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Abstract:

Understanding the molecular programs that guide cellular differentiation during development is
a major goal of modern biology. Here, we introduce an approach, WADDINGTON-OT, based on
the mathematics of optimal transport, for inferring developmental landscapes, probabilistic
cellular fates and dynamic trajectories from large-scale single-cell RNA-seq (scRNA-seq) data
collected along a time course. We demonstrate the power of WADDINGTON-OT by applying
the approach to study 65,781 scRNA-seq profiles collected at 10 time points over 16 days
during reprogramming of fibroblasts to iPSCs. We construct a high-resolution map of
reprogramming that rediscovers known features; uncovers new alternative cell fates including
neural- and placental-like cells; predicts the origin and fate of any cell class; highlights
senescent-like cells that may support reprogramming through paracrine signaling; and
implicates regulatory models in particular trajectories. Of these findings, we highlight Obox6,
which we experimentally show enhances reprogramming efficiency. Our approach provides a
general framework for investigating cellular differentiation.

Introduction

In the mid-20™ century, Waddington introduced two images to describe cellular differentiation
during development: first, trains moving along branching railroad tracks and, later, marbles
following probabilistic trajectories as they roll through a developmental landscape of ridges and
valleys (Figure 1A,B) [1, 2]. These metaphors have powerfully shaped biological thinking in the
ensuing decades. The recent advent of massively parallel single-cell RNA sequencing (ScCRNA-
Seq) [3-7] now offers the prospect of empirically reconstructing and studying the actual
‘landscapes”, “fates” and “trajectories” associated with complex processes of cellular
differentiation and de-differentiation—such as organismal development, long-term physiological
responses, and induced reprogramming—based on snapshots of expression profiles from
heterogeneous cell populations undergoing dynamic transitions [6-717].

To understand such processes in detail, we need general approaches to answer key questions.
For any given system, we would like to know: What classes of cells are present at each stage?
For the cells in each class, what was their origin at earlier stages, what are their potential fates
at later stages, and what is the actual outcome of a given cell? To what extent are events along
a path synchronous or asynchronous? What are the genetic regulatory programs that control
each path? What are the intercellular interactions between classes of cells? Answering these
questions would provide insights into the nature of developmental processes (Figure 1C-E):
How deterministic or stochastic is the process—that is: if, and how early, does it become
determined that a particular cell or an entire cell class is destined to a specific fate? For a given
origin and target fate, is there only a single path to the target, or are there multiple
developmental paths? To what extent is the process cell-intrinsic, driven by intracellular
mechanisms that do not require ongoing external inputs, or externally regulated, being affected
by other contemporaneous cells? For artificial processes such as induced reprogramming, there
are additional questions: What off-target cell classes arise? To what extent do cells activate
normal developmental programs vs. unnatural hybrid programs? How can the efficiency of
reprogramming be improved?
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Experimental approaches to such questions have typically involved studying bulk populations or
identifying subsets of cells based on activation of one or a few genes at a specific time (e.g.,
reporter genes or cell-surface markers) and tracing their subsequent fate. These experiments
are severely limited, however, by the need to choose subsets of cells a priori and develop
distinct reagents to study each subset. For example, studies of cellular reprogramming from
fibroblasts to induced pluripotent cells (iPSCs) have largely relied on RNA- and chromatin-
profiling studies of bulk cell populations, together with fate-tracing of cells based on a limited set
of markers (e.g., Thy1 and CD44 as markers of the fibroblast state, and /ICAM1, Oct4, and
Nanog as markers of partial reprogramming) [12-16].

Computational approaches based on single-cell gene expression profiles offer a complementary
approach with broader molecular scope, because one can readily define classes of cells based
on any expression profile at any stage. The remaining challenge is to reliably infer their
trajectories across stages.

Several pioneering papers have introduced methods to infer cellular trajectories [9, 10, 17-29].
Early studies recognized that cellular profiles from heterogeneous populations can provide
information about the temporal order of asynchronous processes—enabling intermediate
transitional cells to be ordered in “pseudotime” along “trajectories”, based on their state of cell
differentiation [18]. Some approaches relied on k-nearest neighbor graphs [718] or binary trees
[9]. More recently, diffusion maps have been used to order cell state transitions. In this case,
single-cell profiles are assigned to densely populated paths through diffusion map space [20,
21]. Each such path is interpreted as a transition between cellular fates, with trajectories
determined by curve fitting, and cells are “pseudotemporally ordered” based on the diffusion
distance to the endpoints of each path. Whereas initial efforts focused mostly on single paths,
more recent work has grappled with challenges of branching, which is critical for understanding
developmental decisions [10, 11, 21].

While these pioneering approaches have shed important light on various biological systems,
many important challenges remain. First, because many methods were initially designed to
extract information about stationary processes (such as the cell cycle or adult stem cell
differentiation) in which all stages exist simultaneously, they neither directly model nor explicitly
leverage the temporal information in a developmental time course [29]. Second, a single cell
can undergo multiple temporal processes at once. These processes can dramatically impact the
performance of these models, with a notable example being the impact of cell proliferation and
death [29]. Third, many of the methods impose strong structural constraints on the model, such
as one-dimensional trajectories and zero-dimensional branch points. This is of particular
concern if development follows the flexible “marble” rather than the regimented “tracks” models,
in Waddington’s frameworks (Figure 1A,B).

Here, we describe a conceptual framework intended to reflect Waddington’s image of marbles
rolling within a development landscape. It aims to capture the notion that cells at any position in
the landscape have a distribution of both probable origins and probable fates. It seeks to
reconstruct both the landscape and probabilistic trajectories from scRNA-seq data at various
points along a time course. Specifically, it uses time-course data to infer how the probability
distribution of cells in gene-expression space evolves over time, by using the mathematical
approach of Optimal Transport (OT). We implement this framework in a method, Waddington-
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OT, and demonstrate its capabilities in the context of reprogramming of fibroblasts to induced
pluripotent stem cells (iPSCs). Waddington-OT readily rediscovers known biological features of
reprogramming, including that successfully reprogrammed cells exhibit an early loss of fibroblast
identity, maintain high levels of proliferation, and undergo a mesenchymal-to-epithelial transition
before adopting an iPSC-like state [12]. In addition, by exploiting single-cell resolution and the
new model, it also extends these results by (1) identifying alternative cell fates, including
senescence, apoptosis, neural identity, and placental identity; (2) quantifying the portion of cells
in each state at each time point; (3) inferring the probable origin(s) and fate(s) of each cell and
cell class at each time point; (4) identifying early molecular markers associated with eventual
fates; and (5) using trajectory information to identify transcription factors (TFs) associated with
the activation of different expression programs. In particular, we propose TFs that are putative
regulators of neural identity, placental identity, and pluripotency during reprogramming, and we
experimentally demonstrate that one such TF, Obox6, enhances reprogramming efficiency.
Together, the data provide a high-resolution resource for studying the roadmap of
reprogramming, and the methods provide a general approach for studying cellular differentiation
in natural or induced settings.

