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T he assembly of high-quality genomes from
mixed microbial samples is a long-standing
challenge in genomics and metagenomics.

Here, we describe the application of ProxiMeta,
a Hi-C-based metagenomic deconvolution method,
to deconvolve a human fecal metagenome. This
method uses the intra-cellular proximity sig-
nal captured by Hi-C as a direct indicator of
which sequences originated in the same cell, en-
abling culture-free de novo deconvolution of mixed
genomes without any reliance on a priori infor-
mation. We show that ProxiMeta deconvolution
provides results of markedly high accuracy and
sensitivity, yielding 50 near-complete microbial
genomes (many of which are novel) from a sin-
gle fecal sample, out of 252 total genome clus-
ters. ProxiMeta outperforms traditional contig bin-
ning at high-quality genome reconstruction. Prox-
iMeta shows particularly good performance in con-
structing high-quality genomes for diverse but
poorly-characterized members of the human gut.
We further use ProxiMeta to reconstruct genome
plasmid content and sharing of plasmids among
genomes—tasks that traditional binning methods
usually fail to accomplish. Our findings suggest
that Hi-C-based deconvolution can be useful to a
variety of applications in genomics and metage-
nomics.

Introduction

Microbiologists have pursued the characterization of
the microbial flora of the human body since the 17th
century (Lane, 2015). In recent years, this goal has
been fulfilled in part by the development of genomic
technologies that capture sequence information from

highly complex consortia of microbial communities
(Consortium, 2012; Qin et al., 2010; Turnbaugh et al.,
2009; Schloss and Handelsman, 2005). The human
gut microbiome, specifically, is of great interest both
due to its role in basic human physiology and as a locus
of microbial infectious disease. Sequencing of DNA di-
rectly extracted from mixed communities has allowed
researchers to bypass the need for laborious isolation
and culturing efforts for microbiological analysis. In
addition to using such “metagenomes” to obtain in-
sights about community-level dynamics and function,
metagenomic data have also been used, with consider-
able success, for indirectly reconstructing genomes of
individual species, both via de novo genome assembly
(Zerbino and Birney, 2008; Peng et al., 2012; Nurk
et al., 2017; Baker et al., 2010) and by statistical ap-
proaches for linking marker gene variation to genome
content (Carr, Shen-Orr, and Borenstein, 2013).

However, while shotgun sequencing approaches
have advanced, aided in part by the introduction of
third-generation long-read sequencing technologies
(Tsai et al., 2016) and new computational methods
(Wood and Salzberg, 2014), our ability to accurately
group DNA sequences or assembled sequence contigs
into single-species genomes has remained limited. This
grouping process, termed binning, often relies on a vari-
ety of indirect measures of consistency between contigs
(Laczny et al., 2015; Wu et al., 2014; Imelfort et al.,
2014; Dick et al., 2009). For example, contigs with sim-
ilar read depth profiles are more likely to come from
the same genome than those with vastly different read
depths. Another source of evidence that two contigs
come from the same genome is their tetra-nucleotide
or k-mer frequency spectra; these signatures often de-
lineate different bacterial species. Most methods use
integrative binningmethods, which result in more accu-
rate genome grouping but require summarizing across
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multiple samples (Kang et al., 2015; Wu, Simmons,
and Singer, 2016). Moreover, binning is by nature an
indirect clustering method, and sequence or read depth
similarity does not necessarily imply that two contigs
should be grouped into the same pseudo-genome. Fur-
thermore, mobile genetic elements (MGEs), such as
plasmids, do not always share the copy number or se-
quence composition of their host genomes, and the
same MGEs are often observed in different strains and
species (Wu et al., 2014), rendering their binning es-
pecially challenging. These elements can only be as-
signed to their host genomes by physical separation,
most commonly through culturing individual microbes,
a task that is often difficult or impossible due to largely
unknown microbial growth requirements.

An alternative approach for culture-free micro-
biome characterization relies on microfluidics meth-
ods, enabling the construction of genomes from sorted
single cells (Rinke et al., 2013). This approach re-
moves the need to deconvolute mixed groups of se-
quences and thus reduces the possibility of genome
cross-contamination due to spurious associations be-
tween contigs. Single-cell sequencing, however, pro-
duces genomes that tend to show low completeness
according to common criteria (Parks et al., 2015), re-
quires complex instruments, and is prone to miss low-
abundance organisms due to random sampling of single
cells from a population.

