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Abstract 

 

Carcinogenesis is an evolutionary process whereby cells accumulate multiple 
mutations. Besides the “driver mutations” that cause the disease, cells also accumulate 
a number of other mutations with seemingly no direct role in this evolutionary process. 
They are called passenger mutations. While it has been argued that passenger 
mutations render tumors more fragile due to reduced fitness, the role of passenger 
mutations remains understudied. Using evolutionary computational models, we 
demonstrate that in the context of tumor suppressor gene inactivation (and hence 
fitness valley crossing), the presence of passenger mutations can accelerate the rate of 
evolution by reducing overall population fitness and increasing the relative fitness of 
intermediate mutants in the fitness valley crossing pathway. Hence, the baseline rate of 
tumor suppressor gene inactivation might be faster than previously thought. 
Conceptually, parallels are found in the field of turbulence and pattern formation, where 
instabilities can be driven by perturbations that are damped (disadvantageous), but 
provide a richer set of pathways such that a system can achieve some desired goal 
more readily. This highlights, through a number of novel parallels, the relevance of 
physical sciences in oncology.  
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Introduction 

The development and progression of cancer is an evolutionary process whereby cells 

accumulate multiple mutations, which enables them to break out of homeostasis and to 

proliferate out of control. The mutations that enable this process typically confer a 

selective advantage to cells and have been called driver mutations [1-5]. Tumors, 

however, are highly heterogeneous and cells also contain a variety of other mutations, 

called passenger mutations [1-5]. They arise from random mutations in sequences that 

do not contribute directly to disease, facilitated by exposure to mutagenic processes 

and lack of repair [6]. While passenger mutations have been thought to have minimal 

biological consequences on the disease process, the properties and role of passenger 

mutations remain poorly understood. Recent data indicate that passenger mutations 

carry a certain fitness cost [7,8], and that they might therefore render tumors more 

fragile, which could be exploited therapeutically [4,7,9].  One particular evolutionary 

process that is central to carcinogenesis and cancer progression in the inactivation of 

tumor suppressor genes (TSG) 9,10. This typically requires two mutational hits because 

both copies of the gene need to be inactivated to achieve full loss of function [10]. 

Different tumor suppressor genes display different characteristics, and in principle, the 

inactivation of only one copy of the gene either results in no change in the fitness of the 

cell, or it could entail a certain selective disadvantage. To inform model assumptions, 

we will specifically consider the tumor suppressor gene APC, which becomes 

inactivated early in the development of colorectal cancer [11]. In this case, data indicate 

that heterozygous APC+/- cells can experience reduced fitness, which means that a 

fitness valley has to be crossed for the inactivation of APC to occur.  Experiments with 
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colorectal cancer cell lines revealed that a truncating mutation in APC has a dominant 

effect resulting in a spindle checkpoint defect, aneuploidy, and a reduced proliferation 

rate of cells [12,13]. Similar effects have been found in vivo in APCMin/+ mice [14], which 

have an APC+/- germ line mutation.  In general, if a copy of a tumor suppressor gene is 

lost as a consequence of  aneuploidy, the cell is likely to suffer a fitness reduction (see 

e.g. references [15,16]).  Motivated by these studies, our paper investigates the effect of 

passenger mutations on the evolutionary dynamics of tumor suppressor gene 

inactivation, assuming that a fitness valley needs to be crossed. 

 

 

Results 

We consider a computational model for the inactivation of tumor suppressor genes 

(TSG) [17,18], where cells only acquire an advantage once they have accumulated two 

separate mutations, but are neutral or disadvantageous in the presence of only one of 

the mutations. For convenience, cells with both copies of the TSG present are referred 

to as TSG+/+, and cells with one or both copies of the TSG inactivated are referred to as  

TSG+/- and TSG-/-  respectively. Much evolutionary work has been performed that 

studied how fast such fitness valleys/plateaus can be crossed, depending on the 

scenario under consideration [19-30]. To study the role of passenger mutations, we 

employ a stochastic agent-based model that is also referred to as a contact process. 

