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Abstract

The increasing usage of high throughput sequencing in personalized medicine brings new

challenges to the realm of healthcare informatics. Patient records need to accommodate data

of unprecedented size and complexity as well as keep track of their production process. In

this work we present a solution for integrating genomic data into electronic health records via

openEHR archetypes. We introduce new genomics-specific archetypes based on the popular

variant call format and show their applicability to a practical use case. Finally, we discuss

their structure in comparison with the HL7 R© FHIR R© standard.
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1 Introduction

Next generation sequencing (NGS) techniques have recently enabled a substantial advancement

in the treatment of genetic disorders, paving the way for personalized therapies based on each

patient’s specific set of genomic variations. Whole-exome (WES) and whole-genome sequencing

(WGS) have become increasingly common in the past years, thanks mainly to the progress and

cost reduction in high-throughput sequencing technologies1,2. This trend suggests that genomic

data are going to play an increasingly important role within medical practice in the near future.

Entities related to a patient’s clinical history can be modeled according to a spoke-hub paradigm,

where the different actors (such as clinicians, specialists, hospitals, labs and the patient itself)

all revolve around the Electronic Health Record (EHR), the central collection point of all clin-

ical data provided by each actor. Due to its high relevance in modern healthcare, genomic
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information should be a fundamental part of EHRs. In practice, however, most current EHR

systems are not capable of handling such data1,2,3,4, since their sheer size and complexity en-

tail new technological challenges in terms of storage, integration, visualization, computational

analysis, querying and presentation. Moreover, where supported, genomic information is often

made available as unformatted plain text, whereas a structured, machine-readable format would

greatly enhance its shareability and reusability. Finally, particular care must be taken to ensure

interoperability with other medical informatics standards. These practical difficulties severely

hinder the translation of genetic information into concrete clinical actions.

In this work we present a new openEHR5 model for genomic data produced in the context

of sequence variation analysis, specifically focused on machine readability and computability.

We show its applicability to a concrete use case and its interoperability with existing clinical

standards. Finally, we discuss our approach in comparison with related work.

1.1 OpenEHR specifications

OpenEHR is an open standard for health data that focuses on the semantic interoperability

between EHR systems. It adopts a multi-level modeling approach based upon the Reference

Model (RM), a set of classes that represent logical EHR structures and demographic data.

The next level consists of a library of archetypes, reusable models that define a maximal set of

attributes related to a particular subject. Archetypes, in turn, can be combined into templates,

hierarchical context-specific data sets. Archetypes and templates undergo an iterative web-based

review process, at the end of which they are published in the official openEHR repository, the

Clinical Knowledge Manager (CKM)6, and made available for clinical use.

Archetypes belong to four main groups: compositions, which represent commonly used clinical

documents; sections, corresponding to document headings; entries, the most common and fun-

damental building blocks of an EHR (further divided into observations, evaluations, instructions

and actions); clusters, reusable sub-structures that allow elements to be grouped and repeated.

The model presented here makes use of the observation (data obtained by a direct observation

or measurement) and cluster archetype classes.

Due to the amount of domain-specific expertise required, EHR systems development needs to be

carried out in close cooperation with clinical stakeholders. The main challenges in this process
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are establishing a common ground for communication between technicians and clinicians and

addressing the frequent advancement of clinical knowledge. In the case of genomic content,

this is further exacerbated by the size and structure issues discussed above. The multi-level

openEHR approach helps mitigate these problems by separating structure and content: only

the first modeling level (RM classes) is implemented in software, while formal definitions of

clinical content (archetypes and templates) are external. This means that EHR repositories can

be developed independently from the content they will store. Moreover, EHR systems can be

kept small, maintainable and self-adaptable to archetypes and templates that may be developed

in the future7. Finally, this decoupling facilitates contributions by non-technical professionals,

who can formalize their clinical knowledge via user-friendly modeling tools.

1.2 Structured approach

Integrating NGS data into EHRs is hard due to two main reasons3:

• their size (up to hundreds of gigabytes) and complexity (e.g., irregular degree of nesting

in laboratory test outputs);

• the way they are generated and manipulated, with processing pipelines where each step

depends on a multitude of software parameters and resource databases.

