

generated by the presence of three causal variants in reality, but the causal variant for 
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mQTL remains undetected. For this reason, we focused on cases with shared casual 

variants between GWAS, eQTL, with or without mQTL. 

It is instructive to observe where evidence for other hypotheses is distributed. Figure 2 

illustrates the accuracy of our approach under different scenarios where two or three 

causal variants are shared. For example, under simulations of one shared variant for 

GWAS and eQTL and a second variant for mQTL (GE.M), on average 60% of the 

evidence points to the simulated scenario, while 12% point to GE, 12% to G.E.M and 

7.2% to GEM.   

 

Choice of priors 

The algorithm requires the definition of prior probabilities at the SNP level for the 

association with one (p1), two (p2), or three traits (p3). We set the prior probability that a 

variant is associated with one trait as 1 x 10-4 for GWAS, eQTL and mQTL, assuming 

that each genetic variant is equally likely a priori to affect gene expression or 

methylation or disease. This estimate has been suggested in the literature for GWAS18 

and used in similar methods19. We set the priors p2 = 1 x 10-6, p3 = 1 x 10-7 based on 

sensitivity and exploratory analysis of genome-wide enrichment of GWAS risk variants 

in eQTLs and mQTLs. In Figure S3, we find eQTLs and mQTLs to be similarly enriched 

in GWAS, justifying our choice of the same prior probability of association across the 

two traits. These values are also suggested by a crude approximation of p2 and p3 from 

the common genome-wide significant SNPs across the three dataset. 
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We performed sensitivity analyses using different priors. Specifically, we fixed p1 to 

1x10-4 and tested a range of priors for p2 and p3 from 1x10-5 to 1x10-8, with increasing 

difference between p1, p2 and p3. We used a form of internal empirical calibration to 

compare our prior and posterior expectations. We considered a range of values for p2 

and p3 while keeping p1 fixed, and find that the posterior expectation of colocalisation 

most closely resembled the prior expectation under our choice of priors (Table S1).  

We note that our R package implementation allows users to specify a different set of 

priors.  

 

Co-localization of eQTL, mQTL and risk for Schizophrenia 

We applied our method to SCZ GWAS using eQTLs derived from 467 samples 

and mQTL from 121 individuals. Our aim is to identify the genes important for disease 

through colocalization of GWAS variants with changes in gene expression and DNA 

methylation. We analyzed associations genome-wide, and report results both across 

previously identified GWAS loci, and across potentially novel loci. While we consider all 

15 possible scenarios of colocalization, here we focus on gene discovery due to higher 

power in our eQTL dataset, by considering the combined probabilities of cases where 

the same variant is shared across all three traits GWAS, eQTLs and mQTLs (GEM > 

0.8) or scenarios where SCZ risk loci are shared with eQTL only (GE > 0.8 or GE.M > 

0.8) (Table 1).  We identified 1,053 cis-regions/methylation pairs with posterior 

probability above 0.8 that are associated with all three traits (GEM), or eQTLs alone 

(GE or GE.M). These biologically relevant scenarios affect overall 84 unique genes and 
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include 39 genes that fall within the previously identified SCZ LD blocks (Table S2) and 

45 potentially novel genes outside of these regions (Table S3). Fifty-two out of the 84 

candidate genes influence SCZ, gene expression and methylation (GEM>=0.8). One 

possible scenario is that the variants in these genes could be influencing the risk of SCZ 

through methylation, although other potential interpretations such as pleiotropy should 

be considered. 

 

Addition of a third trait increases gene discovery 

We examined whether moloc with 3 traits enhance power for GWAS and eQTL 

colocalization compared to using 2 traits. In simulations to compare coloc and moloc 

under one causal variant and our true sample sizes for all three datasets, we observe a 

fold increase of 1.5 for gene discovery using moloc versus coloc. Moloc with three traits 

recovers all the genes discovered using coloc with eQTL and mQTL, and additional 

genes from the inclusion of the third layer. In our real data, colocalization analysis of 

only GWAS and eQTL traits identified 45 genes with a posterior probability, PP4 in 

coloc, of >= 0.8. The 39 additional genes that were found by adding methylation include 

genes such as CALN1, a neuronal transcript associated with abnormalities in 

sensorimotor gating in humans20, that would have been missed by only GWAS and 

eQTL colocalization.  