Results

Reconstruction of Probabilistic Trajectories by Optimal Transport. To develop a
probabilistic framework for reconstructing developmental trajectories from scRNA-Seq data
along a time course, we consider each cell at each time ¢ to be drawn from a time-dependent
probability distribution P;in a high-dimensional gene-expression space. By sampling P; at
various time points, we wish to infer how P; evolves over time. We imagine P; as being reshaped
by “transporting” mass from one time to the next (Figure 1F,G). In practice, we aim to
redistribute the masses of the specific cells sampled at time f to form the masses of the cells
sampled at time t+1. Although the cells in the latter set are not the literal descendants of those
in the former set (because the sampling process is destructive), we expect that they are
representative of the descendants, provided enough cells are sampled. Moreover, if the gap
between samples is short enough, we expect the distributions will tend to flow continuously
through space so that cells at time t tend to have their mass redistributed to cells at time {+7
with similar gene expression patterns (rather than most cells remaining stationary and a minority
making huge leaps). To reconstruct the time-dependent evolution of P;, we thus seek to find
couplings ;4 (called transport maps) that redistribute mass between the sampled distributions
that minimize the “transport cost” between two samples distributions—defined in terms of the
sum across all cells of mass x squared distance moved, for an appropriate distance metric in
gene expression space (Figure 1F,G).

This problem belongs to the classical field of “optimal transport,” originally developed by Monge
in the 1780s to redistribute piles of dirt to build fortifications with minimal work and soon applied
by Napoleon in his campaign in Egypt [30]. Large-scale optimal transport problems have
traditionally been difficult to solve, but a recently invented class of algorithms called entropically
regularized transport [31, 32] dramatically accelerates numerical computations and helps
prevent overfitting. Our problem differs from classical optimal transport in one important respect:
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unlike dirt, cells can proliferate. We therefore allow the mass at each point to change over time,
based on a gene-expression signature of cell proliferation (Appendix S1).

If we assume that a cell’'s fate depends only on its current position (that is, is memoryless), we
can infer couplings between more distant time points by composing transport maps between the
intermediate time points. In this case, differentiation follows a velocity field on gene expression
space, and the potential inducing this velocity field corresponds directly with Waddington’s
landscape.

We define trajectories in terms of “descendant distributions” and “ancestor distributions” as
follows. For any set S of cells at time {,, its “descendant distribution” at a later time {, refers to
the mass distribution over all cells at time ¢, obtained by transporting S according to the
transport maps. Branching events, for example, are revealed by the emergence of bimodality in
the descendant distribution. The “ancestor distribution” at an earlier time {, is defined as a mass
distribution over all cells at time {,, obtained by transporting S in the opposite direction (that is,
as though one “rewinds” time). The “trajectory” from S refers to the sequence of descendant
distributions at each subsequent time point, and the trajectory to S similarly refers to the
sequence of ancestor distributions. For expositional convenience below, we will sometimes refer
simply to the “ancestors” (and, synonymously, “origin”), “descendants” (and “fate”), and
trajectories of cells. These terms will always refer to a distribution over a set of expression
patterns corresponding to observed cells that serve as proxies for the actual ancestors or
descendants.

In summary, for any cell or set of cells, the optimal-transport analysis provides a distribution
over representative ancestors and descendants at any other time. This information allows us to
readily assess whether any set of cells is “biased” toward a given outcome—that is, whether its
descendants are enriched for the outcome (compared to another set of contemporaneous cells).

Implementation of optimal transport in WADDINGTON-OT. We implemented this theoretical
framework as a method, called WADDINGTON-OT, for exploratory analysis of developmental
landscapes and trajectories (Appendix S2). We are preparing a software package incorporating
the methods for public distribution. The method includes:

(1) Performing optimal-transport analyses on scRNA-seq data from a time course, by calculating
optimal-transport maps and using them to find ancestors, descendants and trajectories for any
set S of cells.

(2) Learning regulatory models from optimal transport, based on a global model (built by
sampling pairs of cells at time t and {+7 according to their transport probabilities and using the
expression levels of TFs at the earlier time point to predict non-TF expression at the later time
point) and local enrichment analysis (identifying TFs enriched in cells having many vs. few
descendants (>80% vs. <20% mass) in a target cell population).

(3) Defining gene modules, by partitioning genes based on correlated expression across cells,
and cell clusters, by partitioning cells based on graph clustering [33, 34] (following
dimensionality reduction by diffusion maps [20, 35].
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(4) Visualizing the developmental landscape (including the cells, ancestors, descendants,
trajectories, gene modules and cell clusters) by representing the high-dimensional gene-
expression data in two dimensions (using Force-Directed Layout Embedding (FLE)) [36-38].

Reprogramming to iPSCs as a test case for analysis of developmental landscapes. To
test these ideas, we applied WADDINGTON-OT to reprogramming of fibroblasts to iPSCs [39-
42]. This system provides ample opportunity to compare results with previous studies, while
also exploring open questions.

Most of what is known about reprogramming from fibroblasts to iPSCs comes from studies of
bulk cell populations. A few recent studies have applied scRNA-Seq, but they have involved
only several dozen cells or several dozen genes [13, 43]. Studies have proposed that
reprogramming involves two “transcriptional waves,” with gain of proliferation and loss of
fibroblast identity followed by transient activation of developmental regulators and gradual
activation of embryonic stem cell (ESC) genes [12]. Some studies [716,44,45], including from our
own group [45], have noted strong upregulation of lineage-specific genes from unrelated
lineages (e.g., related to neurons), but it has been unclear whether this largely reflects
disorganized gene activation by TFs or coherent differentiation of specific (off-target) cell types
[45]. We sought to explore how much could be learned from probabilistic analysis of a large-
scale scRNA-seq of the developmental landscape.