This model assumes the existence of N spots, which can either be empty or contain a 

cell. Each time step, the system is sampled M times, where M is the number of cells 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 13, 2017. ; https://doi.org/10.1101/202531doi: bioRxiv preprint 

https://doi.org/10.1101/202531


	

	

present. If the chosen spot contains a cell, it can divide and die with defined 

probabilities. When a cell is chosen to divide, a target spot is chosen randomly from the 

whole system, and division only proceeds if this target spot is empty. Upon division, 

mutations can occur that give rise to different cell genotypes (Figure 1A). TSG+/+ cells 

without passenger mutations are denoted by x and attempt division with a probability Lx 

per cell per update. TSG+/- cells without passenger mutations are denoted by y and 

have a fitness cost of  s1 (s1 ≤1), such that their division probability is s1 Lx. TSG+/+ cells 

that also contain passenger mutations are denoted by z and have a fitness cost s2 

(s2<1). TSG+/- cells that also contain passenger mutations are denoted by w and have 

a fitness cost  s3 (s3<1). Both TSG+/- populations, y and w, can give rise to the 

advantageous TSG-/- double mutant. All the mutation processes are defined in Figure 

1A. For simplicity, each cell type is assumed to die with the same rate D. The model 

was simulated repeatedly, and the fraction of realizations when an advantageous TSG-/- 

mutant had been generated by a defined time threshold was determined. We compared 

simulations without passenger mutations (n=0) with those that did allow the generation 

of passenger mutations (n>0). Two different regimes have been observed [24]: In one 

regime, the double-hit mutant arises without the intermediate TSG+/- mutant reaching 

fixation, a process called stochastic tunneling. The second regime can be called 

sequential fixation, were the intermediate TSG+/- mutant fixates before the double 

mutant is created.  

 

For the tunneling regime, we find that the presence of passenger mutations can 

accelerate the generation of the advantageous double mutant (Figure 2Ai). The 
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magnitude of this effect increases with higher fitness of the passenger mutants, s2 

(Figure 2Ai). This requires that (i) the number of passenger mutations that can be 

accumulated, n, is sufficiently large relative to the inverse of the mutation rate and (ii)  

the intermediate TSG+/- mutation reduces the fitness to a lesser degree in cells with 

passenger mutations than in cells without passenger mutations, i.e. there are epistatic 

interactions between drivers and passengers [31,32]. The exact condition is s3>s1s2, 

see Supplementary materials for computational details. This is a necessary condition for 

the passenger mutations to accelerate evolution (both in the tunneling regime and in the 

sequential fixation regime, see below). In the Discussion section, we describe a specific 

example where the fitness of TSG+/- mutants is context dependent, indicating that an 

assumed occurrence of epistasis in such cells is biologically relevant.  

 

The reason for the accelerated evolution in the presence of passenger mutations 

is that these mutations increase the relative fitness of the intermediate TSG+/- cells 

through a set of complex interactions. If the wild-type population consists mostly of cells 

without passenger mutations, the evolutionary dynamics are largely driven by the x, y 

system, which is relatively slow due to the more pronounced disadvantage of y. The 

larger the proportion of cells with passenger mutations, however, the more the 

evolutionary dynamics are driven by the z, w system, where the intermediate mutant 

suffers an overall lower fitness cost. This allows the total population of intermediate 

TSG+/- cells to persist at a higher selection-mutation balance, making it more likely to 

generate the double mutant. The average rate of double mutant generation can be 

calculated from ordinary differential equations (ODEs, see Supplementary Materials), 
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which is a reasonable model that quantifies population dynamics in the tunneling 

regime. The rate of double mutant generation is increased by the presence of 

passenger mutants, with more pronounced effects for larger values of s2 (Figure 3), thus 

explaining our observations. If the fitness of passenger mutants crosses a threshold 

(which depends on the total rate of passenger mutant generation), the cells with 

passenger mutations, z, outcompete those without passenger mutations, x (because z 

is generated by x). In this regime, the advantageous double mutants are created fastest 

because the intermediate TSG+/- mutants (w) have the highest relative fitness out of all 

scenarios. This might be a biologically relevant parameter region given the ubiquitous 

occurrence of passenger mutations in cancer cells, and even in aged non-cancerous 

tissue [33,34]. We note that in this model, the generation of cells with passenger 

mutations does not increase the total population size and hence does not provide 

additional targets for mutation. The accelerating effect of passengers stems from the 

overall reduction in population fitness and the consequent elevation of the relative 

fitness of intermediate TSG+/- mutants.    