 

Loci overlapping reported SCZ LD blocks 

Psychiatric Genomics Consortium (PGC) identified 108 independent loci and 

annotated LD blocks around these, 104 of which are within non-HLA, autosomal regions 
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of the genome10. In Table 1 we report the number of identified gene-methylation pairs 

and unique genes under each scenario that overlap the SCZ-associated LD blocks. Out 

of the 78 SCZ-associated LD blocks we examined in our analysis, we found 

colocalizations in 20 of them with an average gene density per block of 2.4 unique 

genes. Figure 3A illustrates the average distribution of the posteriors across these 

regions. Cumulatively, 12% of the evidence points to shared variation with an eQTL 

(GE, GE.M and GEM). The majority of the evidence within these regions (64%) did not 

reach support for shared variation across the three traits, with 20% not reaching 

evidence for association with any traits, and 44% with only one of the three traits (36% 

with GWAS; 6% with eQTL, 2% with mQTLs). The lack of evidence in these regions 

could be addressed with greater sample sizes. Figure 3B shows the evidence for 

colocalization of GWAS with eQTL or mQTL across the 39 candidate genes. We 

provide illustrative examples of SCZ association with expression and DNA methylation 

in the FURIN locus (Figure 4 and Figure S4A). 

 

Potentially novel SCZ loci 

We found 45 unique genes that have a high posterior for SCZ and eQTL, but fall 

in regions not previously identified to be associated with SCZ  (at p-value of 5 × 10−8). 

All genes were far from a SCZ LD block (more than 150kb, Table S3), and contained 

SNPs with p-values for association with SCZ ranging from 10-4 to 10-8. These genes will 

likely be identified using just the GWAS signal if the sample size is increased. KCNN3 is 

among these genes which encodes an integral membrane protein that forms a voltage-

independent calcium-activated channel. It regulates neuronal excitability by contributing 
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to the slow component of synaptic afterhyperpolarization21.  A plot of the associations 

with the three datasets within this locus is shown in Figure S4B.   

 

Comparison with previous findings 

We compare our gene discovery results to previous studies that assess GWAS-

eQTL2–5 or GWAS-mQTL5,7–9 colocalization using the same or similar datasets (Table 

2). A substantial proportion of genes detected in our study (range 44%-85%) was 

validated with four studies 2–5 that used eQTL and GWAS integration to prioritize genes 

important for schizophrenia. Several studies have also linked methylation data with 

schizophrenia 7–9. Two recent studies7,9 used blood mQTL data from 639 samples and 

identified colocalization of SCZ loci with 32 and 200 methylation probes by applying 

COLOC and SMR, respectively. A substantial proportion of SCZ-mQTL colocalization 

was validated in our study (COLOC: 46%; SMR: 18%, Table 2). Another study8 used 

mQTL data from 166 fetal brain samples and identified 297 methylation probes 

important for schizophrenia. We analyzed 184 of those and found evidence for 13 

probes. We note that our methylation data did not included fetal brain samples. Finally, 

a recent study5 identified 44 genes involved in schizophrenia through TWAS, followed 

by integration with chromatin data in blood that resulted in 11 genes associated with 

GWAS, eQTL and epigenome QTL. We analyzed 8 out of the 11 associations and 

confirmed 6 of these genes that, in our study, influence SCZ through eQTL and mQTL. 

 

Association of gene expression with methylation 

We explored direction of effects of methylation and expression, for gene 
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expression and DNA methylation that colocalize (PPA.GEM + PPA.EM + PPA.G.EM >= 

0.8). Overall, we tested 1,947 DNA methylation and gene expression pairwise 

interactions and found a significant negative correlation between the effect sizes of 

methylation and expression in the proximity of the transcription start site (Figure 5, p-

value:<2.2e-16). 
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DISCUSSION 

