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Abstract

Whole-genome Bisulfite sequencing (WGBS) has become the standard method for interrogating plant
methylomes at base resolution. However, deep WGBS measurements remain cost prohibitive for large, complex
genomes and for population-level studies. As a result, most published plant methylomes are sequenced far
below saturation, with a large proportion of cytosines having either missing data or insufficient coverage. Here
we present METHimpute, a Hidden Markov Model (HMM) based imputation algorithm for the analysis of
WGBS data. Unlike existing methods, METHimpute enables the construction of complete methylomes by
inferring the methylation status and level of all cytosines in the genome regardless of coverage. Application of
METHimpute to maize, rice and Arabidopsis shows that the algorithm infers cytosine-resolution methylomes
with high accuracy from data as low as 6X, compared to data with 60X, thus making it a cost-effective
solution for large-scale studies. Although METHimpute has been extensively tested in plants, it should be
broadly applicable to other species.
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Introduction

Cytosine methylation (5mC) is a widely conserved epigenetic mark [1–4] with im-

portant roles in the regulation of gene expression and the silencing of transpos-

able elements (TEs) and repeats [5, 6]. Experimentally-induced changes in 5mC

patterns have been shown to affect plant phenotypes [7–9], rates of meiotic re-

combination [10–13], genome stability [14–18] and alter plant-environment interac-

tions [19–22]. Similar to genetic mutations, changes in 5mC patterns can also occur

spontaneously as a result of errors in DNA methylation maintenance [23–26]. There

is substantial evidence in plants that experimentally-induced as well as sponta-

neously occurring 5mC changes can be stably inherited across multiple generations,
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independently of genetic changes [27]. Cytosine methylation has therefore emerged

as a potentially important factor in plant evolution [28–30] and as a possible molec-

ular target for the improvement of commercial crops [31,32].

Plant methylomes are now routinely studied using whole-genome bisulfite sequenc-

ing (WGBS), a next generation sequencing (NGS) method that can interrogate the

methylation status of individual cytosines at the genome-wide scale. The application

of this technology has been instrumental in dissecting the molecular pathways that

establish and maintain 5mC patterns in plant genomes. Unlike in animals, plants

methylate cytosines in context CG, but also extensively in contexts CHG and CHH,

where H = A, T, C [5]. Methylation at CG dinucleotides (mCG) is maintained by

methyltransferase 1 (MET1), which is recruited to hemi-methylated CG sites in or-

der to methylate the complimentary strand in a template-dependent manner during

DNA replication [33]. By contrast, mCHG is maintained dynamically by the plant

specific chromomethylase 3 (CMT3) [34], and requires continuous interactions with

H3K9me2 (dimethylation of lysine 9 on histone 3) [35]. Asymmetrical methyla-

tion of CHH sites (mCHH) is established and maintained by another member of

the CMT family, CMT2 [2, 36]. Similar to CMT3, CMT2 dynamically methylates

CHH in H3K9me2-associated regions. In addition to these context-specific mainte-

nance mechanisms, all three sequence contexts can also be methylated de novo via

RNA-directed DNA methylation (RdDM) [5], which involves short-interfering 24

nucleotide small RNAs (siRNA) that guide the de novo methyltransferase domains

rearranged methyltransferase 2 (DRM2) to homologous target sites throughout the

genome [37,38].

Although these methylation pathways appear to be broadly conserved across plant

species, recent data indicates that there is extensive variation in 5mC patterns both

between but also within species [3,39]. Efforts to explore the origin of this variation

and its implications for plant evolution, ecology and agriculture will require large

inter- and intraspecific methylome datasets. Such datasets are currently emerging.

To date, the methylomes of over 50 plant species have been analyzed using WGBS [3,

4], including representative species of major taxonomic groups such as angiosperms

(flowering plants), gymnosperms, ferns, and non-vascular plants. In addition, the

methylomes of over 1000 natural A. thaliana accessions are now available [40], as

well as those of several experimentally derived populations [41]. However, deep

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2017. ; https://doi.org/10.1101/190223doi: bioRxiv preprint 

https://doi.org/10.1101/190223
http://creativecommons.org/licenses/by-nc/4.0/


Taudt et al. Page 3 of 22

inter- and intraspecific WGBS measurements remain cost-prohibitive, particularly

for species with large genomes. Most published plant methylomes have therefore

been sequenced far below saturation (i.e. large number of cytosines in the genome are

not covered). Indeed, even simple genomes, like that of the model plant A. thaliana

(Col-0 accession), are typically only sequenced to about 10-30X. At this depth,

about 5-10% of cytosines have missing data (i.e. zero read coverage) and about

15-20% have nearly uninformative read coverage (< 3 reads), and this problem is

exacerbated in more complex genomes, like those of rice and maize (see Fig. 1).