We collected scRNA-seq profiles of 65,781 cells across a 16-day time course of iPSC induction,
under two conditions (Figure 2A,B) (Appendix S3). Because the derivation of iPSCs by primary
infection is very inefficient, we used a more efficient “secondary” reprogramming system [46].
We obtained mouse embryonic fibroblasts (MEFs) from a single female embryo homozygous for
ROSA26-M2rtTA, which constitutively expresses a reverse transactivator controlled by
doxycycline (Dox), a Dox-inducible polycistronic cassette carrying Pou5f1 (Oct4), Kif4, Sox2,
and Myc (OKSM), and an EGFP reporter incorporated into the endogenous Oct4 locus (Oct4-
IRES-EGFP). We plated MEFs in serum-containing induction medium, with Dox added on day 0
to induce the OKSM cassette (Phase-1(Dox)). Following Dox withdrawal at day 8, we
transferred cells to either serum-free N2B27 2i medium (Phase-2(2i)) or maintained the cells in
serum (Phase-2(serum)). Oct4-EGFP” cells emerged on day 10 as a reporter for “successful”
reprogramming to endogenous Oct4 expression (Figure 2C). We collected single or duplicate
samples at the various time points (Figure 2A), generated single cell suspensions and
performed scRNA-Seq (table S$1, Figure S1). We also collected samples from established
iPSC lines reprogrammed from the same MEFs, maintained in either 2i or serum conditions.
Overall, we profiled 68,339 cells to an average depth of 38,462 reads per cell (table S1). After
discarding cells with less than 1,000 genes detected, we retained a total of 65,781 cells, with a
median of 2,398 genes and 7,387 unique transcripts per cell.

The reprogramming landscape reveals relationships among biological features. Using
WADDINGTON-OT, we generated a transport map across the cells in the time course. Based
on similarity of expression profiles, we partitioned the 16,339 detected genes into 44 gene
modules and the 65,781 cells into 33 cell clusters. Some of the clusters contain cells from more
than one time point, reflecting asynchrony in the reprogramming process.


https://doi.org/10.1101/191056

bioRxiv preprint doi: https://doi.org/10.1101/191056; this version posted September 27, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

We explored the landscape of reprogramming by identifying cell subsets of interest (e.g.,
successfully reprogrammed cells from day 16, or each of the cell clusters), studying the
trajectories to and from these subsets (e.g., characterizing the pattern of gene expression in
ancestors at day 8 of successfully reprogrammed target cells at day 16), and considering
contemporaneous interactions between them. We visualized the analyses in a two-dimensional
embedding using FLE (Figure 3A), which we annotated in various ways (Appendix S2). FLE
reflects better global structures in our data than other modes of visualization (Figure S2).
These annotations include time points and growth conditions (Figure 3B,C), gene modules
(Figure S3, S4, table S2), cell clusters (Figure 3D, Figure S4, table S3), expression of gene
signatures (curated gene sets associated with specific cell types, pathways, and responses,
such as MEF identity, proliferation, pluripotency, and apoptosis; Figure 3E, table S4),
expression of individual genes (Figure 3F, Figure S5), and ancestor and descendant
distributions (Figure 4). Extensive sensitivity analysis showed that key biological results for the
reprogramming data were largely robust to the details of the formulation. Finally, we compared
the WADDINGTON-OT landscape to the landscapes produced by various graph-based
methods (Appendix S4).

We start with a brief overview of the landscape. Cell trajectories start at the lower right corner at
day 0, proceed leftward to day 2 and then upward towards two regions that we dub the Valley of
Stress and the Horn of Transformation (Figure 3B, Figure 4A). The Valley is characterized by
signatures of cellular stress, senescence, and, in some regions, apoptosis (Figure 3E); it
appears to be a terminal destination. By contrast, the Horn is characterized by increased
proliferation, loss of fibroblast identity, a mesenchymal-to-epithelial transition (Figure 3E), and
early appearance of certain pluripotency markers (e.g., Nanog and Zfp42, Figure 3F), which are
predictive features of successful reprogramming [47]. Some of the cells in the Horn proceed
toward pre-iPSCs by day 12 and iPSCs by day 16, while others encounter alternative fates of
placental-like development and neurogenesis (in serum, but not 2i condition; Figure 3B,C). We
next present a more detailed account of the landscape.

Predictive markers of reprogramming success are detectable by day 2. The vast majority
(>98%) of cells at day 0 fall into a single cluster characterized by a strong signature of MEF
identity, with clear bimodality in the proliferation signature (Figure S6A). By day 2 after Dox
treatment, cells show high levels of expression of the OKSM cassette and have begun to
diverge in their responses (clusters 3, 4, 5, 6, Figure 3D). Overall, they score highly for
expression signatures of proliferation, MEF identity, and endoplasmic reticulum (ER) stress
(reflecting high secretion in mesenchymal cells) (Appendix S5, Figure 3E).

However, the cells exhibit considerable heterogeneity, seen most clearly by comparing the cells
in clusters 4 and 6, which vary in their expression signatures and in their fates (Figure 4A,B
and Figure S7). While cells in both clusters are highly proliferative, cells in cluster 4 have begun
to lose MEF identity, show lower ER stress, and have higher OKSM-cassette expression, while
cells in cluster 6 have the opposite properties (Figure 3D,E and Figure S6B). The cells in the
two clusters show clear differences in their enrichment in the ancestral distribution of iPSCs
(Figure 4D). The majority (54%) of the day 2 ancestors of iPSCs lie in cluster 4, while only a
small fraction (3%) lie in cluster 6. Clusters 4 and 6 also show clear differences in their
descendants (Figure 4A,C and Figure S7A): the descendants of cells in cluster 6 are strongly


https://doi.org/10.1101/191056

bioRxiv preprint doi: https://doi.org/10.1101/191056; this version posted September 27, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

biased toward the Valley of Stress (e.g., 81% of Cluster 6 cell descendants are in clusters 8-11
by day 8 vs. 18% for cluster 4), while cluster 4 is strongly biased toward the Horn of
Transformation (e.g., 81% in clusters 19-21 vs. 12% for cluster 6).