In this paper, we propose a statistical method for integrating genetic data from 

molecular quantitative trait loci (QTL) mapping into genome-wide genetic association 

analysis of complex traits. The proposed approach requires only summary-level 

statistics and provides evidence of colocalization of their association signals. To our 

knowledge, a method integrating more than two traits is lacking. In contrast to other 

methods that attempt to estimate the true genetic correlation between traits such as LD 

score regression22 and TWAS23, moloc focuses on genes that are detectable from the 

datasets at hand. Thus, if the studies are underpowered, most of the evidence will lie in 

the null scenarios. We note that our model is the same as gwas-pw in Pickrell et al.13 

under specific settings. Precisely, gwas-pw averages over Bayes factors computed with 

W = 0.01, W = 0.1, and W = 0.5 (Methods). We provide this as an option that can be 

specified by the user. Additionally, gwas-pw estimates the prior parameters genome-

wide using a maximization procedure. However, we note that, unlike gwas-pw that 

focuses on genome-wide estimation across pairs of traits, our approach focuses on one 

locus at a time with multiple traits. 

We expose one possible application of this approach in SCZ. In this application, 

we focus on scenarios involving eQTLs and GWAS, alone or in combination with 

mQTLs. Other scenarios are also biologically important. For example, colocalization of 

GWAS and mQTL excluding eQTLs (GM.E scenario) could unveil important methylation 

mechanisms affecting disease but not directly influencing gene expression in cis. We 

report these and other scenarios in our web resource and encourage further 

examination of these cases in future analyses. The GEM scenario provides evidence 
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that SCZ risk association is mediated through changes in DNA methylation and gene 

expression. While our method does not detect causal relationships among the 

associated traits, i.e. whether risk allele leads to changes in gene expression through 

methylation changes or vice versa, there is evidence supporting the notion that risk 

alleles might affect transcription factor binding and epigenome regulation that drives 

downstream alterations in gene expression24,25. Importantly, our method helps to link a 

specific gene to a methylation probe. DNA methylation is one the best studied 

epigenetic modifications. Methylation can alter gene expression by disrupting 

transcription factor binding sites (with variable consequences to expression depending 

on the TF), or by attracting methyl-binding proteins that initiate chromatin compaction 

and gene silencing. Therefore methylation can be associated with both increased or 

decreased gene expression24,26. Increased CpG methylation in promoter regions is 

usually associated with silencing of gene expression27. However, in genome-wide 

expression and methylation studies, the correlation of methylation and gene expression 

is low or the pattern of association is mixed, even for CpG methylation within promoter 

regions26. We found a negative correlation between the effect sizes of methylation and 

expression in the proximity of the transcription start site. However, we note that the 

current assay (Illumina 450K) cannot discriminate DNA methylation from 

hydroxymethylation sites. DNA methylation is generally associated with the inhibition of 

gene expression, while DNA hydroxymethylation, the oxidized form of methylation, has 

been associated with enhancers and increased gene expression. 

 We provide posterior probabilities supporting respective hypotheses for each 

gene-methylation pair analyzed, and the SNP for each trait with the highest probability 
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of colocalization with any other trait. For example, the SNP with the highest posterior 

probability of GWAS colocalization with eQTL or mQTL will be computed from PPA of 

GE + GE.M + GM + GM.E + GEM. However, the aim of this method is not fine-mapping 

of SNPs and we encourage researchers to further analyze the identified local 

associations with methods better suited for fine-mapping. 

We assign a prior probability that a SNP is associated with one trait (1 x 10-4), to 

two (1 x 10-6), and to three traits (1 x 10-7). We find support for our choice of priors in the 

data using two methods. The first uses stratified QQ plots (Figure S3). We find that 

eQTL enrichment in GWAS has a similar enrichment to mQTL in GWAS. The second is 

a form of empirical calibration as in Guo et al.28. We find that the prior and posterior 

expectations of colocalisation matched more closely under our choice of priors (Figure 

S6). However the choices for prior beliefs for each hypothesis are always arguable. One 

could estimate priors for the different combinations of datasets. Pickrell et al.13 proposed 

estimation of enrichment parameters from genome-wide results maximizing a posteriori 

estimates for two traits. For multiple traits, another possibility is using deterministic 

approximation of posteriors29. We leave these explorations to future research. 