 

The extent to which passenger mutants accelerate fitness valley crossing further 

depends on the relative fitness of intermediate TSG+/- mutants without passenger 

mutations (s1, the fitness cost of population y). The closer the fitness of the intermediate 

mutant y-population is to the fitness of the wild-type x-population (s1→1), the less 

pronounced the accelerating effect (compare Figures 2Ai-iii).  This is also seen in the 

ODE predictions, which show that for larger values of s1, the average rate of double 

mutant generation is accelerated by passenger mutations to a lesser extent (Figure 3). 
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The reason is that for higher s1, the intermediate TSG+/- mutants (y) have less of a 

disadvantage compared to population x, which leaves less room for improvement by the 

z, w interactions. Thus, if the intermediate TSG+/- mutant is almost neutral with respect 

to the wild-type, passenger mutants are not likely to accelerate evolution in the 

tunneling regime.  

 

Next, consider the parameter regime where the intermediate mutant fixates prior 

to the generation of the double mutant (sequential fixation). This tends to occur for 

parameters where the generation of the double mutant takes a longer period of time due 

to lower mutation rates or smaller population sizes. In this scenario, the accelerating 

effect of passenger mutations can be significantly more pronounced than in the 

tunneling regime (Figure 2B). For a physiologically realistic rate of gene inactivation  

(10-7 per gene per division), even if the TSG+/- mutants without passenger mutations 

only have a 0.1% fitness cost (s1=0.999), and if the passenger mutations lead to a 1% 

fitness cost (s2=0.99), the presence of passenger mutations can accelerate the 

emergence of the double mutant almost 3-fold  (Figure 2Bii). If the fitness cost of the 

intermediate TSG+/- mutant is 1%, the acceleration can be up to 35-fold (Figure 2Biii). 

The reason is that the fixation probability of the TSG+/- mutants is markedly higher 

when the dynamics are governed more by the z,w system compared to the x,y system.  

 

These results remain robust if instead of assuming that all passenger mutants 

have the same fitness cost, those fitness cost values are taken from a power function 
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distribution between zero and one, with averages given by s2 and s3. This potentially 

allows for some significantly deleterious passenger mutants even though many of them 

can be close to neutral (Supplementary Materials). Results are further shown to remain 

robust in a spatially explicit model, where dividing cells place their offspring in a 

randomly chosen spot nearby (Supplementary Materials). Finally, the same patterns are 

observed  in a constant population Moran process, which represents tissues where 

normal cells are maintained at carrying capacity and their homeostatic turnover is driven 

by cell death (Supplementary Materials).  

 

While our models have shown that the presence of passenger mutations can 

accelerate the rate of TSG inactivation, the question arises how significant this 

acceleration can be. To gauge that, we compare the degree of acceleration that can be 

observed in our passenger mutation model to the acceleration observed in the context 

of a different and unrelated process that occurs in colorectal carcinogenesis, and that is 

known to lead to clinically significant accelerations in evolutionary processes: tumor 

initiation in Lynch Syndrome patients. It is known that Lynch Syndrome patients develop 

colorectal tumors with a significantly faster rate than the general population. This is 

because Lynch Syndrome patients are characterized by a germ line mutation in one 

copy of a mismatch repair (MMR) gene. Hence a single point mutation can frequently 

generate MMR-deficient cells that promote mutant accumulation and hence the 

inactivation of APC. Therefore, we describe tumor formation in the context of Lynch 

Syndrome (without passenger mutations) in the same kind of computational framework 

studied so far (Figure 1B), and determine the extent to which evolution is accelerated in 
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that model. If the degree of acceleration observed in the Lynch Syndrome model is of a 

similar magnitude as the acceleration observed in the passenger model, then there is 

indication that passenger-induced acceleration can be clinically highly relevant. If the 

acceleration in the passenger model is much less than that in the Lynch Syndrome 

model, then the passenger-induced acceleration is less relevant.  In particular, we 

investigated by how much the mutation rate in the mismatch repair (MMR)-deficient 

cells has to be increased to obtain a degree of evolution acceleration that is comparable 

to that observed with passenger mutations. To do so, we assumed that genes are 

inactivated with a rate of 10-7 per division, and that an intermediate TSG+/- cell carries a 

1% fitness cost, consistent with data that documented reduced growth of APC+/- cells 