A new and promising deconvolution technique
for complex microbial communities employs Hi-C
(Lieberman-Aiden et al., 2009; Burton et al., 2014;
Beitel et al., 2014) (or a related method, 3C; Mar-
bouty et al., 2017; Marbouty and Koszul, 2015). In
Hi-C-based deconvolution, covalent linkages among
DNA molecules in the same cell are induced by treat-
ing intact cells with formaldehyde, and these linkages
are then ascertained with proximity-ligation and high-
throughput sequencing. Using this technique, associ-
ations between contigs of the same genome are mea-
sured directly, largely obviating the need for comple-
mentary data. Furthermore, Hi-C proximity estima-
tions represent an orthogonal data type and are easy
to obtain at the scale of complex communities. This ap-
proach therefore combines the benefits of physical seg-
regation of DNA molecules with the convenience and
ease of traditional shotgun metagenomic sequencing.
Additionally, by capturing inter-chromosomal junctions
(such as plasmid-genome interactions) this method is
capable of correctly grouping self-replicating mobile el-
ements that violate assumptions of uniform copy num-
ber or composition with regard to their host genomes.
Yet, considering the promise of Hi-C based deconvolu-
tion, to date, studies successfully applying this method
to mixed populations are scarce and focus primarily
on very simple or artificial communities (Burton et al.,
2014; Beitel et al., 2014; Heil et al., 2017). Indeed,
until recently, it was not clear, for example, whether

Hi-C analysis could be scaled to complex microbial
communities such as those inhabiting the human gut.

Here, we describe the application of ProxiMetaTM,
a Hi-C-enabled method developed by Phase Genomics
Inc., towards deconvoluting the human gut micro-
biome. We demonstrate unparalleled performance in
reconstructing individual genomes from this complex
mixture compared to traditional shotgun metagenomic
binning analysis. We also report 14 novel bacterial
genomes discovered by applying ProxiMeta to a single
fecal sample. Finally, we demonstrate the applicabil-
ity of this approach for addressing biologically- and
medically-relevant questions regarding the composi-
tion of the human gut community and the sharing of
MGEs among microbes in the same community.

a

b

c

Figure 1: Schematic of the ProxiMeta method for metage-
nomic deconvolution. a) First, a sample consisting of
mixed organisms is cross-linked with formaldehyde.
Cross-links among DNA molecules are highlighted in
red. b) DNA extraction yields a population of cross-
linked DNAs with free ends from restriction cleavage.
These free DNA ends are re-ligated and the result-
ing molecules read out with paired-end sequencing.
c) Sequences ligated together and sequenced yield
linkages between DNA contigs or scaffolds from an
independently-generated sequence assembly. These
linkages are used in clustering algorithms to decon-
volute which DNAs derive from the same cell.
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Results

ProxiMeta Hi-C deconvolution of a fecal
sample.

We applied ProxiMeta Hi-C (Figure 1) to a fecal sample
from a healthy adult human as follows. First, we used
shotgun metagenomic sequencing to obtain 151bp
paired-end reads from this microbial community. We
then assembled these reads using metaSPAdes (Nurk
et al., 2017), generating 506,596 contigs containing a
total of 677 Mb sequence with a contig N50 of 9,168
bp (see Methods and Table S1). In parallel, we gener-
ated paired-end Illumina Hi-C sequence reads from the
same sample and mapped these to the shotgun assem-
bly contigs using standard procedures (Methods). Com-
bining the assembly and short-read mappings provides
a network of Hi-C linkages between contigs, which
serve as the input to a graph-based clustering algo-
rithm. Resulting clusters smaller than 1000 bp were
omitted, as is common in analyzing metagenomic as-
semblies (Wu et al., 2014). We treat the remaining
clusters of contigs, which we refer to throughout as
“genome clusters”, as putative genomes. The result is

a set of sequences in FASTA format that we subject to
downstream analysis with a suite of evaluative tools
(Methods), most notably CheckM (Parks et al., 2015),
which uses the presence of single-copy marker genes in
the genome clusters to evaluate genome completeness
and the overrepresentation of these genes to evaluate
contamination due to improper clustering of multiple
genomes. These are frequently-used measures for eval-
uating the quality of draft microbial genomes (Parks et
al., 2015; Bowers et al., 2017), wherein high complete-
ness and low contamination are desirable. In the rest
of this report, we conduct a deeper analysis of these
genome clusters, compared to the results of a paral-
lel genome binning analysis, to validate their quality,
plausibility, and usefulness for addressing fundamen-
tal questions concerning the partitioning of microbial
genomes.