Currently available EHR systems typically collect three types of data: granular (e.g., laboratory

test results), text (e.g., pathology reports) and media (e.g., medical imaging). As mentioned

earlier, due to the lack of specific data structures genomic data is often included in text form,

which makes their analysis and reuse particularly cumbersome. The adoption of a structured

format would greatly simplify the processing and transfer of clinical genomic data, effectively

enhancing its medical value. The chosen format should enable the efficient management of

complex clinical content by organizing it into standard reusable entities. At the same time, it

should allow the specification of data semantics, while ensuring that the original meaning is

preserved in case of sharing. Finally, it should preserve the data history, with regard to both the

operations performed and the auxiliary resources involved in the transformation process (such

as external databases, genomic references, etc.). In the remainder of this paper we show how to

use the openEHR approach to address these issues.

3

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 28, 2017. ; https://doi.org/10.1101/194720doi: bioRxiv preprint 

https://doi.org/10.1101/194720


2 Materials and methods

2.1 Genomic data

WGS and WES have rapidly changed research on the genetic causes of rare and complex diseases.

Independently from the technology used, NGS data analysis can be broken down into two main

steps8: the analytic wet bench process and the bioinformatic analysis of sequence data (Fig. 1).

Figure 1: Main NGS steps, grouped accordingly to the College of American Pathologists8.

The process starts with DNA extraction and its fragmentation into small pieces. NGS instru-

ments produce billions of shorts sequence reads (strings representing ordered DNA nucleotides in

a fragment) simultaneously in a single machine run. Reads are subsequently aligned (mapped)

to a reference sequence through dedicated software, a computationally intensive operation due

to the large size of the reference. Aligned reads are then processed to correct for technical biases

and, finally, genomic variants (the differences between the sample and the reference) are identi-

fied and reported, along with additional information such as the coverage depth (average number

of reads that align to known reference bases) and accuracy measures. Due to the large amount

of variants that can be detected, generating useful results requires one or more filtering steps

to prioritize potential disease-causing mutations9,10,11,12. This is commonly done by annotating

variants with references to public databases such as dbSNP13. Common scenarios in human

NGS data analysis include the discovery of disease-associated variant(s) for mendelian disor-
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ders, the identification of candidate genes responsible for complex diseases and the detection of

constitutional and somatic mutations in cancer studies9.

Genomic data can be seen as a multilayer structure composed of three levels:

• Raw data, the direct output of the sequencing process, consist of millions of short sequence

reads, text strings containing the detected DNA nucleotides together with their associated

quality scores (statistical predictions of accuracy).

• Derived data represents the observed variants, along with additional measurements (e.g.,

coverage);

• Annotated data corresponds to variants filtered according to additional a-priori infor-

mation, as discussed above.

With respect to Fig. 1, the first level falls within the wet bench block, while the other two are

part of the bioinformatic pipeline.

Figure 2: Schematic representation of a bioinformatic pipeline for NGS variant detection.

A common bioinformatic workflow for variant identification from NGS data includes the following

steps14 (Fig. 2):

• Alignment: short reads are aligned to the reference to produce a file in SAM/BAM

format15, sorted by genomic coordinate. Initial mappings are further processed to address

technical biases (removal of duplicate sequences, recalibration of base quality scores).

• Variant calling: alignment files output by the previous step are processed to detect

variations between the sample and the reference. Since variations may also arise from

mapping and sequencing artifacts, variant calling software should carefully balance sensi-
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tivity to minimize false positives. The output, typically in tabular format, contains the

list of variant sites, the individual genotypes and additional information such as coverage

and genotyping accuracy.

• Variant annotation: assigning functional information to genomic variants is a crucial

step in the analysis of sequencing data, enabling researchers to focus on the potential

disease-causing variants. Many types of biological information can be associated to vari-

ants: the position in transcript sets (e.g., UCSC, RefGene, GENCODE, ENSEMBL),

whether the variant is known or novel based on dbSNP, the prediction of their impact on

the protein structure and function according to different models (e.g., SIFT, PolyPhen2,

LRT, MutationTaster, MutationAssessor, FATHMM), sequence conservation (e.g., PhyloP,

PhastCons), known associations of the variant with diseases (e.g., OMIM, ClinVar) and

allele frequency in reference populations (e.g., ESP6500, 1000 Genomes Project, gnomAD).

2.2 OpenEHR modeling approach

Figure 3: Block diagram of the process leading from data to clinical actions.