[12]. As before, passenger mutants were also assumed to carry a 1% fitness cost. If we 

assume that MMR-deficient cells do not carry a fitness cost, we obtain that MMR-

deficient cells need to have a 100-500 fold increase in their mutation rate to accelerate 

evolution to a similar degree as seen in corresponding passenger mutant simulations 

(Figure 4a). If MMR-deficient cells have a 1% fitness cost, then the fold increase in the 

mutation rate has to be 1000-5000 fold to match the acceleration afforded by the 

presence of passenger mutations (Figure 4b). Because this increase in mutation rate is 

thought to be typical for mismatch-repair deficient colorectal cells [35], this suggests that 

passenger mutations can have an accelerating effect that is similar in magnitude to 

acceleration in Lynch Syndrome, pointing to potentially strong biological relevance. If 

APC+/- cells are characterized by a significantly lower fitness cost, or if the assumed 

epistatic interactions between drivers and passengers are significantly weaker, this 

effect would be reduced.  
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Discussion and Conclusion 

Previous work reported that the presence of passenger mutations can make tumors 

more fragile in certain circumstances due to a reduction in overall fitness [4,7,9]. Here 

we have shown that in the context of fitness valley crossing, costly passenger mutations 

can actually accelerate evolution because they reduce overall population fitness and 

thereby provide an environment in which intermediate TSG+/- mutants enjoy a higher 

relative fitness. Although passenger mutations are selected against, their accumulation 

(even at low numbers) provides access to additional pathways to cancer where the 

fitness valley is shallower and easier to cross. It has been previously suggested that the 

process of carcinogenesis could be promoted through a reduction of overall population 

fitness due to aging and other insults, thus providing a more favorable fitness landscape 

for the evolution of malignant cells [36]. Our passenger mutations model fits well into 

this concept.  

 

The models further indicate that this can result in an acceleration of evolution that 

can be comparable to that observed in patients with a predisposition to genetic 

instability. This suggests that the “baseline” rate of TSG inactivation in the absence of 

genetic predisposition and genetic instability can be significantly faster than previously 

thought, which might be conceptually important for understanding the ability of cells to 

accumulate a number of carcinogenic mutations in a relatively short period of time [37]. 

This applies not only to tumor progression, but also to cancer initiation in healthy tissue, 
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which has been shown to contain a significant number of passenger (and driver) 

mutations [34], especially at advanced age [33].  

 

Our analysis identified possible epistatic interactions between driver and passenger 

mutations [31,32] to be important for the reported dynamics, and the literature supports 

this notion. Indeed, it has been pointed out that the classification of mutations into 

passengers and drivers might be an over-simplification, because the fitness of a given 

cancer phenotype can be context-dependent [38].  More specifically, we turn again to 

the tumor suppressor gene APC in colorectal carcinogenesis. There are mouse strains 

that are heterozygous for the APCMin (multiple intestinal neoplasia) mutation, called 

APCMin/+ mice. They frequently develop intestinal tumors [39,40]. Significant variation in 

tumor incidence occurs among APCMin/+ mice with identical APC mutations and which 

are kept under identical laboratory conditions [39,40]. This variation is caused by 

differences in the genetic background of the APC mutation, which in turn depends on 

variation in “modifier genes” in different mouse strains [39,40] [41]. These are not 

involved directly in the process of carcinogenesis, but modify the phenotypic properties 

of APC+/- cells. This indicates that passengers can modulate the fitness of TSG+/- 

cells, as required by our model to observe accelerated evolution.   

 

 Our work adds to the growing literature that investigates the dynamics of fitness 

valley crossing under various conditions [19-21,23,25-28,42-44]. Beyond this immediate 

discipline, however, it is also interesting to consider our results in a wider scientific 

sense. In the presence of passenger mutations, cellular evolvability is predicted to 
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increase through the introduction of disadvantageous cells. The presence of these 

disadvantageous cells lowers overall population fitness, allowing intermediate TSG+/- 

mutants to have an overall higher relative fitness, which promotes faster generation of 

the TSG-/- double mutant. Studies of the onset of turbulence as well as pattern forming 

systems have revealed mechanisms of instability that act in a very similar manner. For 

example, in turbulence it has been shown that three-dimensional perturbations on 

parallel shear flows are damped more strongly than two-dimensional ones; but because 