In total, ProxiMeta reconstructed 252 genome clus-
ters from the fecal sample. From this set, 50 genome
clusters were near-complete and 64 were substantially
complete (<10% contamination for each; were greater
than 90% complete more than 70% complete, respec-
tively; Figure 2a, Table S2).
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Figure 2: ProxiMeta Hi-C deconvolution recovers more genomes of higher quality from a single sample than genome binning
procedures. a) Genomes adhering to CheckM criteria for completeness (near-complete: >90% complete, <10%
contamination; substantially complete: >70% complete, <10% contamination; moderately complete: >50% complete,
<10% contamination). b) Genomes adhering to MIMAG criteria for genome quality (high quality: >90% complete,
<5% contamination, >=18 amino acids with tRNAs, 16S, 23S, and 5S rRNA genes present; moderate quality: >50%
complete, <10% contamination). c) Completeness and contamination of ProxiMeta genome clusters, ordered by
completeness. d) Completeness and contamination of MaxBin genome bins, ordered by completeness. Contamination
values >100 were replaced with 100 for visualization purposes. (c) and (d) are scaled to have the same x-axis range.
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These categories correspond to previously pro-
posed thresholds for evaluating different levels of draft
genome quality (Parks et al., 2015). Using a differ-
ent set of criteria that also take into account rRNA
and tRNA content, we found 10 “high quality” and 75
“medium-quality” draft genomes (Figure 2b). A total
of 35,157 contigs >1000 bp in length were assigned to
a genome cluster, which altogether accounted for 353
Mb of sequence. For further statistics on these clusters
see Table S1 and Table S2.

Comparison of ProxiMeta versus conven-
tional metagenomic binning.

To evaluate the performance of our ProxiMeta ap-
proach in comparison to more traditional binning
methods, we used the same shotgun assembly con-
tigs to infer genome bins using MaxBin, a commonly-
used genome binning method based on coverage and
tetranucleotide composition Wu et al., 2014; Wu, Sim-
mons, and Singer, 2016. We compared the obtained
genome bins to our Hi-C-assisted genome clusters.
The MaxBin assembly yielded 29 complete or nearly-
complete genomes (Figures 2a, 2b, Table S3). Addi-
tional criteria, such as the presence of universal RNA
genes, indicated that genomes from the MaxBin as-
sembly showed relatively high contamination relative
to a Hi-C-based approach (Figure S2). There were
189 genome bins in total, composed of 89,622 contigs
>1000 bp representing a total of 471 Mb of sequence.
It is notable that the MaxBin output includes more to-
tal sequence than ProxiMeta, in spite of reconstructing
fewer high quality genomes. ProxiMeta genome clus-
ters collectively had an N50 twice as high as MaxBin
genome bins (26.8 KB vs. 13.3 KB).

We next compared the results of the two procedures,
ProxiMeta clustering and MaxBin binning, by examin-
ing whether they identify the same genomes. Given
that we do not expect a perfect mapping of genomes,
we used the MinHash k-mer hashing implemented in
Mash (Ondov et al., 2016) to compute distances be-
tween each cluster/bin pair, and mapped MaxBin bins
to ProxiMeta clusters if they were reciprocal best Mash
hits with >500/1000 k-mer hashes as representing
the same genome. By this criterion, among genomes
>70% complete and <10% contamination, we found
that the two methods reconstructed approximately the
same genome in 32 cases, whereas MaxBin found 10
genomes missed by ProxiMeta, and ProxiMeta found
32 genomes missed by MaxBin. Thus, differences be-
tween the two methods are not primarily due to sam-
pling different sets of genomes, but rather due to dif-
fering abilities to ascertain the same pool of genomes.