The results of this analysis apply to a particular brain region (dorsolateral 

prefrontal cortex), age period (adulthood), and ancestry (Caucasians only). We justify 

using functional data from DLPFC to examine the colocalization with schizophrenia 

variants as it is the most proximal to disease etiopathogenesis tissue 4,5. In addition, due 

to the tissue specificity of gene expression regulatory mechanisms, we matched eQTL 

and mQTL data on the same brain region and age period. The genotypes and gene 

expression data reported by the CommonMind Consortium (CMC) comprises the largest 
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existing postmortem brain genomic resource from individuals with psychiatric disorders 

as well as unaffected controls. The mQTL dataset used here is the largest dataset in the 

adult brain measured in the brain region and age period considered. Although this was 

out of the scope of this paper, we encourage application of similar methods to functional 

data derived from different tissues and age periods to elucidate the spatiotemporal 

regulatory mechanisms of gene expression that are involved in the etiopathogenesis of 

schizophrenia. 

The method makes use of LD to weigh out the posteriors for the different models, 

therefore the statistics (priors and posteriors of configurations) will depend on the 

pattern of association (LD) and the number of SNPs in the region (Q). Specifically, 

increased LD in a region with one causal variant in the decreases our chance to detect 

a shared causal effect (Figure S5A). This is because in loci where the extent of LD is 

strong (a large number of variants with the same strength of association), there is 

uncertainty on whether we are dealing with a single variant causal for both traits, or two 

independent variants in the same LD block. Similarly, the chance of the same SNP 

being causal for all three traits decreases as Q increases (Figure S5B). 

The Bayes Factors under the models of colocalization (for the case of a single 

variant affecting more than one trait) are computed by multiplying the individual WABFs 

together, and this assumes independence of the effect sizes for the traits. 

Independence is appropriate in the case of analyzing different phenotypes, or eQTLs in 

different tissues. On the other hand, this assumption may be inappropriate in other 

cases, for example if we were looking at colocalization of a variant for the same trait in 

two different studies, or the same eQTLs across different tissue type, or the same trait 
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in two different studies. A more general BF computation which includes cases where the 

effects are correlated has been proposed in 15 and could be used to extend our 

approach to these situations. Additionally, correlation among the SNP effect sizes may 

result if the studies contain overlapping individuals. In this case we may overestimate 

the evidence in favor of colocalization. We could adjust SNP Bayes factors to account 

for this overlap as in 14. The datasets we used in the current analysis does not contain 

overlapping individuals, however we provide the code to use this approach. 

We note that this approach can be extended to more than three traits. Since the 

calculations are analytical and no recursive method is used, computation time for a 

region with 1000 SNPs is less than one second. However, time increases exponentially 

as number of traits increases. For four traits it is about 3 seconds, for five traits it is 

greater than 22 minutes. 

Overall, owing to the increasing availability of summary statistics from multiple 

datasets, the systematic application of this approach can provide clues into the 

molecular mechanisms underlying GWAS signals and how regulatory variants influence 

complex diseases.  
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WEB RESOURCES 

We developed a web site to visualize the colocalization results of SCZ GWAS, eQTL, 

mQTLs under all possible scenarios (icahn.mssm.edu/moloc).  The browser allows 

searches by gene, methylation probe, and scenario of interest. The moloc method is 

available as an R package from https://github.com/clagiamba/moloc.  
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Figure 1. Graphical representation of four possible configurations at a locus with 8 

SNPs in common across three traits. The traits are labeled as G, E, M representing 

GWAS (G), eQTL (E), and mQTL (M) datasets, respectively. Each plot represents one 

possible configuration, which is a possible combination of 3 sets of binary vectors 

indicating whether the variant is associated with the selected trait. Left plot top panel 

(GEM scenario): points to one causal variant behind all of the associations; Right plot 

top panel (GE scenario): represent the scenario with the same causal variant behind the 

GE and no association or lack of power for the M association; Left plot bottom panel 

(GE.M scenario): represents the case with two causal variants, one shared by the G 

and E, and a different causal variant for M; Right plot bottom panel (G.E.M. scenario): 

represents the case of three distinct causal variants behind each of the datasets 

considered. 
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Figure 2. Results from simulations under colocalization/non-colocalization scenarios 

using a sample size of 10,000 individuals for GWAS trait (denoted as G), 300 for eQTL 

trait (denoted as E), and 300 for mQTL trait (denoted as M). X-axis shows all 15 

simulated scenarios, e.g. G.E.M, three different causal variants for each of the three 

traits; G.EM, 2 different causal variants, one for G and one shared between E and M; 