of the slow decay, they provide a new base flow on which a new and richer class of 

fluctuations can grow more rapidly (details in Supplementary Materials). This provides a 

fundamental connection between principles in the physical sciences and the particular 

oncology question under consideration.    
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Figure 1: Schematic representation of computational models. (A) Model of TSG 

inactivation in the context of passenger mutations. The cell types and associated fitness 

values (F) are explained in the main text. The arrows show the mutational steps that 

generate the different cell types. The top row of cell types depicts standard evolutionary 

processes where the two copies of the TSG are sequentially inactivated. In addition, the 

model assumes that with a rate nu, cells can accumulate passenger mutations. Cells 

with passenger mutants can also inactivate the TSG, as shown. (B) Model of TSG 

(APC) inactivation in the context of Lynch Syndrome and mutator phenotypes in 

colorectal cancer. This model does not contain passenger mutations. The basic 

evolutionary processes (along the top row of cells) are the same as above. The 

difference is that unmutated TSG+/+ cells can inactivate mismatch repair mechanisms 

with a rate u, giving rise to mutator phenotypes that are characterized by an elevated 

mutation rate ufast.   

 

Figure 2. Accelerated crossing of fitness valleys (i.e. inactivation of TSGs) in the 

presence of passenger mutations. The computer simulations were run repeatedly, and 

the fraction of realizations in which the double mutant was created before a time 

threshold Tthr was determined. The number of simulations / sample sizes required by 

rare events is large and were chosen using reference [45]. For a fixed margin of error, 

the more rare the events, the larger the sample size. The margins of errors of our study 

are acceptable, as even in the worst situation (N=543449, recorded fraction=0.000077), 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 13, 2017. ; https://doi.org/10.1101/202531doi: bioRxiv preprint 

https://doi.org/10.1101/202531


	

	

the margin of error is less than one third of the estimated proportion. Each graph plots 

the “fold acceleration”, which is the fraction of runs where the double mutant was 

generated in the presence of passenger mutations with fitness s2, divided by the same 

measure in the absence of passenger mutations. The Z-score for population proportions 

was used to determine whether the difference in outcome between simulations with and 

without passenger mutations was statistically significant (the distribution under the null 

hypothesis, when the two true proportions are the same, is asymptotically normal). (A) 

Parameter regime where the double mutant evolved through a tunneling pathway. 

Panels (i-iii) show that a reduced cost of the intermediate TSG+/- mutant (higher value 

of s1) leads to a reduced effect of passenger mutations on the rate of evolution.  

Differences between outcomes with and without passenger mutations were statistically 

significant for (i) s2≥0.93, (ii) s2≥0.93, and (iii) s2=0.99. (B) Parameter regime where the 

double mutant evolves by sequential fixation, in which passenger mutants have a 

stronger accelerating effect on the rate of evolution. Differences between outcomes with 

and without passenger mutations were statistically significant (p<0.05) for (i) s2≥0.95, (ii) 

s2≥0.93, and (iii) s2=0.98 & s2=0.99. In panel (iiii), the fold acceleration was only 

determined for the highest values of s2 (where the effect is strongest), due to the 

extensive computational cost associated with this parameter set. Remaining parameters 

were chosen as follows. Lx=0.15, D=0.01, s3=s2. n=5x10-2/µ, N=2500. The results do not 

depend on the assumption s3=s2. How s3 needs to depend on s2 and s1 for the results to 

hold is defined in the supplementary materials. The time thresholds are given as follows 

for the individual graphs. (A) (i) Tthr=8,000; (ii) Tthr=8,000, (iii) Tthr=5,000; (B) (i) 

Tthr=120,000; (ii) Tthr=1,200,000; (iii) Tthr=1,500,000. 
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Figure 3. The average behavior of the contact process can be described by ordinary 

differential equations given in the Supplementary Materials. From these ODEs, 

equilibrium populations sizes, and hence the average rate of double mutant generation 

at equilibrium, can be calculated. In the presence of passenger mutations, this is given 

by (s1y*+  s3w*)[1-(x*+y*+z*+w*)/k], where * denotes equilibrium population sizes. This is 

divided by the rate of double mutant generation in the absence of passenger mutations, 

given by s1y*[1-(x*+y*)/k]. This yields the fold increase of the double mutant generation 

rate that is mediated by passenger mutations, and is plotted in the graph for different 

values of s1 (fitness cost of TSG+/- cells without passenger mutations, y). Parameter 

values were chosen as follows: r=0.1, d=0.01, µ=10-5, n1=2, n2=5000, k=2500.  