Low to moderate sequencing depths in individual samples have cumulative con-

sequences for analyzing population-level data. For instance, in the recently released

1000 A. thaliana methylome data [40] (measured at 5X coverage per strand on

average), 92% of cytosines have missing data in at least one sample when 100

accessions are compared (Fig. SI-1). These incomplete measurements will reduce

statistical power in genome-wide methylation QTL (meQTL) mapping studies, in

estimates of epimutation rates, or in ecological studies that aim to correlate site-

specific methylation levels with environmental/climatic variables. Moreover, incom-

plete measurements also complicate and potentially bias methylome scans for sig-

nature of epigenetic selection using methylation site frequency spectrum (mSFS)

analytic approaches [28]. One way to circumvent the missing data problem is to cal-

culate methylation levels over larger regions, ranging anywhere from several hundred

to several thousand basepairs and to use these methylation levels for downstream

population-level analyses. In the above-mentioned A. thaliana population data, only

36% of 100bp regions in the genome are missing in at least one sample of the 100

accessions, compared with 92% of individual cytosines, and this percentage further

decreases with larger region sizes. However, while region-based methylation levels

are useful measures for descriptive and correlative analyses, these measures obscure

detailed insights into the cytosine-level methylation status calls, and thus arguably

undermine the key advantages of WGBS over other lower resolution technologies

such as MeDIP-seq. Cytosine-level status calls are needed to be able to apply exist-

ing population (epi)genetic models to population methylome data, and to be able

to test explicit hypotheses about the evolutionary forces that shape methylome

variation patterns within and among species [28].
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In order to maximize the information contained in WGBS data and to facilitate

cost-effective sequencing decisions for future studies, we developed METHimpute, a

Hidden Markov Model (HMM) based imputation algorithm for the construction of

base-resolution methylomes from WGBS data. The unique feature of this algorithm

is its ability to impute the methylation status and level of cytosines with missing

or uninformative measurements, thus yielding complete methylomes even with low-

coverage WGBS datasets. Indeed, using published WGBS data from Arabidopsis

thaliana (rockcress), Oryza sativa (rice) and Zea mays (maize), we demonstrate

that METHimpute accurately reconstructs base-resolution methylomes from data

with an average coverage as low as 6X, suggesting that typical sequencing costs

could be cut by more than 50% without a significant loss of information.

Conceptual overview

WGBS is an NGS-based method in which DNA is treated with sodium bisulfite prior

to sequencing in order to convert unmethylated cytosines into uracils and finally into

thymines during PCR amplification. Hence, a cytosine in a bisulfite treated read

that maps to a cytosine in the reference genome provides evidence for methylation,

while a thymine that maps to a cytosine does not. Many specialized short read

mapping programs make use of this information and output so-called methylation

levels [42–44]; that is, the proportion of aligned reads that support that a cytosine

is methylated out of all the reads covering the site. Methylation levels are inherently

noisy due to inefficiencies in the sodium bisulfite conversion step. Moreover, tissue

heterogeneity and the highly dynamic maintenance methylation at CHH and CHG,

which requires feedback loops with histone modifications and small RNAs [5, 6],

lead to intermediate methylation levels which are very susceptible to experimental

variation. Finally, in WGBS data a large proportion of cytosines are often either

not covered by any sequencing read or are covered only by a few number of reads

(Fig. 1), meaning that methylation levels at these positions cannot be determined.

To overcome these limitations we developed METHimpute, a Hidden Markov

Model (HMM) for the construction of base-resolution methylomes from WGBS data.

METHimpute takes methylated and unmethylated read counts at every cytosine as

input, and outputs discrete methylation status calls (unmethylated or methylated),
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together with recalibrated methylation levels between 0 and 1 for every cytosine in

the genome, regardless of coverage (Fig. 2).

The METHimpute algorithm fits a two-state HMM to the observed methylation

counts. The two hidden states correspond to the unmethylated (U) and methy-

lated (M) components, with component-specific binomial emission densities. The

estimates of the binomial parameters (pU and pM ) and the HMM transition matrix

(i.e. the collection of probabilities to transition from one hidden state to another)

are estimated freely during model training for different sequence contexts, thus

requiring no empirical knowledge of the conversion rate. In the present analysis

we have used contexts CG, CCG, CWG, CAA, CTA and CCA|CHY (where H=

{A,C,T}, W= {A,T} and Y={C,T}), following evidence of their different methyla-

tion characteristics [45].