The strongest difference in gene expression between clusters 4 and 6 was seen for Shisa8
(detected in 67% vs. 3% of cells in clusters 4 and 6, respectively) (Figure 3F, Figure S6B) and
Shisa8" cells are enriched among the day 2 ancestors of iPSCs (Figure S6B). Notably, Shisa8
is strongly associated with the entire trajectory toward successful reprogramming (Figure 3F): it
is expressed in the Horn, pre-iPSCs, and iPSCs, but not in the Valley or in the alternative fates
of neurogenesis and placental development. The expression pattern of Shisa8 is similar to, but
stronger than, that of Fut9 (Figure S$5), a known early marker of successful reprogramming that
synthesizes the surface glyco-antigen SSEA-1 [12]. Shisa8 is a little-studied mammalian-
specific member of the Shisa gene family in vertebrates, which encodes single-transmembrane
proteins that play roles in development and are thought to serve as adaptor proteins [48]. Our
analysis suggests that Shisa8 may serve as a useful early predictive marker of eventual
reprogramming success and may play a functional role in the process.

Cells in the valley of stress induce a Senescence Associated Secretion Phenotype
(SASP). By day 4, cells display a bimodal distribution of properties that is strongly correlated
with their eventual descendants: cells in cluster 8 (low proliferation, high MEF identity, Figure
3D,E and Figure S6C) have 95% of their descendants in the Valley (Figure 4A,B and Figure
S7A), while cells in cluster 18 (high proliferation, low MEF identity, Figure 3D,E and Figure
S6C) have 94% of their descendants in the Horn (Figure 4A,B and Figure S7A and table S5).
Cells in cluster 7 show intermediate properties and have roughly equal probabilities of each fate
(Figure 4A,B and Figure S7A).

Along the trajectory from cluster 8 to the Valley (days 10-16; Figure 4A,B and 4E,F), cells show
a strong decrease in cell proliferation (Figure 3E), accompanied by increased expression of
various cell-cycle inhibitors, such as Cdkn2a, which encodes p16, an inhibitor of the Cdk4/6
kinase and halts G1/S transition (Figure 3F), Cdkn1a (p21), and Cdkn2b (p15) (Figure S6D),
which peaks in the Valley. The cells show increased expression of D-type cyclin gene Ccnd?2
(Figure $5,S6D) associated with growth arrest [49]. A subset of the cells in the Valley (29%;
clusters 12 and 14) showed high activity for a gene module that is correlated with a p53 pro-
apoptotic signature, compared to all other cells inside the Valley (p-value< 107°, average
difference 0.17, t-test) and outside the Valley (p-value< 107°, average difference 0.32, t-test)
(Figure 3E, Figure S6E).

Cells in the Valley also show activation of signatures of extracellular-matrix (ECM)
rearrangement and secretory functions (Figure 3E, Figure S6E). Because these properties are
consistent with a senescence associated secretory phenotype (SASP), we used a SASP
signature involving 60 genes [50] (Appendix S5) . Cells with this signature appear on day 10
and continue through day 16, consistent with previous reports concerning the timing of onset of
stress-induced senescence [50] (Figure 3E, Figure S6E).

SASP, which has key roles in wound healing and development that are relevant for
reprogramming biology, includes the expression of various soluble factors (including //6),
chemokines (including //8), inflammatory factors (including /fng), and growth factors (including
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Vegf) that can promote proliferation and inhibit differentiation of epithelial cells [50]. Recent
reports have suggested that secretion of //6 and other soluble factors by senescent cells can
enhance reprogramming [57]. Although detectable levels of /16 mMRNA were present in only a
small fraction of cells both in 2i and serum (0.2%) at days 12 and 16 (0.34% in all cells), the
overall SASP signature was evident in 72% of cells in the Valley (vs. 11% elsewhere, primarily
in day 0 MEFs). This suggests that the senescent cells in the Valley are thus likely to have
paracrine effects on cells that successfully emerge from the Horn. We return to this point below.

Other cells at day 4 are strongly biased toward the Horn of Transformation. For the
remaining cells at day 4, the forward trajectory is characterized by high proliferation and loss of
MEF identity (Figure 3B,E), and the descendants are strongly biased toward the Horn at day 8
(Figure 4A,B and Figure S7A and table S5). The Horn is distinguished as a point of
transformation, where cells that have lost their mesenchymal identity are beginning their
transitions to an epithelial fate. As discussed below, a minority of cells in the Horn have begun
to express activators of a pluripotency expression program.

Following Dox withdrawal and media replacement on day 8, the cells in the Horn adopt one of
four alternative outcomes by day 12 (senescence, neuronal program, placental program, and
pre-iPSCs). Roughly half appear to become senescent, migrating through clusters 19 and 10 to
the Valley (Figure 4A). The fate of the remaining cells is strongly influenced by the culture
medium. In serum conditions, the proportion of these cells that transition to neuronal, placental
and pre-iPSC states is 62%, 13% and 26%, respectively. By contrast, the proportions in 2i
condition are 3%, 37% and 59% (table S5). These results are consistent with the presence in
the 2i medium of two small-molecule inhibitors to inhibit differentiation, including one reported to
inhibit neuronal differentiation [52].

Neuronal-like and placental-like cells arise during reprogramming. We next studied two
unusual cell populations: placental-like cells (clusters 24 and 25, Figure 3B,D and Figure
4A,B E,F) at day 12 and neural-like cells (clusters 26 and 27, Figure 3B,D and Figure
4A,B.E,F) at day 16. The first group was characterized by high activity of two gene modules
enriched in signatures for “epithelial cell differentiation,” “placenta development,” and
“‘reproductive structure development,” while the second group showed high activity of signature
for “neuron differentiation,” “axon development,” and “regulation of nervous system
development” (table S2, and Figure 3B,C,E). While an earlier study from our group [45] had
noted that upregulation of lineage-specific genes from unrelated lineages can be detected
during reprogramming, distinct cell populations representing these differentiated states have not
previously been recognized and characterized, to the best of our knowledge.