 

Figure 4. Rate of TSG inactivation in two types of simulations: assuming Lynch 

Syndrome, which involves the acquisition of microsatellite instability or MSI, i.e. cells 

with a faster mutation rate (Figure 1B); and assuming the passenger mutant pathway 

(Figure 1A). The computer simulations were run repeatedly, and the fraction of 

realizations in which the double mutant was created before a time threshold Tthr was 

determined. For the Lynch Syndrome model, simulations with different accelerated 

mutation rates, ufast, were run.  The fraction of runs that resulted in double mutant 

generation were divided by the fraction obtained without the existence of mutator 

phenotypes (MSI cells), which is the fold-acceleration depicted by the gray bars. The 
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black bar shows the fold-acceleration derived from the passenger mutation model 

(without mutator cells), but with otherwise identical parameters. This was done in two 

settings (A) assuming that mutator cells do not suffer from a fitness cost; (B) assuming 

that mutator cells are characterized by a 1% fitness cost, brought about by the frequent 

generation of deleterious mutations. The parameters were chosen as follows. Lx=0.15, 

D=0.01, s1=0.99, s2=0.99, s3=0.99 µ=10-7. For (a) sM=1, sM2=1. For (b) sM=0.99, 

sM2=0.99, n=5x10-2/µ, Tthr=1,500,000, N=2500. 
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1 ODE description

1.1 Logistic model

We used the contact process as a basic model to study the effect of passenger mutations on
the rate of fitness valley crossing, i.e. on the emergence of a TSG−/− mutant. The contact
process is a stochastic agent-based model and is described in the main text. Because the cell
populations are assumed to be well-mixed (mass action), the average behavior of the contact
process can also be studied by means of the ordinary differential equations. Denote by x,
y, z, and w the wild type cells, TSG+/− cells, TSG+/+ cells with passenger mutations, and
TSG+/− cells with passenger mutations respectively. The replication rate of wild type cells
is denoted by r and the death rate by d. The fitness values for these types of cells are given
by 1, s1, s2, and s3 respectively. Let us denote by W the term describing the competition of
the cell types:

W = 1− x+ y + z + w

K
,

where K has the meaning of carrying capacity. Then the ODEs are given by

ẋ = r (1− (n1 + n2)µ)xW − dx, (1)

ẏ = rn1µxW + s1ry (1− n2µ)W − dy, (2)

ż = rn2µxW + s2rzW (1− n1µ)W − dz, (3)

ẇ = rn1µs2zW + rn2µs1yW + rs3wW − dw. (4)

By rescaling time we can assume that r = 1 for the purpose of the analysis below (the value
of d is rescaled accordingly). The replicative cost of the various mutants are given by s1, s2,
and s3, which can have values between zero and one. We further assume that

s3 ≤ s2 ≤ s1. (5)

The death rate of cells is given by d and for simplicity is assumed to be identical for all
cell populations. The number of different passenger mutations that a cell can accumulate is
given by n1, and the number of mutations that give rise to the TSG−/− genotype is given
by n2 = 2. The mutation rate is denoted by µ. Finally, the system is characterized by the
carrying capacity K, which describes the maximum number of cells that can exist in this
system. We do not explicitly include the dynamics of the advantageous TSG+/+ cells in this
model because the contact process simulations are stopped as soon as the first cell of this
type is generated.

System (1-4) cannot be obtained by averaging the dynamics of the contact process, be-
cause of the presence of higher moments. The ODE’s however provide valuable insights into
the system behavior.

In the subsequent analysis, we denote for convenience

q = n2µ, u = n1µ,

which are the total mutation rates of the passenger mutation production and TSG inactiva-
tion, respectively. There are 5 distinct steady states in this system, only one of which is of
interest to us.