Based on the model fits, the probability that a given cytosine belongs to one of

the hidden states is given by the posterior probabilities γU and γM (Fig. 2d, Meth-

ods section). A cytosine’s maximum posterior probability represents its most likely

methylation status (Fig. 2d,e), and the magnitude of this probability can be used

as a measure of confidence in the underlying status call. In addition to methylation

status calls, METHimpute outputs recalibrated methylation levels per cytosine, cal-

culated as m′ = pU · γU + pM · γM (Fig. 2e). A key feature of METHimpute is its

ability to infer the methylation level and status for cytosines with missing data (i.e.

zero read coverage) or for those with poor read coverage (i.e. less than 3 reads). It

achieves this inference iteratively during HMM training by borrowing information

from neighboring sites. The algorithm therefore outputs complete, base-resolution

methylomes, that can otherwise only be obtained through very high-depth sequenc-

ing experiments.

Results

Imputation-guided construction of complete Arabidopsis, rice and maize methylomes

To demonstrate the performance of METHimpute we analyzed representative

WGBS datasets from A. thaliana (Col-0) [41], O. sativa (japonica nipponbare) [46],

and Z. mays (B73) [47]. We chose these three species because they cover a wide

spectrum of plant genomes in terms of length and complexity: the A. thaliana, O.

sativa and Z. mays genomes are 120 Mb, 374 Mb and 2.1 Gb in length, respec-
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tively, and have an estimated repeat content of 10%, 28-35% and 85% [48–51]. The

A. thaliana data consisted of two replicates (rep.1: 8.6X; rep.2: 15.7X coverage per

cytosine per strand), while there were three replicates both for O. sativa (rep.1:

7.4X, rep.2.: 6.9X, rep.3: 4.6X) and Z. mays (rep.1: 1.6X, rep.2: 3.3X, rep.3: 2.4X).

The precise mapping statistics for each dataset are detailed in Table SI-1. Alignment

and pre-processing of the data was carried out using a single pipeline as described

in the Methods section. Runtimes and memory requirements for METHimpute are

listed in Table SI-4.

We examined the genome-wide coverage distributions of each replicate dataset.

Despite average coverage being relatively high, a substantial proportion of cytosines

had either missing data or low coverage. For instance, in the A. thaliana (rep.1:

8.6X), O. sativa (rep.3: 4.6X) and Z. mays (rep.2: 3.3X) datasets, about 9% (3.71M),

24% (39.54M) and 26% (36.77M) of all cytosines had missing data (i.e. zero read

coverage) and 24% (10.27M), 49% (79.38M) and 60% (85.5M) were nearly uninfor-

mative (here defined as coverage < 3 reads) (Fig. 1d-f and Fig. SI-2 for the other

replicates). Interestingly, the genome-wide proportions of missing or uninformative

sites were highly context dependent, being highest for CCA|CHY, probably as a

result of less unique short read alignments in this context as it is more abundant in

repetitive regions of the genome (Fig. SI-3 and Fig. SI-4).

We applied METHimpute to the above-described datasets and evaluated the qual-

ity of the resulting methylation calls. For A. thaliana, O. sativa and Z. mays, the

algorithm imputed the methylation status of all 3.71M, 39.54M and 36.77M miss-

ing data cytosines, respectively, and inferred the methylation status of all 10.27M,

79.38M and 85.5M uninformative cytosines.

Inferred methylation calls capture known biology

To evaluate the quality of the inferred methylation status calls and levels we ex-

amined the per-cytosine posterior probability of being either unmethylated (U) or

methylated (M). As mentioned above, this probability represents a measure of sta-

tistical confidence in the underlying methylation call, with a value of 1 being the

most confident. We found that the distribution of maximum posterior probability

values for imputed cytosines shows a clear peak around 1 and a tail of lower con-

fidence values (Fig. 3 and Fig. SI-5 for the other replicates), suggesting that the
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algorithm produces high-confidence methylation calls for a large proportion of cy-

tosines with missing data. Indeed, 58% (1.50M), 54% (3.96M) and 83% (6.43M)

of imputed cytosines in A. thaliana, O. sativa and Z. mays were called with high

confidence (defined as posterior probability ≥ 0.9), and these numbers increased to

91% (4.16M), 90% (6.64M) and 93% (9.56M) for cytosines covered by only one or

two reads.

To assess whether the inferred methylation levels are consistent with known bi-

ology, we constructed meta-methylation profiles for annotated repeats and genes

using cytosines separated in three different categories: informative (coverage ≥ 3),

uninformative (coverage = 1 or 2) and imputed cytosines (coverage = 0). Regard-

less of coverage category, METHimpute confirms that A. thaliana TE sequences

are heavily methylated in all sequence contexts, with a marked decrease in methy-

lation levels at their 5’ and 3’ ends (Fig. 4b and Fig. SI-6b for the other replicate).