We compared the clustering/binning results to a
null model, where contigs were shuffled randomly
while preserving the size distributions of clusters and
bins (Figure S3). We found that these shuffled group-

ings showed contamination roughly proportional to
the total amount of sequence, unlike either method,
and moreover relatively few random genome group-
ings showed high completeness under either method.
Consequently, both ProxiMeta and MaxBin reconstruct
genomes that are more plausible (more complete and
less contaminated) than random contig groupings.
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Figure 3: Representative genome from ProxiMeta deconvolu-
tion of a fecal sample align almost perfectly to known
reference genomes. Each link drawn represents a
BLAST alignment between the ProxiMeta genome
cluster and the reference genome, with color indi-
cating the percent identity of each pair of aligned
sequence.

Performance improvements of ProxiMeta
are due to higher stringency of ProxiMeta
genome clusters.

As noted above, the differences between ProxiMeta and
MaxBin were most marked for the highest-quality cat-
egories, in which ProxiMeta produces more genomes
(Figure 2a, 2b). One explanation for the high quality of
Hi-C genomes may be found by examining the contam-
ination levels of the two sets of genomes. We found
that ProxiMeta minimizes contamination compared
to MaxBin (Figure 2c-d), suggesting that ProxiMeta
correctly groups contigs based on evidence of physical
proximity whereas MaxBin erroneously joins contigs
from multiple genomes (presumably due to spuriously
similar coverage and k-mer profiles). Common criteria
for describing genomes require contamination <10%,
which removes 43% of MaxBin genome bins from con-
sideration, as opposed to 2% of ProxiMeta genomes.

It is also interesting to note that ProxiMeta
produced many more low-contamination, low-

Page 4 of 12

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 5, 2017. ; https://doi.org/10.1101/198713doi: bioRxiv preprint 

https://doi.org/10.1101/198713
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hi-C deconvolution of a human gut microbiome yields high-quality draft
genomes and reveals plasmid-genome interactions.

completeness genome clusters compared to MaxBin
(Figures 2c, 2d). For example, the number of genome
clusters with <50% completeness but also <10% con-
tamination was 135 for ProxiMeta, but only 42 for
MaxBin. This is further reflected in the overall smaller
sizes of the ProxiMeta-derived genomes (Figure S4).
This specificity likely reflects ProxiMeta’s use of DNA
fragment proximity to avoid spurious contig groupings,
yielding incomplete clusters of contigs but generally
avoiding contamination by erroneously grouping con-
tigs that in reality originated from different genomes.
While these genome clusters are not complete char-
acterizations of microbial genomes, they nonetheless
contain valuable information about the community
compared to ungrouped contigs.

We next assessed the relationship between qual-
ity and relative abundance of putative genomes from
the two methods. Sequencing coverage of contigs is
an important source of information for MaxBin (as
well as for similar genome binning methods; Imelfort
et al., 2014; Albertsen et al., 2013), but is not used
by ProxiMeta, and thus the relative abundance of a
genome in the community may be a contributing fac-
tor to performance differences. We observed that pu-
tative genomes from the two methods showed fairly
similar relative abundances in range and overall distri-
bution, though ProxiMeta genome clusters were some-
what less abundant (Figures S5a, S5b, p = 2.4E-6,
Kolmogorov-Smirnov test). However, when we exam-
ined only fairly-complete genomes (>80% complete,
<10% contamination) we found that fairly-complete
genome abundances were similar between the two
methods (Figures S5c, S5d, p = 0.20, Kolmogorov-
Smirnov test). In both methods, the least abundant
complete genomes have ameasured relative abundance

on the order of 0.05%. This analysis suggests that
ProxiMeta’s superior performance is not strictly due to
improved ascertainment of lower-abundance genomes,
but due to more accurate ascertainment of moderate-to-
high-abundance genomes. This was further confirmed
by analyzing the relationship between abundance, com-
pleteness, and contamination across the two sets of
putative genomes (Figure S6).

Genome-genome alignment confirms
that ProxiMeta faithfully reconstructs
previously observed genomes.