Both populations showed a substantial decrease in proliferation (Figure 3E, Figure
S6E). To explore if a common mechanism was responsible for this change, we examined 98
cell-cycle-related genes [53] to identify those that were differentially upregulated in the placenta
and neural clusters compared to all other clusters. The most distinctive characteristic was the
high expression of Cdkn1c, which encodes a cell-cycle inhibitor (p57) that promotes G1 arrest
(Figure 3F) and is required for maintenance of some adult stem cells [54]. Other features are
also shared between these two alternative lineages and adult stem cells—including the
expression of Lgr5, a marker of adult epithelial stem cells in certain tissues [55] (Figure S5).
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The neural-like cells reside in a large “spike” observed at day 16 in serum but not 2i conditions
(16% vs. 0.1% of cells), presumably due to differentiation inhibitors in the latter conditions. Cells
near the base of the spike (cluster 26, Figure 3D and Figure 4E,F) expressed neural stem-cell
markers (including Pax6 and Sox2, Figure 3E, Figure S5), while cells further out along the
spike (cluster 27, Figure 3D) expressed markers of neuronal differentiation (including Neurog2
and Map2, Figure S5). The cells thus appear to span multiple stages of neurogenesis along the
length of the spike (Figure 3E).

Analysis of the developmental landscape suggests a potential mechanism for triggering neural
differentiation. The ancestors of neural-like cells are largely found in cluster 23 on day 12
(Figure 4A,F and Figure S7C and table S5). At least 19% of cells in cluster 23 express Cnitfr,
an lI6-family receptor that plays a critical role in neuronal differentiation and survival [56] (Figure
3F); the true proportion is likely to be higher because the gene has low expression.
Contemporaneously, senescent cells in the Valley at day 12 express activating ligands (Crif1
and Clcf1) of Cntfr (Figure S5). Thus, neural differentiation may be triggered by paracrine
signals from senescent cells to Cntfr-expressing cells.

The placental-like cells express high levels of certain imprinted genes on chromosome 7
(Cdkn1c, Igf2, Peg3, H19 and Ascl2; Figure 3F, Figure S5), as well as TFs (Cdx2 and Sox17)
associated with placental development [57, 58] (Figure S5). They also show elevated levels of
an ER stress signature (Figure 3E), consistent with the secretory nature of placental cells and
observations of placental cells in vivo [569]. We checked whether the placental-like cells
resembled recently described extraembryonic endodermal (XEN) cells from an iPSC
reprogramming study [44], but found that they do not share the distinctive XEN signature of the
cells reported in that paper (Appendix S5). The proportion of cells in the placental-like
population fell substantially from day 12 to day 16 in 2i condition, although our optimal-transport
analysis could not confidently infer whether the decrease is due to cells dying, being overtaken
by faster-growing cells, or transitioning to other fates (Figure S4A).

Trajectory to successful reprogramming reveals a continuous program of gene
activation. We next studied the trajectory leading to reprogramming (Figure 4D,E), which
passes through pre-iPSCs (cluster 28; Figure 4A,B) at day 12 en route to iPSC-like cells at day
16. The iPSC-like cells in serum conditions (which reside in cluster 31) closely resemble fully
reprogrammed cells grown in serum (cluster 32). By contrast, the iPSC-like cells under 2i
conditions are spread across three clusters (cluster 29-31). While the cells in cluster 31
resemble fully reprogrammed cells grown in 2i (cluster 33), those in cluster 29 show distinct
properties suggestive of partial differentiation. In particular, cluster 29 shows lower proliferation,
lower Nanog expression, and increased expression of genes related to differentiation (Figure
3D-F).

In contrast to initial descriptions of reprogramming as involving two “waves” of gene
expression, the trajectory of successful reprogramming reveals a more complex regulatory
program of gene activity (Figure 5A). By grouping genes according to their temporal patterns of
activation in cells on the OT-defined trajectory to successful reprogramming, we can obtain a
rich collection of markers for particular stages (Figure 5A). In particular, we identified 47 genes
that appear late in successfully reprogrammed cells (for example, Obox6, Spic, Dppa4); these
may provide useful markers to enrich fully reprogrammed iPSCs (table S6).
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Paracrine signaling from the Valley may influence late stages of reprogramming. The
simultaneous presence of multiple cell types raises the possibility of paracrine signaling, with
secreted factors from one cell type binding to receptors on another cell type. We noted one such
potential interaction above, with SASP+ cells in the Valley secreting Crif1, Clcf1 and neural-llke
cells on days 12 and 16 expressing the cognate receptor Cnitfr.

To systematically identify potential opportunities for paracrine signaling, we defined an
interaction score, Iag x v+, as the product of (1) the fraction of cells in cluster A expressing ligand
X and (2) the fraction of cells in cluster B expressing the cognate receptor Y, at time t. Using a
curated list of 149 expressed ligands and their associated receptors (Appendix S5), we studied
potential interactions between all pairs of clusters for each ligand-receptor pair, as well as the
aggregate signal across all pairs and across those pairs related to the SASP signature.

The potential for paracrine signaling varied sharply across the time course, as well as
across cell types. Potential interactions are initially high, as cells with MEF identity retain their
secretory functions; drop dramatically by day 6 (Figure S8A), after cells have lost their MEF
identity (Figure 3B,C,E); rise steadily from day 8 to day 11, as secretory cells in the Valley
emerge; and then drop again from days 12 to 16, as the abundance of cells in the Valley
decreases (Figure S8A). The same pattern is seen when considering only the 20 ligands in the
SASP signature (Figure S8B).

Notably, potential interactions are observed between cells in the Valley and each of iPSC,
neural-like and placental-like cells. At day 16, cells in the Valley (clusters 15 and 16) express
SASP ligands, while iPSCs (clusters 29-33) express receptors for these ligands (Figure S8C),
with the highest frequency seen for the chemokine Cxc/12 and receptor Dpp4 (Figure S8D). As
noted above, at days 12 and 16, the ligands Criff and Clcf1 cells are expressed in the Valley
while their receptor Cntfris expressed in the neural spike (Figure 3E, Figure S8E). The
interaction between Cntfr and Crif1 is ranked as the top interaction among all ligand-receptor
pairs (Figure S8E). Interestingly, at day 12, many placental-like cells express the ligand Igf2
while cells in the Valley express receptors Igf1r and Igf2r (Figure S8F). We emphasize that the
analysis can only nominate candidate interactions; experimental studies will be needed to
determine if functional interactions actually occur.