The CCA|CHY context shows the lowest methylation levels and CG shows the

highest, consistent with [45], and the ordering is conserved for imputed and unin-

formative cytosines. Similar profiles were detected for repeat elements in O. sativa

and Z. mays, with high CG, CCG and CWG methylation, and very low levels of

CAA, CTA, and particularly CCA|CHY methylation, consistent with known results

(Fig. 4d,f and Fig. SI-6 for the other replicates) [52].

In line with numerous methylome studies in Arabidopsis (e.g. [45, 53, 54]), ME-

THimpute finds that A. thaliana genes are intermediately methylated in CG con-

text, and essentially unmethylated at all CHG (CCG, CWG) and CHH (CAA,

CTA, CCA|CHY) sites (Fig. 4a and Fig. SI-6a for the other replicate). Genic meta-

methylation profiles for O. sativa and Z. mays were generally similar to those of A.

thaliana (Fig. 4c,e and Fig. SI-6 for the other replicates), with the exception that

both crop species are known to also methylate genic CHG context, probably owing

to the fact that genes in these complex genomes often overlap or contain heavily

methylated TE or repeat copies.

Taken together the above analyses illustrate two points: first, METHimpute infers

annotation-specific methylation profiles that are consistent with published reports;

and second, the methylation profiles inferred from imputed or uninformative cy-

tosines recapitulate the patterns seen for highly-informative cytosines, indicating
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that - regardless of coverage - the inferred methylation calls are robust and biolog-

ically meaningful.

Saturation analysis for the performance assessment of imputed methylomes

METHimpute achieves high quality imputations by leveraging information from

neighboring cytosines via the estimated distance-dependent transition probabili-

ties (see Methods section). Therefore, confidence in the imputed calls is higher for

cytosines that are closer to informative sites (Fig. SI-7). This spatial dependency

remains high over distances of 10-40 bp and then decays to background levels. We

reasoned that our imputation method may therefore be relatively robust even in

shallow WGBS experiments, as long as enough measured cytosines are available to

tag the methylation status of the underlying region.

To test this directly, we implemented a saturation analysis similar to Libertini et

al. 2016 [55], where we compared high-coverage datasets with low-coverage subsets

of these datasets. Bam files with mapped reads for the Arabidopsis, rice and maize

replicates were merged to obtain samples with 23.2X, 18.6X and 7.2X coverage per

cytosine per strand, respectively (Table SI-1). These merged files were downsampled

to generate a series of reduced datasets, ranging from 90% to 10% of the original

data (Table SI-3).

Upon downsampling, the proportion of cytosines with zero read coverage increased

from 5% (23.2X) to 31% (13.47M, 2.6X) in A. thaliana, from 11% (18.6X) to 40%

(65.41M, 1.8X) in O. sativa and from 14% (7.2X) to 37% (52.07M, 2.2X) in the Z.

mays data (Fig. 5d-f). We ran METHimpute on each reduced dataset and calculated

the F1-score in the status calls relative to those obtained with the full data. The

F1-score is defined as the harmonic mean of precision and recall, and the status

calls of the full dataset were assumed as ground truth.

Our analysis shows that performance remains remarkably high despite drastic de-

creases in sequencing depth (Fig. 5a-c, Fig. SI-8 with precision and recall, Fig. SI-

9 F1-score per context). With data as low as 5X coverage per cytosine (strand-

specific), the F1-score was as high as 95% in A. thaliana (U: 95%, M: 74%), 97%

in O. sativa (U: 97%, M: 88%) and 99% in Z. mays (U: 99% M: 98%). In gen-

eral, annotations with a large percentage of missing cytosines in the high coverage

datasets were less accurately called upon downsampling (Fig. SI-4). These include
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in particular transposable elements and repeats. The exception to this trend were

5’ UTRs, which in all three species showed a large percentage of cytosines with

missing data but a low amount of miscalled sites upon downsampling.

To put the above accuracy analysis into perspective, we also ran the commonly

used binomial testing approach on the reduced datasets. As this method is typically

applied to cytosines with sufficient coverage, missing (zero reads) or uninformative

sites (< 3 reads) need to be treated as false negatives in the downsampled files. We

find that the accuracy obtained with the binomial approach is highly sensitive to

average sequencing depth. With only 5X data, the F1-score drops down to 73% (U:

72%, M: 70%) in Arabidopsis, 81% (U: 80%, M: 81%) in rice and 90% (U: 88%, M:

90%) in maize (Fig. 5a-c).