We investigated 5 genome clusters showing highest sim-
ilarity to database genomes to confirm that genome
clusters are plausible as draft genomes (Table 1, Figure
3, Figure S7, Table S4). We selected these 5 genome
clusters based on >99% completeness, <2% contami-
nation, and >600/1000 k-mer hashes matching their
reference (Table S2). This approach of searching k-mer
MinHash databases with ProxiMeta clusters tended
to yield a single best hit (Table S2). These genomes
generated contiguous and high-identity alignments to
reference genomes, on average covering 93.3 +/- 1.1%
(Table 1). They also included relatively little additional
sequence (93.3 +/- 82.7 Kb) that did not align to the
reference. Thus, for the “positive control” of known
genomes, ProxiMeta generally reconstructs genome
clusters consistent with references.

A similar analysis with 5 MaxBin genome bins re-
vealed similar results (unsurprisingly, given that both
represented the top genomes for their method), though
these showed on average somewhat lower coverage of
the reference (Table S5).

Table 1: Comparing reconstructed genomes to closely-related references.

Genome
Assembly
(cluster id)

Cluster
length (Kbp)

Genome
length
(Kbp)

Genome
fraction (%)

Percent
identity (%)

Alignment
Length (Kbp)

ASM15539v1 2 2,137 2,203 92.5 93.0 2,039
ASM98033v1 3 2,781 2,654 97.4 99.7 2,582

MGS230 7 2,756 2,682 93.6 92.3 2,476
MGS131 4 3,036 2,836 91.6 99.0 2,596
MGS45 12 2,643 2,537 91.3 93.1 2,318

Comparing taxonomic diversity ascer-
tained using ProxiMeta vs. MaxBin.

Interestingly, most of the genomes found by ProxiMeta
but not by MaxBin were from the order Clostridiales
(Figure 4a; 14 more genomes at level Clostridiales, 6
more genomes at level Lachnospiraceae). This suggests
that ProxiMeta may be more successful at separating

multiple related genomes than MaxBin or similar bin-
ning methods.

We visualized the taxonomic distribution of Prox-
iMeta genome clusters according to their degree of nov-
elty, using single-copy marker genes to place them into
a reference phylogeny. We found that both methods
recovered genomes from substantially similar clades
(Figure 4b, Figure S8), likely due to the restricted tax-
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onomic range of the human gut microbiome. In agree-
ment with the coarser last-common-ancestor analysis,
we observed that ProxiMeta genome clusters without
near matches in the RefSeq reference database were
more frequently placed as Clostridial taxa, and were
additionally quite widely distributed in this diverse but
poorly-characterized taxon.
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Figure 4: Phylogenetic placement of genomes derived from
ProxiMeta. (a) All genomes included had complete-
ness >80% and contamination <10%. The most
specific possible taxonomic level was inferred using
pplacer (Matsen, Kodner, and Armbrust, 2010) as
run within CheckM on single-copy marker genes. (b)
The tree is a prokaryotic phylogeny from Parks et al.,
2015. Locations of genome clusters in the phylogeny
are as determined by pplacer. Clades without any
representation among genomes from this study were
collapsed.

ProxiMeta deconvolutes novel genomes.

Although most of the genomes we recovered showed
substantial homology to previously-described genomes,
we also found 14 genomes >80% complete that ap-
peared to be entirely novel (<20/1000 k-mer hashes
to any single reference genome). Among these novel
genomes, 10 belonged to class Clostridia (Figure 4b,
Table S2), which is common in the gut and whose
diversity is relatively poorly-characterized by culture-
based methods (Manson, Rauch, and Gilmore, 2008;
Eckburg et al., 2005). However, there were also promi-
nent non-Clostridial novel genomes, for instance an
actinobacterial genome of very high quality (cluster 1,
Table S2).

ProxiMeta accurately clusters plasmid
contigs with genomes of origin.