X-chromosome reactivation follows activation of early and late pluripotency genes. The
reversal of X-chromosome inactivation in female cells is known to occur in the late stages of
reprogramming and is an example of chromosome-wide chromatin remodeling. A recent study
[60] reported that X-reactivation follows the activation of various pluripotency genes, based on
immunofluorescence and RNA FISH in single cells. To assess X-reactivation, from scRNA-Seq
data, we characterized each cell with respect to signatures of X-inactivation (Xist expression),
X-reactivation (proportion of transcripts derived from X-linked genes, normalized to cells at day
0), and early and late pluripotency genes (Appendix S5). Along the trajectory to successful
reprogramming (but not elsewhere, Figure 3E), cells at day 12 show strong downregulation of
Xist but do not yet display X-reactivation. X-reactivation is complete at day 16, with the
signature having risen from 1.0 to ~1.6, consistent with the expected increase in X-chromosome
expression [67]. Analysis of the trajectory confirms that activation of both early and late
pluripotency genes precedes Xist downregulation and X-reactivation (Appendix S5).
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Some cell populations are enriched for aberrant genomic events. We next searched for
other coherent increases or decreases in gene expression across large genomic regions, which
might indicate the presence of copy-number variations (CNVs) in specific cells. Our approach
built on methods we had previously developed for single-cell tumor analysis [53] (Appendix S5).
We first looked for whole chromosome aberrations, and found that 0.9% of cells showed
significant up- or down-regulation across an entire chromosome; the expression-level changes
were largely consistent with gain or loss of a single chromosome (Appendix S5, Figure A11A).
Next, we looked for evidence of large subchromosomal events, by analyzing regions spanning
25 consecutive housekeeping genes (median size ~25 Mb). We found significant events in
~0.8% of cells. The frequency was highest (2.8%) in cluster 14, consisting of cells in the Valley
of Stress enriched for a DNA damage-induced apoptosis signature. The frequency was 2-to-3-
fold lower in other cells in the Valley (enriched for senescence but not apoptosis), in cells en
route to the Valley (clusters 8 and 11), and in fibroblast-like cells at days 0 and 2. Notably, it was
much lower (6-fold) in cells on the trajectory to successful reprogramming (Appendix S5, Figure
A11B,C). Direct experimental evidence would be needed to confirm these events, and to clarify
if the aberrations were preexisting in the MEF population, or if they accumulated during the
course of reprogramming.

Inferred trajectories agree with experimental results from cell sorting. To test the accuracy
of the probabilistic trajectories calculated for each cell based on optimal transport, we compared
results based on the trajectories to experimental data from a recent study of reprogramming of
secondary MEFs [16]. In that study, cells were flow-sorted at day 10, based on the cell-surface
markers CD44 and ICAM1 and a Nanog-EGFP reporter gene, and each sorted population was
grown for several days thereafter to monitor reprogramming success. Gene expression profiles
were obtained from each population at day 10 and CD44 ICAM1*Nanog” population at day 15,
together with mature iPSCs and ESCs. Reprogramming efficiency was lowest for CD44 ICAM
Nanog cells, intermediate for CD44 ICAM1"Nanog” and CD44' ICAM1'Nanog” cells, and highest
for CD44ICAM1"Nanog” cells.

We emulated the flow-sorting-and-growth protocol in silico, by partitioning cells based on
transcript levels of the same three genes at day 10 and predicting the fates of each population
at day 16 based on the inferred trajectory of each cell in the optimal transport model. Our
computational predictions showed good agreement with these earlier experimental results
(Figure 5B), with respect to both reprogramming efficiency and changes in gene-expression
profiles. In particular, our in silico results showed 93% correlation with results from the earlier
study concerning relative reprogramming efficiencies for six categories of sorted cells (p value=
0.0023) (Figure 5B, Appendix S5). Notably, the computationally inferred trajectory of double-
positive cells rapidly transitioned toward iPSCs and continued in this direction through the end
of the time course (Figure 5B). Only one category (CD44-ICAM+Nanog-) differed significantly.
Differences may reflect the fact that experimental protocols were not identical (e.g., the earlier
study [16] maintains continuous expression of OSKM and supplements the medium with an
ALK-inhibitor and vitamin C).

Inferring transcriptional regulators that control the reprogramming landscape. Our
optimal transport map provides an opportunity to infer regulatory models, based on association
between TF expression in ancestors and gene expression patterns in descendants. Specifically,
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we identified TFs by two approaches (Figure 5C): (i) a global regulatory model, to identify
modules of TFs and target genes and (ii) enrichment analysis, to identify TFs in cells having
many vs. few descendants in a target cell population of interest (Appendix S5).

We first studied gene regulation along the trajectories to placental-like and neural-like cells
(Figure S9). For placental-like cells, the analysis pointed to 22 TFs (Figure S9A,B and table
S7). Of the four most enriched (Pparg, Cebpa, Gecm1, and GataZ2), all have been reported to
play roles in placenta development [62]. For example, Gecm1 was detected in 42% of cells at
day 10 with a high proportion (>80%) of descendants in the placental-like fate but only 0.7% of
those cells with a low proportion (<20%) (57-fold enrichment). For neural-like cells, the analysis
pointed to 10 TFs (Pax3, Msx1, Msx3, Sox3, Sox11, Tal2, En1, Foxa2, Gbx2, and Foxb1). All
have been implicated in various aspects of neural development (Figure S9C, Appendix S5) [62-
70].

Next, we focused on identifying TFs that play roles along the trajectory to successful
reprogramming (Figure 5D and Figure S9D,E). The global regulatory model generated two
regulatory modules, A and B, with 61 TFs in module A, 16 in module B, and 11 in both (Figure
S9D,E). Module A involves target genes active across clusters 29-31, while Module B involves
target genes that are more active in cluster 31, which contains more fully reprogrammed cells.
The TFs in these modules are progressively activated across the trajectory of successful
reprogramming. For Module B, the TFs are active in 13% of cells in the Horn on day 8, while
target-gene activity is evident (at >80% of the levels observed in iPSCs) in 1.3%, 10%, and 21%
of their descendant cells in days 10, 11, and 12 in 2i conditions; the pattern in serum conditions
is similar, although with lower overall frequency (11% of cells by day 12). The onset of TFs and
target genes in Module A lags by 1-2 days (Figure 5D).