Finally, we also considered the fidelity of the recalibrated methylation levels upon

downsampling. Recalibrated methylation levels can be interpreted as the proba-

bility of observing a methylated read at a given position, and these recalibrated

levels are highly correlated with original methylation levels: For Arabidopsis, rice

and maize, the correlation (linear fit) was 0.91, 0.94 and 0.93, respectively (p-value

≤ 2e−16). To assess their fidelity upon downsampling, we calculated the correla-

tion between recalibrated methylation levels per cytosine and per 100bp window

to the full coverage dataset, and compared that to the results obtained from the

original methylation level (Fig. SI-10). Per-cytosine recalibrated methylation levels

show slightly higher correlations than original methylation levels, and with 10%

of the original data the correlations for Arabidopsis, rice and maize are 0.89, 0.90

and 0.93, respectively. Window-based recalibrated methylation levels showed the

same correlation performance as the original ones, with remarkably high correla-

tions even when only 10% of the original data was retained (0.95, 0.95, 0.83 for

Arabidopsis, rice, maize). These results suggest that recalibrated methylation lev-

els can be used for downstream methylation analysis, since they are correlated

to original methylation levels and are robust upon downsampling, while providing

cytosine-level information even at low sequencing depth.

Overall, both for status calls and for recalibrated methylation levels, METHim-

pute produces robust results even at very low sequencing depth, suggesting that

the algorithm offers a cost-effective solution for methylome studies of large genomes

and for population-level studies involving a large number of samples.
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Re-calibrated estimates of genome-wide and context-specific methylation levels

Plant species differ greatly in their genome-wide methylation levels (GMLs, i.e. the

proportion of cytosines that are methylated) [3, 4]. In a recent survey of about 30

angiosperms, GMLs were found to be as low as 5% in Theobroma cacao to as high

as 43% in Beta vulgaris, with a mean of about 16% [3, 39]. Much of this diversity

appears to be the result of differences in genome size and repeat content, as well as

differences in the efficiency of DNA methylation maintenance pathways [28]. Precise

estimates of GMLs are important for studying the evolutionary forces that shape

plant methylomes over short and long time-scales, and for understanding genome-

epigenome co-evolution. However, obtaining GML estimates based on WGBS data is

not trivial, as they are highly dependent on the method used for methylation status

calling and on the depth of the sequencing experiment. In A. thaliana, for instance,

reported GML estimates vary widely between studies. This dependency is even

larger when considering context-specific GMLs (i.e. the proportion of methylated

cytosines in a given context; CG-GMLs, CHG-GMLs, CHH-GMLs), with CHH-

GMLs being by far the most variable between studies, with reported values ranging

from as low as 1.51% [1] to as high as 3.91% [3].

In order to bypass many of the statistical issues in calling methylation states,

especially in shallow WGBS data, recent studies have proposed so-called weighted

genome-wide methylation levels (wGMLs) as a proxy for GMLs. A wGML is a non-

statistical measure which is obtained by counting the number of methylated reads

over the total number of reads at the genome-wide scale. Fig. 5g-i shows clearly

that wGMLs are robust upon down-sampling in any sequence context in the A.

thaliana, O. sativa and Z. mays data, thus justifying its use. By contrast, GMLs

calculated from cytosine-level binomial status calls (i.e. #mC/all Cs) are highly

unstable, particularly in non-CG contexts and when sequencing depth is low.

In order to assess whether the re-calibrated methylation levels provided by ME-

THimpute can also be used to obtain robust estimates of GMLs, we calculated

wGMLs by summing the per-cytosine re-calibrated methylation level genome-

wide, weighted by coverage. Using this measure we find that METHimpute-derived

wGMLs perform nearly identical to naive wGMLs, both in terms of robustness and

magnitude (Fig. 5g-i, Fig. SI-11 with replicates). This demonstrates that METHim-

pute recalibrated levels are consistent with original methylation levels and known
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biology not only at the individual cytosine level, but also aggregated over 100bp

windows and genome-wide, with the added advantage that they are available for all

positions in the genome.

METHimpute facilitates insights into bisulfite conversion rates

One source of measurement noise in WGBS data is the bisulfite conversion proce-

dure prior to sequencing. Bisulfite treatment of DNA is typically performed long

enough so that all unmethylated cytosines are converted to uracils. The conversion

success (or rate) is typically high. Most studies report conversion rates of about

0.99, implying that only about 1% of all unmethylated cytosines failed to convert.

Knowledge of this rate is important not only to verify that bisulfite reaction was

efficient but also to be able to separate biological signal from noise in downstream

analyses of the data. Empirical estimates of the conversion rate are often obtained

by including unmethylated chloroplast and virus genomes as controls in the WGBS

workflow, and counting the number of non-converted cytosines from the mapped

reads.