One of the most difficult challenges in metagenomic
analysis is the ascertainment of plasmids and the iden-
tification of the organisms that carry them (Wu et
al., 2014). ProxiMeta Hi-C’s intra-cellular proximity-
ligation junctions capture inter-chromosomal DNA in-
teractions and plasmid-genome interactions (Burton
et al., 2014), and can therefore facilitate metagenomic-
based plasmid analysis. To this end, we used a database
of plasmid sequences derived from NCBI to identify
putative plasmid sequences among all contigs in the
original shotgun metagenome assembly, identifying
in total 435 contigs with a >95% identity match of
at least 500 bp to a plasmid sequence. Of these con-
tigs, 185 showed at least one Hi-C read to be mapped.
Among these 185 contigs, a majority (137) were as-
signed to a genome cluster (Figure 5a). Unclustered
contigs were linked only to themselves, suggesting
that intra-plasmid Hi-C interactions are stronger than
plasmid-genome interactions.
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Figure 5: ProxiMeta associates plasmids with prokaryotic genomes and associates contigs from the same plasmid. (a) All contigs
homologous to plasmid sequences with mapped Hi-C reads were separated by genome cluster, or assigned to a "None“
category (far right). (b) The degree of each clustered contig in the Hi-C graph (number of other contigs to which it
is connected by Hi-C reads) according to classification status. (c) The abundance of each clustered contig in the Hi-C
graph, as estimated by shotgun read pseudoalignment. (d) The Hi-C graph, restricted to plasmid contigs connected to at
least one other plasmid contig. Pertinent features of the graph are indicated. (e) A subgraph of the Hi-C graph showing
interactions of a plasmid contig (red circle) with two different highly complete high-quality genome clusters.

The genome cluster with the most plasmid contigs
was cluster 11, which we inferred to be Eubacterium
eligens based on k-mer hashes (Table S2). Notably, the
reference genome for this strain carries a megaplasmid
of approximately 600 kb in size. We confirmed that all
of the plasmid contigs in this draft genome are homol-
ogous to this megaplasmid (Table S6), comprising a
total of ∼100 kb of contig sequence. However, other
sequences similar to this megaplasmid were clustered
into other genomes (in total comprising another ∼100
kb, almost all in clostridial clusters; Table S7), sug-
gesting that the megaplasmid might exist in multiple
genomes, or that some related organisms carry dif-
ferent variants of this large plasmid. Moreover, given
the high rate of gene gain and loss in bacteria (Kuo
and Ochman, 2009; Mira, Ochman, and Moran, 2001;
Puigbò et al., 2014), it is probable that the reference
sequence is not definitive.

We next examined whether plasmid contigs exhib-
ited specific patterns in the Hi-C connectivity graph.
We observed that plasmid contigs generally had many
more Hi-C read links than non-plasmid contigs (Fig-
ure 5b); potential explanations for this observation
could include both high abundance of plasmid DNA
relative to chromosomal DNA and gene sharing, such
that plasmids are connected to multiple genomes. By
examining mapped read-depths in the shotgun data,
we found that plasmid contigs were, on average, much
more abundant than those contigs without plasmid
homology (Figure 5c).

Next, we grouped plasmid sequences together into
putative plasmids, naively considering simple con-
nected components in the Hi-C graph (Figure 5d). Dif-
ferent contigs in these plasmid clusters mapped to the
same reference plasmid 62% of the time, strongly sug-
gesting that this procedure identified and clustered
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plasmids (Table S7). The largest of these assemblies
included sequences of the E. eligens megaplasmid men-
tioned above, though it was joined by a single appar-
ently spurious link to contigs of a large Bacteroidetes
plasmid.

To evaluate the evidence for gene sharing of plas-
mid contigs, we examined their connectivities to dif-
ferent genome clusters. Notably, a clustering assign-
ment by ProxiMeta may reflect only a dominant host,
rather than reflecting the full spectrum of Hi-C inter-
actions of a plasmid contig. We therefore examined
the local neighborhoods of the Hi-C graph around plas-
mid contigs nodes, and found several such instances
where plasmids were linked to multiple clusters, sug-
gesting gene sharing (Figure 5e, Figure S9). For exam-
ple, contigs of the E. eligens-associated megaplasmid
are connected to several complete genome clusters of
Clostridiales species (Figure 5e, Figure S9), suggesting
that in spite of their relatively divergent chromosomal
genomes these species may yet share plasmid DNAwith
each other. Notably, average nucleotide identity (ANI)
estimates for these genomes (∼70% for clusters 11
and 24) are low enough that highly conserved vertical
inheritance is an unlikely explanation for these con-
tacts, as in this analysis we require perfect alignments
for Hi-C read mapping. This information about gene
sharing can be exploited in future development of Prox-
iMeta to better understand this important component
of microbial community dynamics.