Figure 3 summarizes the context from a high level perspective: the clinician receives phenotypic

and genetic (laboratory block) patient data, and interprets them in combination with prior

clinical knowledge and experience to produce actionable results. It should be noted that, before

reaching the clinical side, laboratory output should be reorganized to assume a structured form.

The openEHR model allows to achieve this through the archetypes formalism.

As discussed above, genetic data sets are produced via complex pipelines that involve the use

of different algorithms, parameters and reference entities. To provide a comprehensive and

reusable model for genomic data, archetypes should be able to keep track of all this information
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in a structured way. Since all of these elements can change over time, to ensure reproducibility

we include this information as external references in our model.

Common openEHR modeling practice follows (possibly with recursion) these steps:

• define the data to be represented;

• search model repositories for reusable archetypes and, possibly, map existing archetype

nodes with clinical attributes;

• create new archetypes or specialize existing ones for the specific domain being modeled.

In our case, the model has to represent the output of the bioinformatic pipeline, i.e., information

about the variants detected at specific positions in the genome. Due to its wide adoption for

the representation of genomic data, we have designed our archetypes to mirror the Variant Call

Format (VCF)16. As shown in Fig. 4, a VCF file consists of meta-information lines, a header

line and data lines (body).

Figure 4: The main section of a typical VCF file. Modified figure from the VCF specifications16.

Each row in the VCF body corresponds to a specific location in the genome where a single vari-

ation occurs, possibly with more than one alternate allele. All rows start with eight mandatory

fields (although one or more could be empty): #CHROM, POS, ID, REF, ALT, QUAL, FILTER and INFO.

If there are multiple alternate alleles called on at least one sample for a given position, these
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are reported as a comma separated list under the ALT field. The INFO field (see Fig. 5) gives

additional information on the observed variant, in a format specified in the meta-information.

Figure 5: The VCF INFO field16.

Sample-specific information (such as coverage or genotype accuracy), is encoded in the FORMAT

column, whose structure is also specified in the meta-information block. In addition to the

mandatory ones, VCF allows to specify additional fields to accommodate specific domain anno-

tations. The most common ones have already been included in the model, while additional ones

can be specified via custom clusters.

As mentioned earlier, before embarking on the creation of new archetypes, a thorough search

of existing public domain ones must be performed. At the time of writing, no archetype in the

international instance of the CKM6 was suitable for genomic data. To fill this gap, we developed

a new set of archetypes that are described in Sec. 3. This work has been carried out with the

LinkEHR Studio software developed by the Universitat Politècnica de València and VeraTech

for Health17.

3 Results

Figure 6: Hierarchical organization of archetypes for genetic content. Existing archetypes are
marked with a green border.

A few entities involved in the sequencing workflow — such as specimen and device — were

already supported in the CKM, while others required the development of new archetypes, either

from the ground up or as specializations of existing ones. Figure 6 shows a possible template
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Concept Type Status

Genetic Test Result OBSERVATION In progress
Genetic Findings CLUSTER Created
Sequence Variation CLUSTER Created
Reference Sequence CLUSTER Created
Substitution Variant CLUSTER Created
Deletion Variant CLUSTER Created

Duplication Variant CLUSTER Created
Insertion Variant CLUSTER Created
Inversion Variant CLUSTER Created
Conversion Variant CLUSTER Created

Indel Variant CLUSTER Created
Repeated Sequence Variant CLUSTER Created

Table 1: Archetypes for genetic data.

for a laboratory report of genomic test results. The top level of the hierarchy is occupied by

the composition Report, followed by the Genetic Test Result observation archetype, developed

as a specialization of the existing Laboratory Test Result 18; to represent actual genetic data we

created a new Genetic Findings cluster, in turn articulated into a number of nested clusters for

sequence variation, reference genome and individual variant types (see Table 1).