2
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Selection mutation equilibrium. If q < 1− s3, this model is characterized by a stable
equilibrium that describes the coexistence of all cell populations. It is determined by a
balance between the rate at which these cells are generated by mutation, and the rate at
which they are lost as a result of their selective disadvantage (costs s1, s2, and s3). Hence,
this level is referred to as the “selection-mutation balance”. The dominant populations are
x and z, and they are given by

x = x̄ =
K(1− d− q)(1− s2 − q)

(1− q)(1− s2)
, z = z̄ =

Kq(1− d− q)
(1− q)(1− s2)

, (6)

where terms of the order u and higher are omitted. The other two populations are of the
order u:

y = ȳ =
Ku(1− d− q)(1− s2 − q)

(1− q)(1− s1)(1− s2)
, w = w̄ =

Kqu(1− d− q)(1− q − s1s2)
(1− q)(1− s1)(1− s2)(1− s3 − q)2

, (7)

where terms of the order u2 and higher are omitted. At this equilibrium, the total population
is given by

x̄+ ȳ + z̄ + w̄ = K

(
1− d

1− q

)
(again, only the zeroth order in u is kept).

Double-hit mutant production. The quantity of interest is the total rate of double-hit
mutant (TSG+/+) production, given by

Q = (s1ȳ + s3w̄)W,

where the number of intermediate TSG+/− cells is taken at the selection-mutation equilib-
rium. This quantity represent the total division rate of the two populations, y and z, capable
of producing double-hit mutants; the factorW represents the effect of finite carrying capacity.
We have

Q =
Kud(1− d− q)[s1(1− s2)(1− s3)− q(s1 − s3)]

(1− q)(1− s1)(1− s2)(1− s3 − q)
,

To determine whether passenger mutations facilitate the production of double-hit mutants,
we consider the quantity dQ/dq. Positivity of this quantity indicates that a higher intensity
of passenger mutant production will increase the rate of double-hit mutant production. We
have

dQ

dq
= c2q

2 + c1q + c0, (8)

where coefficients c0, c1, c2 depend on s1, s2, s3, and d:

c0 = (1− s3)(s3 − s1s2 − d(s3 + s1(1− 2s2 − (1− s2)s3))), (9)

c1 = 2(1− s3)(ds1(1− s2) + s1s2 − s3), (10)

c2 = (s3 − s1s2)(1− s3)− d(s1 − s3). (11)

Depending on the signs of these coefficients, the behavior of the quadratic function (8)
changes. All the cases are mapped out in figure 1 for two different parameter sets. The signs

3
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Figure 1: Phase diagrams showing the sign regions of parameters c0, c1, and c2, equations
(8) and (9-11). The axes are s3 (horizontal) and d (vertical). The other parameters are fixed
at (a) s1 = 0.95 and s2 = 0.9; (b) s1 = 0.86 and s2 = 0.85.

of the three coefficients are shown as regions in the d− s3 diagram, with s1 and s2 fixed to
particular values. The three lines in figure 1 (a) and (b) correspond to c0 = 0, c1 = 0, and
c2 = 0. It can be shown that all three lines intersect in one point, given by

s3 = d =
s1s2

1− s1(1− s2)
≡ s∗. (12)

If s1 and s2 are close to 1, then this quantity is also close to 1, and it does not make biological
sense to consider values of d larger than this threshold. Therefore, there are 4 biologically
relevant regions in the s3 − d space, which are all marked in the figure.

Let us denote by q1 and q2 the smaller and the larger roots of the polynomial (8), respec-
tively:

−c1 ±
√
c21 − 4c0c2

2c2
.

In the four different regions of figure 1, the quantity dQ/dq is positive in different intervals of
the parameter q. These are listed below. Recall that dQ/dq > 0 is interpreted as “passenger
mutations facilitate double-mutant production”.

(1) In this regime, see figure 2(1), dQ/dq > 0 for all values of q if

s3 > s∗, (13)

see definition (12). This regime is depicted by the upper parabola in figure 2(1), and
by the horizontal line marked “(1) upper” in figure 3. Note that this regime is not

4
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always relevant. Biologically speaking, the fitness s3 must be bounded as

s1s2 ≤ s3 ≤ s2.

It may happen that s∗ > s2, as in figure 1(a); in this case, this regime is biologically
irrelevant. In general, we have

s∗ < s2

as long as

s2 < s1 <
1

2− s2
.