Discussion

The superior performance of ProxiMeta Hi-C relative to
genome binning methods can be attributed to its direct
ascertainment of physical proximity between DNA se-
quences. This physical, intra-cellular proximity repre-
sents a higher standard of evidence than indirect corre-
lates such as sequence composition or estimated abun-
dance, which are the two measures most commonly
used by metagenome binning methods (Imelfort et al.,
2014; Dick et al., 2009; Kang et al., 2015; Wu, Sim-
mons, and Singer, 2016). In this paper we found the
performance of ProxiMeta superior to a traditional bin-
ning approach as evaluated by standard metagenome
quality metrics. Future improvements in the wet-lab
and computational aspects of ProxiMeta will further
improve the recovery of high-quality genomes from
microbiome research efforts.

Another feature of ProxiMeta that is particularly
valuable is its ability to localize specific sequences to
particular genomes with high confidence. We demon-
strate this feature in this study by linking plasmids to
host genomes, but in principle the same could be ap-
plied to antibiotic resistance genes, secretion systems,
phage, metabolic pathways, or any other sequences of
interest. We anticipate that this technology will be of

broad usefulness in medical, industrial, and academic
applications.

One further important feature of ProxiMeta is that
even small, incomplete genome fragments generated
by this method represent relatively high-quality group-
ings, as they are based on physical proximity rather
than indirect correlates. The large number of such high-
quality fragments argues that further methodological
improvements to ProxiMeta, or simply deeper Hi-C
sequencing, have the potential to yield even higher
numbers of high-quality genomes.

In conclusion, directly measuring physical co-
occurrence of DNA sequences within cells makes Prox-
iMeta an effective method for the characterization of
complex microbial communities, both in the deconvo-
lution of complete genomes and the pursuit of targeted
biological questions.

Methods

Sample preparation

A fecal sample was collected from a human subject.
For shotgun sequencing, DNA was extracted using the
zymoBIOMICS DNA Mini kit and 100 ng was sheared
to 500 bp average insert length and used to create a
shotgun library using the HyperPrep kit (KAPA Biosys-
tems). Approximately 200 µL of solid material from
the same sample was crosslinked for Hi-C using stan-
dard protocols (Burton et al., 2014) and split into two
fractions. Each fraction was used to generate a Hi-C
library using the proprietary ProxiMeta protocol devel-
oped by Phase Genomics (standard Hi-C protocols can
be found in (Burton et al., 2014; Belaghzal, Dekker,
and Gibcus, 2017)). One Hi-C sample was fragmented
using Sau3AI (New England Biolabs) and the other
using MluCI (New England Biolabs) prior to proximity-
ligation.

The shotgun and Hi-C libraries were sequenced
on the Illumina HiSeqX platform, generating 151 bp
paired-end reads. Sequencing of the shotgun library
produced 250,884,672 read pairs. Sequencing of the
Hi-C libraries generated 41,733,770 read pairs for the
Sau3AI library and 48,798,091 read pairs for the MluCI
library.

Hi-C read processing

Using the Hi-C read datasets generated as described
above, we trimmed each read to 75 bp to avoid dis-
carding reads sequencing through a Hi-C junction. We
mapped each read dataset (MluCI and Sau3AI) to the
shotgun assembly described above using bwa aln (Li
and Durbin, 2009) while requiring perfect matches (op-
tion -n 0). A total of 907,243 read pairs from the MluCI
dataset and 1,361,063 read pairs from the Sau3AI
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dataset mapped mates to different contigs, and these
reads were used for deconvolution.

Metagenomic assembly

We trimmed adapter sequences from shotgun reads
using BBDuk (BBTools) with options k=23, ktrim=r,
mink=12, hdist=1, minlength=50, –tpe, –tbo. Next,
we performed quality trimming of the reads using BB-
Duk and options qtrim=rl, trimq=10, minlength=50,
chastityfilter=True. We then normalized read coverage
using BBNorm with options target=40, mindepth=2.
With this trimmed and normalized dataset, we per-
formed a de novo shotgun assembly using metaSPAdes
and default parameters (Nurk et al., 2017). We fi-
nally evaluated this assembly (and downstream group-
ings) using quast (Mikheenko, Saveliev, and Gurevich,
2016).