3.1 OBSERVATION-Genetic Test Result

Genetic Test Result models data from a genetic test performed on a patient, along with details of

the previously established clinical condition and a description of the protocol. In addition to the

attributes carried over from Laboratory Test Result, Genetic Test Result provides: information

on the interpretation and reporting of sequence variations — in accordance with recommen-

dations by the American College of Medical Genetics (ACMG)19,20 — in the data section; a

representation of the method in the protocol section. The latter, in particular, allows to refer to

the bioinformatic workflow as an external resource and to specify the version used to perform the

calculation, in order to allow the reconstruction of the data history. With respect to the other

archetypes presented here, Genetic Test Result is currently at an earlier development stage, and

thus more likely to evolve in the near future.
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3.2 CLUSTER-Genetic Findings

The Genetic Findings cluster (see Fig. 8) is meant to be used in the “test findings” slot of Genetic

Test Result, and can in turn include one or more Sequence Variation archetypes to report about

variations that are considered relevant for the test. Considering a row in a VCF file, the Sequence

Variation archetype corresponds to the “standard” parts, while the customizable INFO section

can be represented by existing fields in Genetic Finding or by one or more ad hoc extensions.

3.3 CLUSTER-Sequence Variation and supplementary clusters

The Sequence Variation archetype (see Fig. 9) is designed to contain the same data found in

a VCF row. The position of the observation in the genome is given with respect to a reference

sequence specified in the Reference Sequence archetype (Fig. 10). Following the nomenclature

proposed by the Human Genome Variation Society (HGVS)1, the most common variant types

are: substitution, deletion, duplication, insertion, inversion, conversion, insertion-deletion (indel)

and repeated sequence21. We developed a new cluster archetype for each of the above types

(examples are shown in Fig. 11 and 12).

4 Discussion

4.1 Real use case application

WES has emerged as a powerful tool for the diagnosis of rare mendelian disorders, especially

where standard approaches have failed. This technique focuses on the protein-coding regions of

the genome that are more likely to harbour disease-causing variants associated with a particular

phenotype. Initially used for research activities, WES is now entering clinics for diagnostic

purposes, thanks to the decreasing costs of NGS technologies. A typical study design for the

identification of pathogenic variants in rare diseases includes the patient and its parents, and

optionally additional family members (affected or not). In this report, we use results related to

the WES of one family member to show how openEHR archetypes can successfully describe the

genomic information obtained from an NGS-based genetic test (Tables 2 and 5).

1URL: http://varnomen.hgvs.org/
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Figure 7: The OBSERVATION-Genetic Test Result Archetype.

Figure 8: The CLUSTER-Genetic Findings Archetype.
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Figure 9: The CLUSTER-Sequence Variation Archetype.

Figure 10: The CLUSTER-Reference Sequence Archetype.

Figure 11: The CLUSTER-Indel Variant Archetype.

Figure 12: The CLUSTER-Repeated Sequence Variant Archetype.
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Attribute Use case 1 Use case 2

Genetic Findings
Findings

[SLOT]Sequence Variation
Annotations

Transcript annotation
[SLOT]: Reference sequence NM_015557 NM_014981
Feature missense frameshift
DNA position c.5249C>T c.3612_3612delG
Protein position p.T1750M p.K1205Rfs*15

Predict impact
[SLOT]: Bioinformatic cal-
culation tool CADD MutationTaster

Score 23.8 1
Qualitative prediction Damaging Damaging

Conservation
[SLOT]: Bioinformatic cal-
culation tool PhastCons7-way PhastCons46-way

Score 1 0.988
Allele frequency

[SLOT]: Bioinformatic cal-
culation tool ESP6500AA 1000 Genomes

Score 0.000454 NA
Info

ID FS ExcessHet
Description Fisher strand bias Excess heterozygosity
Value 4.139 3.0103

[SLOT]: Extension

Table 2: Sample usage of the Genetic Findings archetype

4.2 Interoperability: comparison with the HL7 R© FHIR R© standard

This section discusses the interoperability of the proposed model with the one developed by

the HL7 R© Clinical Genomics Work Group as part of the FHIR R© standard22. HL7 R© FHIR R© 23

is a standard for exchanging healthcare information that represents granular clinical concepts

through basic building blocks called resources. Resources are relatively generic and have to

be adapted to specific use cases. When a use case is common enough, it may become part

of the specification itself as a profile. Genomics support in FHIR R© consists of four profiles

and a resource. The most relevant for this work are the Observation profile and the Sequence

resource. The former, which adapts the Observation resource to the genomic context, is used

for reporting interpretative genetic information mainly related to variant test results. The

latter is instead used to describe an atomic sequence which contains alignment test results and

multiple variations. Despite their different reference models, both openEHR and FHIR R© can

adequately model genetic data, albeit with different degrees of nesting: the openEHR structure is