GE, 1 shared causal variant for G and E; GE.M, 2 different causal variants, one shared 

between G and E and one for M; GEM, one causal variant shared between all the three 

traits. Y-axis shows the distribution of posterior probabilities under the simulated 

scenario. The height of the bar represents the mean of the PPA for each configuration 

across simulations. 
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Figure 3. Summary of genes identified using three-trait colocalization within the SCZ LD 

blocks. A. Mean posterior probability for each hypotheses computed using the cis-

regions overlapping the SCZ LD blocks. Sections of the pie chart represent the 15 

scenarios representing the possible combination of the three traits. The “.” between the 

traits denotes scenarios supporting different causal variants. The combined scenarios 

GE, GE.M, GE account for 12.0%. B. Heatmap displaying the maximum posterior 

probabilities reached by the 39 regions overlapping known SCZ LD blocks (gene, 

number of methylation probes). 

 

Figure 4. Illustration of one example of colocalization results with GWAS-eQTL-mQTL. 

FURIN gene and cg24888049; Shown are Z-scores (regression coefficients/standard 

errors) from association of expression (x-axis) and association of methylation (y-axis) at 

the FURIN locus. Each point represents a SNP and the size of the dot represent the 

●
● ●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●

●●

●

●

●●●●

●

●
●●

●

●

●

●●
●●●

●

●

●

●

●●−6

−4

−2

0

2

−6 −4 −2 0
Z−score expression

Z−
sc

or
e 

m
et

hy
lat

ion

−log10 p−value

●

●

●

3

6

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2017. ; https://doi.org/10.1101/155481doi: bioRxiv preprint 

https://doi.org/10.1101/155481
http://creativecommons.org/licenses/by/4.0/


 37 

level of association using Z-scores. The red point shows the SNP with the strongest 

evidence for eQTL, mQTL, GWAS (rs4702).  

 

Figure 5. Spearman correlation of eQTL and mQTL effect estimates by distance from 

transcription start site of the gene. Intervals of methylation probe distance from TSS 

were estimated based on 10 equal size bins.    
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TABLE TITLES AND LEGENDS 

Table 1. Number of genes with evidence of colocalization (PPA>=0.8) under each 

scenario. 

Scenarios Sharing of variant Unique gene-
methylation 

pairs 

Unique genes 
 

  Total 
PPA>=80% 

Total 
PPA>=80% 

Overlappi
ng SCZ 

LD 
blocks 

Number 
of LD 
blocks 

Null No associations 268569 9317 90 55 
G GWAS only 4331 215 146 63 
E eQTL only 97852 3597 14 12 
M mQTL only 21914 5588 42 28 

G.E GWAS not eQTL 
(2 causals) 

1257 66 47 27 

E.M eQTL not mQTL (2 
causals) 

7542 1952 7 6 

G.M GWAS not mQTL 
(2 causals) 

219 75 52 26 

GE GWAS,eQTL 359 30 18 14 
EM eQTL,mQTL 1494 769 3 3 
GM GWAS,mQTL 38 23 18 10 

GM.E GWAS,mQTL not 
eQTL (2 causals) 

20 11 7 5 

G.EM eQTL,mQTL not 
GWAS (2 causals) 

22 10 7 4 

GE.M GWAS,eQTL not 
mQTL (2 causals) 

31 17 10 7 

G.E.M not GWAS not 
eQTL not mQTL (3 

causals) 

63 29 23 15 

GEM GWAS,eQTL,mQT
L 

123 52 25 11 

GEM or 
GE.M or 

GE 

combined 
scenarios for 
GWAS,eQTL 

1053 84 39 20 

total total 481995 12003 273 78 
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Table 2. Summary of Previous Findings integrating SCZ GWAS, CMC eQTL and 

methylation datasets.  

Reference Fromer et 
al. 2 

Zhu et al. 3 Hauberg et 
al. 4 

Gusev at al. 5 Hannon et 
al. 7 

Hanno
n et al.  