ProxiMeta deconvolution

We performed deconvolution of the shotgun assem-
bly into genomes using ProxiMeta software, which is
similar to the previously described MetaPhase tech-
nique (Burton et al., 2014), but using proprietary clus-
tering and post-processing steps tooled towards high-
complexity samples. We filtered out all reads that were
not properly paired, unmapped, non-uniquely mapped,
had a MAPQ score less than 20, or were paired with a
mate with an identical seqid. We filtered out contigs
that were less than 1000 bp in size, or which contained
fewer than 2 restriction sites for the relevant enzyme.
We combined datasets of the two restriction enzymes
into a graph, and applied a normalization to the read
counts connecting each pair of clusters by accounting
for the estimated abundance of each contig. We clus-
tered contigs into genome clusters using a proprietary
MCMC-based algorithm based on their Hi-C linkages.
This analysis yielded a total of 252 genome clusters.

Genome binning

To generate an independent set of genome bins to
which we could compare ProxiMeta results, we used
the same shotgun assembly and MaxBin v2.2.4 (Wu
et al., 2014; Wu, Simmons, and Singer, 2016) to group
contigs into genome bins, while discarding contigs less
than 1Kbp (MaxBin default), maximum Expectation-
Maximization iteration number of 50, and probability
threshold of EM final classification of 0.9. This yielded
a total of 189 genome bins.

Analysis of genome clusters and bins

We evaluated each genome cluster using a variety of
tools. We used checkM (Parks et al., 2015) to esti-
mate the likely completeness and contamination of

each genome cluster based on marker genes, including
a taxonomic assignment according to pplacer (Matsen,
Kodner, and Armbrust, 2010). We used Mash (Ondov
et al., 2016) to search a RefSeq database for similar
reference genomes using k-mer hashing. We further
used Infernal (Nawrocki and Eddy, 2013) with the
Rfam database (Nawrocki et al., 2015) (with options
–rfam –noali –cpu=2) and Aragorn (Laslett and Can-
back, 2004) (with options -ps -w) to detect rRNA and
tRNA genes respectively in genome clusters.

For comparisons of ProxiMeta-derived and
binning-derived genomes to closely-related reference
genomes, we used MetaQuast with default parameters
(Mikheenko, Saveliev, and Gurevich, 2016) to gener-
ate similarity summaries and Circoletto (Darzentas,
2010) to visualize similarity comparisons based on
BLAST identity. For genomes generated by MaxBin,
we selected genome bins in a similar fashion to those
selected from ProxiMeta clusters, though we were
obliged to loosen the inclusion criteria slightly to >97%
complete, <2% contamination, and >580/1000 k-mer
hashes to the reference.

Abundance quantification

We quantified abundance of each contig in each of the
two genome groupings using pseudoalignment of the
shotgun reads with kallisto using default parameters
(Schaeffer et al., 2017; Bray et al., 2016). For each
cluster, we used the median abundance (quantified as a
transcripts per million estimate) among all component
clusters as a point estimate of the overall cluster abun-
dance. We preferred the median because some contigs
(particularly small ones) showed dramatically higher
estimates, possibly attributable to higher copy-number
elements such as plasmids or to collapsed multi-copy
regions, yielding a long upper tail of the abundance
distribution.

Plasmid analysis

We downloaded all sequences labeled as plasmids
from NCBI (accessed August 18, 2017) and subjected
these to light manual curation to remove duplicates
and sequences smaller than 500 bp. We used BLAT
(Kent, 2002) to search all contigs of the raw shot-
gun assembly against this database (options -t=dna
-q=dna -maxIntron=0 -minIdentity=95 -minMatch=5
-minScore=200). We further filtered out all alignments
shorter than 500bp or covering <10% of the contig’s
length to remove spurious alignments and contigs of
which plasmid sequences were only a very small pro-
portion. We took the remaining alignments as evidence
that contigs contained plasmid sequence. For further
analysis we used the igraph R library (Csardi and Ne-
pusz, 2006) to conduct and visualize network analyses
of the Hi-C connectivity graph.
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Data availability

Short-read data has been deposited into NCBI un-
der the BioProject ID: PRJNA413092 with short

reads found under SRR6131124, SRR6131123 and
SRR6131122.
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