[OBS] Genetic Test Result → [CLUS] Genetic Findings → [CLUS] Sequence Variation

→ [CLUS] Variant, while the FHIR R© one is Observation-Genetics → Sequence. The latter,
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Attribute Use case 1 Use case 2

Sequence Variation
Genomic location

[SLOT]Reference Sequence

NC_000001.10 Homo
sapiens chromosome 1,
GRCh37.p13 Primary
Assembly

NC_000003.11 Homo
sapiens chromosome 3,
GRCh37.p13 Primary
Assembly

Genome assembly GRCh37.p13 GRCh37.p13
Genomic region

Start position 6171835 108147489
Contig chr1 chr3

Gene
Gene symbol CHD5 MYH15

Full name Chromodomain helicase
DNA binding protein 5 Myosin, heavy chain 15

Variation description
Variation identifier

Source name dbSNP dbSNP
Identification rs139581412 rs779562147
Version 134/150 144/150

URL
https://www.ncbi.nlm.
nih.gov/projects/SNP/
snp_ref.cgi?rs=139581412

https://www.ncbi.nlm.
nih.gov/projects/SNP/
snp_ref.cgi?rs=779562147

Alternate
Variant type Substitution Deletion
[SLOT]:Variant g.6171835G>A g.108147489delC
Allele depth 40 110

Quality 1316.9 9790.86
Filtering

Filter
ID MQRankSum_snp QD_indel

Description vc.isSNP() &&
MQRankSum < -12.5 vc.isIndel() && QD < 2.0

Filter status 1 1
Total depth 80 214
Genotype characterization

Genotype 0/1 0/1
Genotype quality 99 99
Genotype probability 774,0,687 4167,0,4060

Table 3: Sample usage of the Sequence Variation archetype

Attribute Use case 1 Use case 2

Reference Sequence
Source name NCBI NCBI
Accession number NC_000001 NC_000003
Version number NC_000001.10 NC_000003.11

URL https://www.ncbi.nlm.nih.
gov/nuccore/NC_000001.10

https://www.ncbi.nlm.nih.
gov/nuccore/NC_000003.11

Table 4: Sample usage of the Reference Sequence archetype

however, can include additional extensions of the Observation resource at the same hierarchical

level (it grows horizontally, while the openEHR model grows vertically). This has to be taken

into account while comparing, together with the different meaning of the “observation” term.
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Attribute Use case 1

Substitution Variant
Position substituted 6171835
Reference nucleotide G
New nucleotide A

(a) Sample usage of the Substitution Vari-
ant archetype

Attribute Use case 2

Deletion Variant
Start position 108147489
End position -
Deleted nucleotide(s) C

(b) Sample usage of the Deletion Variant
archetype

Table 5

The comparison was carried out considering three types of data: context, derived and objective.

4.2.1 Context data and interpretations

In the FHIR R© model, information about the context of the genetic test performed, the devices

used, the specimen, the patient and the performer is given both in the Observation resource

and in the Sequence resource (as a reference to another external resource). Similarly, in the

openEHR model the Genetic Test Result archetype contains slots to include cluster archetypes

(e.g., Specimen, Medical Device) that provide context information. The difference is that while

in FHIR R© this information is repeated in multiple places, the recursively nested openEHR

approach allows to refer to the same entity multiple times, avoiding redundancy.

Genetic data are typically complemented by subjective information such as diagnosis or generic

comments. In the FHIR R© model, these are mainly represented within the Genetics profile of

the Diagnostic Report resource. In our model, this type of data could be included in the Genetic

Test Result archetype.

4.2.2 Derived data

Derived data consist of annotations from the bioinformatic analysis: transcript annotations, im-

pact prediction, sequence conservation, etc. In the openEHR model these items are represented

within the Genetic Findings cluster archetype, and the range of representable annotations can

be broadened via extension slots. At present, FHIR R© does not include explicit references to this

type of data.
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4.2.3 Objective data

Objective data describe the observed sequence variations. In the FHIR R© standard, these el-

ements can be found both in the Sequence (e.g., reference sequence, variant, quality) and in

the Observation-Genetics resource (e.g., DNA variant type and ID, gene, allelic state), while

in our model they are all included in the Sequence Variation archetype, in order to isolate the

interpretative aspects from the purely objective variant data.