To identify TFs likely to play a key role in the final stages of reprogramming, we used
enrichment analysis to identify TFs enriched in cells at day 12 with a high vs. low proportion
(>80% vs. <20%) of successfully reprogrammed descendants and then focused on the
intersection of this set with the 66 TFs from the global regulatory analysis above.

The analysis pointed to 9 TFs associated with a high probability of success in the late stages of
reprogramming (Figure S9F). Of these, five (Sox2, Nanog, Hesx1, Esrrb, Zfp42) have
established roles in regulation of pluripotency [77-73], while the remaining four (Obox6, Spic,
Mybl2, and Msc) have not previously been implicated. Among these novel factors, Obox6
stands out as having the greatest enrichment in high- vs. low-probability cells (68-fold, 9.3% vs
~0.14%) (Figure S9F).

Forced expression of Obox6 enhances reprogramming. Finally, we experimentally studied
Obox6, which the regulatory analysis discovered to be strongly correlated with reprogramming
success. Obox6 (oocyte-specific homeobox 6) is a homeobox gene of unknown function that is
preferentially expressed in the oocyte, zygote, early embryos and embryonic stem cells [74].

To test whether Obox6 also plays an active role in the process, we investigated whether
expressing Obox6 along with OKSM during days 0-8 can boost reprogramming efficiency. We
infected our secondary MEFs with a Dox-inducible lentivirus carrying either Obox6, the known
pluripotency factor Zfp42 [73], or no insert as a negative control. Both Obox6 and Zpf42
increased reprogramming efficiency of secondary MEFs by ~2-fold in 2i and even more so in
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serum, with the result confirmed in multiple independent experiments (Figure 6A and B, and
Figure S$10). Assays in primary MEFs showed similar increases in reprogramming efficiency
(Figure S10). These results highlight Obox6 as meriting further study in the context of
reprogramming.

Discussion

Large-scale profiling of single cells has opened new prospects for systematically dissecting the
processes and programs underlying cellular differentiation. While the ideal approach would
involve profiling the same cells across many time points, current methods for collecting rich
information (such as gene expression profiles) are destructive. An alternative approach would
be to mark cells with unique barcodes at a time t and sample cells at subsequent time points to
capture multiple descendants with the same barcode at multiple subsequent time points.
However, the approach can only detect fates that were already determined at time f and is not
well suited for studying events, as here, that occur over short time periods and few cell
divisions, due to the small number of descendant cells with each barcode available for
sampling.

Here, we describe an approach for studying developmental trajectories that requires sampling a
time-dependent distribution across a time series and using optimal transport with growth to
couple the distributions. For any set S of cells, one can use this approach to (i) infer a
distribution over potential ancestors and descendants; (ii) study trajectories to and from S; and
(iii) construct regulatory models for the trajectory. The approach aims to capture the flexibility
inherent in Waddington’s metaphor of marbles rolling in a developmental landscape (vs. his
metaphor of railroad tracks) and thus to loosen current constraints on studying developmental
potential.

Based on this framework we developed WADDINGTON-OT for exploratory data analysis of
developmental landscapes. WADDINGTON-OT enables analyses (optimal-transport analysis,
gene clustering, cell clustering, regulatory analysis) and visualization of features (such as time,
gene-expression levels, gene-signature levels, and trajectories). With these tools, one can
easily measure the extent to which any single gene — or, more powerfully, gene signatures —
serves not only as a reliable marker of a cellular state but also as a predictor of a subsequent
cellular fate. Gene signatures can be used to sort classes of cells in silico and analyze the
events along their trajectories, or to guide the design of laboratory reagents, such as reporter
constructs and antibodies, to do the same in the laboratory.

To test these ideas, we applied WADDINGTON-OT to study cellular reprogramming of
fibroblasts to iPSCs. The analysis (Figure 6C) recapitulates known features of reprogramming,
as well as providing new insights including:

(1) discovering heterogeneity within known cell populations. For example, cells at day 2
already show clear differences in proliferation rates, MEF identity and a gene signature
predictive of reprogramming success.

(2) identifying new cell populations. For example, the analysis reveals distinct neural-
and placental-like cell populations that represent reprogramming failures.
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(3) disentangling cellular trajectories. For example, data from a heterogeneous
population can be decomposed into simultaneous trajectories toward distinct destinations, such
as senescence, neural differentiation, and iPSCs.

(4) discovering genes and gene signatures associated with specific states and predictive
of specific fates. For example, Shisa8 and Obox6 are identified as early and late markers of
reprogramming success, respectively.

(5) associating regulators with specific trajectories. For example, TFs likely to play key
regulatory roles are identified along the neural, placental, and iPSC pathways, either predicting
later changes in gene expression or maintaining stable states.

(6) prediction of interactions between different contemporaneous cells. For example, the
data highlight potential effects of factors secreted by senescent cells on more proliferative cells.

Several lines of evidence support the validity of the approach: (i) the analysis directly discovers
many known aspects of reprogramming and, where new processes and cell types are identified,
they are consistent with previous knowledge; (ii) TFs discovered by the regulatory analysis of
neural-like, placental-like and iPSCs are consistent with prior knowledge; (iii) experimental tests
support the identification of Obox6 as a novel TF involved in reprogramming; and (iv)
computational tests show that the biological results are robust to details of the analysis (e.g.,
choice of parameters, cost functions, growth rates and subsampling of the data).

Nonetheless, the methodology is clearly still at an early stage. Biological insights will likely
emerge from applying the method to a range of biological systems. For example, normal
development and physiology may show a greater role for cell-cell interactions than engineered
reprogramming. Further insights will come by applying the method to additional types of single-
cell characterization beyond gene expression, including epigenomic, proteomic, and imaging
information.

There are a number of open mathematical issues, including how best to: optimize the choice
and sampling depth of time points; define the distance function in gene-expression space; use
information about cell proliferation rates; predict unobserved time points and choose the most
informative ones to measure; incorporate lineage-tracing information where available; quantify
uncertainty in transport maps; identify and characterize branching events leading to bimodal fate
distributions; predict the effect of perturbing regulators; and smooth data over time (Appendix
S1). Our framework currently assumes that cell fates depend only on internal variables, but we
could readily incorporate cell-extrinsic influences in terms of bulk concentrations of secreted
factors. Additionally, our framework exploits the assumption that trajectories are memoryless—
that is, that a cell's fates depends only on its current state rather than its history. Some
processes are likely not memoryless—for example, due to aspects of a cell's epigenomic state
that are not fully captured in the gene expression profile. It will be important to develop methods
to recognize such circumstances and incorporate them in the analysis.