A helpful byproduct of the METHimpute fitting procedure is that the conversion

rate can be directly estimated from the sequenced material without requiring aux-

iliary information from chloroplast or virus genomes. METHimpute achieves this

in the HMM framework by estimating the probability, pU , of finding a methylated

read given that the underlying cytosine is unmethylated (see Methods), which can

be used to derive the conversion rate. To obtain these rates we focus on estimates of

pU in context CG to exclude potential biases arising from the ”fuzzy” maintenance

of methylation at CHG and CHH sites. For A. thaliana and Z. mays our estimated

conversion rates were 0.989 and 0.961, respectively, which is remarkably close to

chloroplast-based estimates of 0.993 and 0.970.

Although bisulfite conversion kits and protocols have been optimized to achieve

the highest conversion rate possible the specificity of the reaction is not perfect.

A well-known trade-off is that some methylated cytosines can be accidentally con-

verted to uracils, and are later falsely detected as unmethylated. Some controls

(commercial or artificially methylated DNA fragments) are available to estimate

this inappropriate conversion rate, but, to our knowledge, they are not systemati-

cally used in WGBS experiments. Some studies using such controls have shown that
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the inappropriate conversion rate (% of methylated cytosines converted to uracils)

ranges from 0.09% to 6.1% depending on the kit and protocol used [56–58].

METHimpute approximates this value by estimating the parameter pM for the M

component (see Methods), which can be used to calculate the probability of finding

an unmethylated cytosine given that the underlying cytosine is truly methylated.

Again, focusing on CG sites, we estimate the methylated cytosines conversion rate at

6.3%, 11.5% and 16% in O. sativa, Z. mays and A. thaliana, respectively. Although

these estimates are close to the empirical rates reported in the literature, they

are slightly biased upward most likely owing to the fact that the parameter pM is

partly confounded with methylation variation arising from cellular heterogenity in

the sampled tissues. We therefore suspect that our estimates become more accurate

in situations where tissue heterogeneity is minimized.

Nonetheless, the ability of METHimpute to provide an accurate estimate of the

conversion rate for unmethylated cytosines and an upper-bound estimate for methy-

lated cytosines could be utilized to calibrate WGBS experiments in the laboratory

when no controls are available.

Discussion

A key advantage of WGBS over alternative measurement technologies is its ability to

provide cytosine-level measurements from bulk and - more recently - also from single

cell data. Since its first application in the model plant A. thaliana in 2008 [53, 54],

WGBS has become an integral tool for studying the methylomes of increasingly

large plant genomes and for surveying patterns of natural methylome variation

within and among plant species. However, the relatively high costs associated with

this technology pose limits on the sequencing depths that can be achieved within

most experimental budgets. A typical solution is to sequence methylomes far below

saturation, which results in substantial measurement noise and missing data at the

level of individual cytosines.

Here we introduced METHimpute, an imputation-based HMM for the construc-

tion of complete methylomes from shallow or deep WGBS data. Our analyses showed

that the algorithm can impute the methylation status of cytosines with missing

data (i.e. zero read coverage) or uninformative coverage (i.e. coverage of less than 3

reads), as well as their recalibrated methylation levels. We demonstrated that these
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imputations are not only statistically robust, but also biologically meaningful. Our

estimates suggest that routine use of this algorithm could reduce sequencing costs

of typically sized methylome experiments by about 50% without a substantial loss

of biological information. The method works with small, streamlined genomes like

that of Arabidopsis but also with large, repeat-rich genomes like those of most

commercial crops, thus making it a flexible software tool for the analysis of DNA

methylomes of a wide spectrum of species.

We recommend the use of METHimpute instead of the binomial test for the anal-

ysis of WGBS data whenever methylation status calls are required. Furthermore,

METHimpute solves the problem of missing data in population epigenetic studies,

which will facilitate the estimation of epigenetic mutation rates and methylation

site frequency spectrum analyses.

METHimpute is implemented as an R-package and seamlessly integrates with the

extensive bioinformatic tool sets available through Bioconductor. The algorithm

has been extensively tested in plants, but it should also be applicable in non-plant

species.