8 

Hanno
n9 et al. 

Method 
Used 

Sherlock 

 
SMR 

 
SMR  

 
TWAS 

 
COLOC 

 
COLO

C 
SMR 

Datasets GWAS 
SCZ 

(N=82315)
;  

eQTL in 
brain 

(N=537) 

GWAS 
SCZ 

(N=82315)
;  

eQTL in 
blood (N= 

5311) 

GWAS SCZ 
(N=82315);  

eQTL in brain 
(N=467) 

GWAS SCZ 
(N=82315);  

eQTL in brain 
(N=621); 

chromatin QTL in 
blood (N=45) 

GWAS SCZ 
(N=82315);  

mQTL in 
blood 

(N=639) 

GWAS 
SCZ 

(N=823
15);  

mQTL 
in fetal 
brain 

(N=166
) 

GWAS 
SCZ 

(N=823
15);  

mQTL 
in 

blood 
(N=639

) 
Scenarios 

examined in 
our analysis 

22 9 26 GWAS+eQTL: 35 
GWAS+eQTL+mQT

L: 8 

15 184 49 

Validated 
scenarios 
(%) at PPA 

0.8 

15 (68%) 4 (44.4%) 22 (85%) GWAS+eQTL: 21 
(60%) 

GWAS+eQTL+mQT
L: 6 (75%) 

7 (46%) 13 
(7%) 

9 
(18%) 

Genes and 
methylation 

sites 
validated* 

GWAS+e
QTL: 

SF3B1, 
C2orf47, 
CNTN4, 
CLCN3, 

ENSG000
00253553, 
PPP1R13

B, 
EFTUD1P

1, 
ENSG000
00225151, 

FURIN, 
INO80E, 
TOM1L2, 

DRG2, 
MAU2, 

GATAD2A, 
WBP2NL 

GWAS+e
QTL: 

SF3B1, 
PCCB, 

C17ORF3
9, IRF3 

GWAS+eQT
L: 

AL022476.2, 
ALMS1P, 
CLCN3, 
DOC2A, 
DRG2, 

EFTUD1P1, 
ELAC2, EMB, 
FAM86B3P, 

FURIN, 
GATAD2A, 

GOLGA2P7, 
INO80E, 

JRK, PCCB, 
PCDHA7, 
RBBP5, 
RP11-

45P15.4, 
SF3B1, 

SLC9B1, 
SLCO4C1, 
VPS37A 

GWAS+eQTL: 
ALMS1P ,C2orf47, 
CPNE7, DOC2A, 
DRG2, ELOVL7, 

EMB, FURIN, 
GATAD2A, MAU2, 
MCHR1, NDUFA2, 

NT5C2, PCCB, 
PCDHA2, PRMT7, 
SEPT10, SF3B1, 

SLC45A1, 
TMEM81, ZMAT2 

GWAS+eQTL+mQT
L: 

SLC45A1,PCCB,ND
UFA2,PCDHA2,ZM

AT2,PRMT7 
 

GWAS+mQ
TL: 

cg0058507
2, 

cg0126266
7, 

cg0295188
3, 

cg0860710
8, 

cg0877200
3, 

cg1962444
4, 

cg2673261
5 

GWAS
+mQT
L: 
cg0877
2003, 
cg1962
4444, 
cg0860
7108, 
cg0295
1883, 
cg0058
5072, 
cg2673
2615, 
cg0220
6767, 
cg2639
5211, 
cg2506
6665, 
cg0414
0906, 
cg0439
8451, 
cg1059
6483, 
cg2463
4471 

GWAS
+mQT

L: 
cg2506
6665, 

cg0295
1883, 

cg0714
3303, 

cg0877
2003, 

cg1404
7540, 

cg0414
0906, 

cg1286
3693, 

cg0439
8451, 

cg2673
2615 
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* Genes validated (GWAS+eQTL+mQTL and GWAS+eQTL) include the genes with 

PPA.GEM+PPA.GE+PPA.GE.M>= 80%; methylation sites validated (GWAS+mQTL) 

include PPA.GEM+PPA.GM+PPA.GM.E>= 80%. 
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