Finally, improved experimental methods are needed to validate the many specific transition
probabilities inferred by optimal transport. For now, the best way to test the inferences may be
to compare it to results from denser temporal sampling, or to perturb predicted regulators and
observe their effects on the maps.
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In summary, the notion of developmental landscapes can provide not only a valuable metaphor
but a precise analytical framework. The optimal-transport approach should provide insight into a
wide range of biological problems, including organismal development, long-term physiological
responses, and induced reprogramming.
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Figure 1

Schematic representations of cellular differentiation.

(A-B) Waddington’s classic analogies of cells undergoing differentiation, initially (1936)
illustrated by railroad cars on switching tracks (A) and later (1957) by marbles rolling in a
landscape (B), with trajectories shaped by hills and valleys. (C-E) Differentiation processes in
which the ultimate fate of individual cells (filled dots) is (C) predetermined (D) not
predetermined, or (E) progressively determined. Arrows indicate possible transitions, and color
represents cell fate, with red and blue indicating distinct fates, light red and light blue indicating
partially determined fates, and grey indicating undetermined fate. (F) lllustration of transported
mass. A transport map, m, describes how a point x at one stage (X) is redistributed across all
points (denoted by “.”) at the subsequent stage (Y). (G) Transport maps computed from a time
series of samples taken from a time-varying distribution. Between each pair of time points, a
transport map =, ., , redistributes the cells observed at time ¢; to match the distribution of cells
P,,,, observed attime t;;.
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Figure 2

Experimental design of scRNA-Seq time course during iPSC reprogramming.

(A) Representation of reprogramming procedure and time points of sample collection. (Top)
Mouse embryos (E13.5) were dissected to obtain secondary MEFs (2° MEF), which were
reprogrammed into iPSCs. In Phase-1 of reprogramming (light blue; days 0-8), doxycycline
(Dox) was added to the media to induce ectopic expression of reprogramming factors (Oct4,
Kif4, Sox2, and Myc). In Phase-2 (days 9-16), Dox was withdrawn from the media, and cells
were grown either in the presence of 2i (light red) or serum (light green). Samples were also
collected from established iPSC lines reprogrammed from the same 2° MEFs, maintained in
either 2i or serum conditions (far right in each time course). Individual dots along the time
course indicate time points of ScCRNA-Seq collection, with two dots indicating biological
replicates. (B) Number of scRNA-Seq profiles from each sample collection that passed quality
control filters. (C) Bright field images of day 0 (Phase1-(Dox)) and day 16 cells during
reprogramming in (Phase-2(2i)) and (Phase-2(serum)) culture conditions.
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Figure 3

scRNA-Seq reprogramming landscape annotated in force-directed layout embedding
(FLE).

scRNA-Seq profiles of all 65,781 cells were embedded in two-dimensional space using FLE,
and annotated with indicated features. (A) Unannotated layout of all cells. Each dot represents
one cell. (B,C) Annotation by time point (color) and biological feature, with Phase-2 points from
either (B) 2i condition or (C) serum condition. Phase-1 points appear in both (B) and (C).
Individual cells are colored by day of collection, with grey points (BC, background color)
representing Phase-2 cells from serum (in B) or 2i (in C). (D) Annotation by cell cluster. Cells
were clustered on the basis of similarity in gene expression. Each cell is colored by cluster
membership (with clusters numbered 1-33). (E-F) Annotation by gene signature (E) and
individual gene expression levels (F). Individual cells are colored by gene signature scores (in
E) or normalized expression levels (in F; , where E is the number of transcripts of a gene per
10,000 total transcripts). See Figure S3, 5 for additional genes and modules.
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Figure 4

Ancestral origins and descendant fates inferred by optimal transport.

(A) Schematic representation of the major cluster-to-cluster transitions (see Table S5 for
details[BC17] ). Individual arrows indicate transport from ancestral clusters to descendant
clusters, with colors corresponding to the ancestral cluster. For each descendant cluster,
arrows were drawn when at least 20% of the ancestral cells (at the previous time point)
were contained within a given cluster (self-loops not shown). Arrow thickness indicates
the proportion of ancestors arising from a given cluster. (B) Heatmap depiction of cluster
descendants in 2i condition. In each row of the heatmap, color intensity indicates the
number of descendant cells (“mass”, normalized to a starting population of 100 cells)
transported to each cluster at the subsequent time point (see Table S5 for details).
Clusters with highly-proliferative cells (e.g., cluster 4) transport more total mass than
clusters with lowly-proliferative cells (e.g., cluster 14). (C) Depiction of divergent day 8
descendant distributions for two clusters of cells at day 2 (cluster 4 (left) and cluster 6
(right). Color intensity indicates the distribution of descendants at day 8, with bright teal
indicating high probability fates and gray indicating low probability fates. (D) Enrichment
of the ancestral distributions of iPSCs, Valley of Stress, and alternative fates (neuron-like
and placenta-like) in clusters of day 2 cells. The red horizontal dashed line indicates a
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null-enrichment, where a cluster contributes to the ancestral distribution in proportion to
its size. Cluster 4 has a net positive enrichment because its descendants are highly
proliferative, while cluster 6 has a net negative enrichment because its descendants are
lowly proliferative. (E) and (F) Ancestral trajectories of indicated populations of cells at
day 16 (iPSCs, placental, neural-like cells, etc.) in serum (E) and 2i (F). Clusters used to
define the indicated populations are shown in parentheses. Colors indicate time point.
Sizes of points and intensity of colors indicate ancestral distribution probabilities by day
(color bars, right; BC, background color, representing cells from the other culture
condition).

26


https://doi.org/10.1101/191056

bioRxiv preprint doi: https://doi.org/10.1101/191056; this version posted September 27, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure 5

A Relative expression Activation  Phase-1(Dox) Phase-2(2i) Phase-1(Dox) ~Phase-2(serum)
Patterns GSEA, top terms
e max —— = ——— Aurka
— RNA<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>