Methods

Hidden Markov Model for methylation calling

Outline

We define an N = 2 state Hidden Markov Model (HMM), where the states i rep-

resent unmethylated (U) and methylated (M) cytosines. The emission densities for

each state are binomial distributions, which can be interpreted as a binomial test on

the number of methylated counts m over total counts r. The probability parameter

pi of the binomial test can be interpreted as the probability of finding m methylated

counts out of r total counts, given the state i. Note that in this definition 1− pU is

the conversion rate, i.e. the probability of a read showing non-methylation when the

cytosine is indeed non-methylated. Cytosines are not equally spaced in the genome,

and we therefore chose a distance dependent transition matrix A, where the dis-

tance dependent change in transition probabilities is modeled by an exponential

function. Furthermore, to account for different sequence contexts, we implemented

context-specificity for both the binomial test and the transition probabilities.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2017. ; https://doi.org/10.1101/190223doi: bioRxiv preprint 

https://doi.org/10.1101/190223
http://creativecommons.org/licenses/by-nc/4.0/


Taudt et al. Page 14 of 22

Mathematical description

The probability P of observing methylated mt and total rt read count at a particular

cytosine t in context ct can be written as

Pt(mt, rt,pct
) =

∑
i∈{U,M}

γitBict
(mt, rt, pict

), (1)

where γi are the posteriors (mixing weights) and Bi are binomial distributions with

context-specific parameter pic. The binomial distribution is defined as

B(m, r, p) =
(
r

m

)
pm(1− p)r−m. (2)

All probability parameters of the binomial tests (i.e. the probabilities of a success)

are estimated freely during model training (next section). For C = 6 contexts and

N = 2 states, N · C = 12 independent parameters pic need to be fitted.

The distance dependent transition probabilities from cytosine t in state i to cy-

tosine t+ 1 in state j, separated by distance dt,t+1 and in transition context ct,t+1,

can be described as

Aij,ct,t+1(Ao
ij,ct,t+1

, dt,t+1, Dct,t+1 , N) = Ao
ij,ct,t+1

e−dt,t+1/Dct,t+1 + 1
N

(1−e−dt,t+1/Dct,t+1 ).

(3)

Here, Ao
ij,ct,t+1

are the transition probabilities without distance dependency (or for

adjacent cytosines with dt,t+1 = 0). Dct,t+1 is a constant that reflects how fast

neighboring cytosines lose correlation. The distance dependency is constructed in

such a way that all transitions Aij,ct,t+1 are equally likely for an infinite distance

dt,t+1 = ∞. Note that for C = 6 contexts the model has C · C = 36 transition

contexts and thus 36 different transition matrices with dimensions N ×N .

The constants Dc are determined by a non-linear least-squares (nls) fit to the

correlation decay between cytosines in transition context ct,t+1 (see Fig. SI-12 for

all used transition contexts). The formula for the fit is yc(d) = a0∗e−d/Dc , where yc

is the correlation between neighboring cytosines at distance d in transition context

c. The parameters a0 and Dc are fitted by the nls-fit.

An important point is that the correlation is calculated between adjacent cy-

tosines, with no other cytosines in between. This reflects the definition of the tran-
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sition probabilities in the Hidden Markov Model, where transitions are defined from

one cytosine to the next in the sequence.

Model fitting

Model parameters are fitted with the Baum-Welch algorithm [59]. The distance-

dependent transition probabilities require modified updating formulas compared to

a standard Baum-Welch algorithm without distance dependency. The derivation

of the modified updating formulas is detailed below, and uses notation introduced

in [60].

The conditional expectation Q that needs to be maximized can be written as

Q =
N∑
i

γi,t=0 log(πi) +
N,N,T−1∑

i,j,t

ξijt log(Aij,ct,t+1) +
N,T∑
i,t

γit log(fi). (4)

The updated transition probabilities A′oijc can be obtained by solving ∂Q
∂Ao

ijc
= 0

using the method of Lagrange multipliers to deal with the constraint
∑N

j Ao
ijc = 1.

A′oijc =
(

T−1∑
t

δc,ct,t+1 ξijt

Ao
ijc

Aij,ct,t+1

∂Aij,ct,t+1

∂Ao
ij,ct,t+1

)
/

T−1,N∑
t,j

δc,ct,t+1 ξijt

Ao
ijc

Aij,ct,t+1

∂Aij,ct,t+1

∂Ao
ij,ct,t+1

 .

(5)

Here, δc,ct,t+1 is the Kronecker delta function, which ensures that only terms in the

correct transition context c are included into the sum.

Similarly, the updated parameters for the binomial test can be obtained by solving
∂Q

∂pic
= 0. For independent binomial tests, this yields

p′ic =
(

T∑
t

δc,ct
γit mt

)
/

(
T∑
t

δc,ct
γit rt

)
. (6)

The methylation status it is determined by maximizing over the posterior proba-

bilities it = argmaxi(γit).