Our approach differs from the FHIR R© one in two main respects: reference sequence and vari-

ant description. In FHIR R©, the reference sequence can be represented by the same Sequence

resource used to describe the sample sequence, while in our model it is made available via a

link to an external entity (repository, accession and version). In FHIR R©, the observed variant

is also represented within the Sequence resource through the range of positions affected by the

change(s), the reference allele and the observed one and the CIGAR string15, while in our model

we use a different archetype for each variant type in the HGVS specifications.

4.3 Modeling issues

The first challenge encountered during the modeling process was how to represent the results

of genetic tests conducted on more than one sample. This happens, for instance, in rare dis-

ease studies where patient data is more useful if compared to data from family members, or

in oncology when cancer cells are compared to non-cancer cells from the same patient. The

archetypes presented here are meant to be used for a single sample, with the assumption that

any relationships with other samples are handled at a higher level, i.e., at the composition level.

Another critical aspect concerns the representation of the different types of variant. A simple

approach would be to store the reference nucleotide, start position and observed nucleotide(s).

This method is very similar to the one adopted in VCF files and works well for single nucleotide

substitutions, but can be confusing for more complex variant types. For instance, for simple

deletions the VCF REF and ALT strings must include the base before the event, while this is

not required for complex substitutions16. To avoid this kind of ambiguity, we used a specific

archetype to describe each type of variant.
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4.4 Related work

Integration of genomic data into EHRs is the subject of several ongoing activities.

The EHR Integration (EHRI) workgroup of the Electronic Medical Records and Genomics

(eMERGE) network aims to develop standards and methods for incorporating genomic data

into EHRs and optimizing their utilization24,25.

The DataWorking Group of the Global Alliance for Genomics and Health (GA4GH) concentrates

on the representation, storage and analysis of genomic data, with a focus on interoperability26.

The group developed a web API to allow the exchange of genomic information through a freely

available open standard that models entities such as data requests, error messages and actual

genomic data fragments27.

The Harvard Medical Center for Biomedical Informatics developed the SMARTGenomics API28,29,

an extension of the SMART (Substitutable Medical Applications, Reusable Technologies) plat-

form that uses FHIR R© as its base framework to store both Clinical and Genomics data. Fol-

lowing the FHIR R© specifications, the team developed new resources and extensions, providing

significant input to the HL7 R© Clinical Genomics Workgroup30.

Finally, a first draft of archetypes for genomic data has recently been published in the Norwegian

instance of the CKM by the Nasjonal IKT31. It consists of five archetypes that describe the pa-

tient’s genome, the output of a genetic assessment, the protocol of a genetic laboratory analysis,

the description of a variation and of the two alleles. Even though the model is well designed and

accurate, it does have a few shortcomings. The Genetic Lab Analysis archetype, which describes

the protocol used to perform a genetic test, does not support contextual information such as the

patient’s clinical conditions. In contrast, we represented genetic test results with a specialization

of the existing Laboratory Test Result archetype, which contains an accurate description of both

context data and the adopted protocol. Moreover, this is in line with openEHR best practice

on resources reuse through specialisation32. The Genetic Variant archetype, together with its

Allele Details extension, represents information about variations via plain text strings: a char-

acterization (normal or pathogenic), a generic description, one or more reference sequences, etc.

In our model, instead, we employ versionable entities (reference sequence, variant ID, etc.) that

link to external databases, and we represent each variant type in structured form via a separate

cluster archetype. This improves machine readability and makes the archetype more flexible and
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easily adaptable to the rapid changes in reference sequences and bioinformatic tools. Finally,

the IKT model lacks annotations and tools to enable variant filtering and parameter calculation,

which we include in the cluster archetype that represents test findings.

4.5 Conclusions and future work

We have presented a model for representing genomic content (sequence variation analysis) in a

structured form through openEHR archetypes, with the main goals of being machine readable,

reusable and shareable. Moreover, each versionable resource or tool involved in the data pro-

duction process is linked as an external object, allowing to keep track of the particular revision

of each instance. We have assessed the feasibility of our approach by applying it to the rare

diseases use case. Finally, we have discussed its interoperability with HL7 R© FHIR R©.

The archetypes described here are available at https://github.com/crs4/openehr-genomics.

In the future, we plan to integrate their use in our production NGS analysis pipelines to formalize

the results made available to clinical researchers.
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