Finally, we can use the posterior probabilities γU |M,t and estimated parameters

pic to define a recalibrated methylation level m′t that is defined on every cytosine t

in the genome and can serve as input for other applications:

m′t = pU,ct
· γU,t + pM,ct

· γM,t (7)
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Plants DNA methylation data

In this study, we used published data (fastq files containing bisulfite sequenced

reads) from three model plant species to test METHimpute: Arabidopsis thaliana,

rice (Oryza sativa Japonica cv. Nipponbare) and maize (Zea mays B73). We used

three replicates for rice and maize, and two replicates for Arabidopsis. Each sample

was mapped to the latest available version of the reference genome for this species.

Details and references on these datasets, reference genomes and annotations files,

as well as additional alignment metrics can be accessed in Table SI-2.

Mapping of bisulphite sequenced (BS-seq) reads and construction of DNA methylomes

Read sequences (Table SI-2) were quality trimmed and adapter sequences were

removed with Cutadapt (version 1.9; python version 2.7.9; [61]). Trimming was

performed on both ends using the single-end mode and the quality threshold was

set to a phred score of 20 (q = 20). We applied the default error rate of 10% for the

removal of the adapter sequences. Afterwards, we discarded reads shorter than 40

base pairs. Reads were subsequently mapped to an indexed genome. The maximum

allowed proportion of mismatches was set to 0.05 (m = 0.05, 5 mismatches per

100 bp) and the maximum insert size was set to 1000 bp (X = 1000). BS-Seeker2

(v2.0.10; [44]) using Bowtie2 (version 2.2.2; [62]) was chosen for the alignment of

the reads. Samtools (version 1.3.1; using htslib 1.2.1; [63]) was used to remove

duplicates (samtools rmdup -s) and to sort bam files (samtools sort). Methylomes

were subsequently constructed through the bs seeker2-call methylation.py module

from BS-Seeker2 (v2.0.10; [44]). CGmap files containing methylome information

were used as an input for METHimpute.

Availability of data and materials

METHimpute can be downloaded from https://github.com/ataudt/methimpute.
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Colomé-Tatché, M., Johannes, F.: Rate, spectrum, and evolutionary dynamics of spontaneous epimutations.

Proceedings of the National Academy of Sciences of the United States of America 112(21), 6676–81 (2015).

doi:10.1073/pnas.1424254112

27. Quadrana, L., Colot, V.: Plant Transgenerational Epigenetics. Annual Review of Genetics 50(1), 467–491

(2016). doi:10.1146/annurev-genet-120215-035254
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Figures

../FIGURES/Figure2.pdf

Figure 1 Coverage distributions. (a-c) Percentage of cytosines with X coverage
(strand-specific). (d-f) Percentage of cytosines with missing data (red) and ”uninformative”
coverage (green), defined as less than three reads.

../FIGURES/conceptual overview.pdf

Figure 2 Conceptual overview of METHimpute. (a) Cytosines on the sequenced genome are
assumed to be either unmethylated or methylated. (b) Bisulphite-sequencing and alignment yields
methylation levels for each cytosine, i.e. the number of reads showing methylation divided by the
total number of reads. (c) Emission densities for each state are obtained with a binomial test with
state-specific parameters. Note that ”imputed” cytosines, i.e. cytosines without any reads, are
treated identically as all other cytosines. However, since the emission densities for all states are 1
for imputed cytosines, the methylation status call is purely driven by the neighborhood of
cytosines. (d) Model fitting yields posterior probabilities for methylation status calls. (e) Inferred
methylation status calls and methylation levels.

../FIGURES/Figure3 all cytosines.pdf

Figure 3 Maximum posterior distributions for imputed cytosines (coverage = 0), uninformative
cytosines (coverage = 1 or 2) and informative cytosines (coverage ≥ 3). The figure shows the
distributions of the maximum posterior probabilities with density on the y-axis and the maximum
posterior probability on x-axis. The maximum posterior probability, i.e. the confidence in the
methylation status calls, is generally lower for sites with less coverage.

../FIGURES/Figure4 rc.meth.lvl.pdf

Figure 4 Enrichment profiles for genes (left panels) and transposable elements or repeats (right
panels). Sub-panels show the enrichment profiles for imputed (coverage = 0), uninformative
(coverage = 1 or 2) and informative cytosines (coverage ≥ 3). See the Methods section for
definition of the recalibrated methylation level.

../FIGURES/Figure5.pdf

Figure 5 Saturation analysis. (a-c) F1-score for METHimpute and the binomial test, compared
to the full sample, respectively. The F1-score is the harmonic mean of precision and recall. (d-f)
Proportion of imputed cytosines. (g-i) Proportion of the genome in each state. The x-axes shows
the average strand-specific coverage per cytosine.
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