This inequality holds for the parameters of figure 1(b). The region of values allowed
by this inequality for s1 shrinks as s2 grows. If inequality (13) is reversed (the lower
parabola in figure 2(1)), that is,

1 + d+ s1s2 −
√

(1 + d+ s1s2)2 − 4(ds1 + s1s2)

2
< s3 < s∗,

the condition for dQ/dq > 0 becomes

q < q1

(note that q2 > 1 in this regime). This is illustrated by the horizontal line marked “(1)
lower” in figure 3(a).

(2) and (3) These regimes are characterized by

s1(d+ s2 − 2ds2)

1− d+ ds1 − ds1s2
< s3 <

1 + d+ s1s2 −
√

(1 + d+ s1s2)2 − 4(ds1 + s1s2)

2
.

In these regimes, see figure 2(2) and (3), dQ/dq > 0 for all values of q if

q < q2,

see also the horizontal line marked “(2) and (3)” in figure 3(a).

(4) Finally, we have the regime where

s1s2 < s3 <
s1(d+ s2 − 2ds2)

1− d+ ds1 − ds1s2
,

figure 2(4). In this case, we have

q1 < q < q2

(see the upper parabola in figure 2(4) and the horizontal line marked “(4) upper” in
figure 3(a)). In the biologically irrelevant case where s3 < s1s2, no values of q will
correspond to dQ/dq > 0 (the lower parabola in figure 2(4) and the horizontal line
marked “(4) lower” in figure 3(a)).
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Figure 2: The four regimes identified in figure 1. For each regime, the parabola dQ/dq
(equation (8)) is plotted schematically, to show the position of the relevant interval of q,
depending on the signs of the coefficients c0, c1, c2.

Figure 3: The s3 − q diagram showing the regions where dQ/dq is positive; the parameters
correspond to figure 1(b). (a) For a fixed d = 0.1, the regions where dQ/dq > 0 and
dQ/dq < 0 are shown in yellow and blue respectively. Dashed horizontal lines correspond
to fixing a particular value of s3, in the four regimes of figure 1(b). (b) The contour lines
dQ/dq = 0 for three different values of d (dQ/dq is positive above the lines).
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The region where dQ/dq > 0 shrinks as d grows, as shown in figure 3(b), and the ODE
model predicts that the effect of the passenger mutations weakens for larger d. On the
other hand, the applicability of the ODE approach to explain the behavior of the stochastic
system breaks down for large values of d, because as d grows relative to the division rates,
the population size shrinks, and in the stochastic system, instead of the phenomenon of
tunneling, one observes sequential fixation. As a consequence, we find that the passenger
mutations play a stronger enhancing role in the creation of double-hit mutants.

1.2 Quasispecies equations

An alternative way to model the dynamics of the competing types in a fixed population is
to use the quasi species type equations:

ẋ = x[1− (n1 + n2)µ]− φx, (14)

ẏ = [n1µx+ s1(1− n2µ)y]− φy, (15)

ż = [n2µx+ s2(1− n1µ)z]− φz, (16)

ẇ = [s1n2µy + s2n1µz + s3w]− φw, (17)

where

φ =
x+ s1y + s2z + s3w

N
,

and N is the total, fixed population. The difference between this system and the previous
one is the fact that in equations (14-17) the population always remains equal to N , that
is, x + y + z + w = N , and the number of independent variables is effectively three, and
the death rate (given by φ) is non-constant, as it adjusts to exactly balance the divisions.
In equations (1-4), the death rate is fixed (to d), the population is non-constant, and all
populations are independent variables. While equations (1-4) are analogous to the contact
process, quasispecies equations can be thought as an ODE equivalent of the Moran process.

The mutation-selection equilibrium of this system is stable if q < 1− s3, and is identical
to that given by equations (6,7), where we set d = 0 and replace K → N . At this equilibrium
we have

φ = 1− q.

Note that although the equilibrium of the quasi species system is given by equations (6,7)
with d = 0, it cannot be obtained from system (1-4) directly by setting d = 0 in the ODEs.
Equations (1-4) with d = 0 do not describe the same dynamics as the quasi species system;
one obvious difference is the absence of death in the former system, and the death rate given
by φ in the latter. Aside from the trivial equilibrium, equations (1-4) with d = 0 have a
family of neutral equilibria that satisfy x̄ + ȳ + z̄ + w̄ = K, with no further restrictions on
the values of the individual populations.

Returning to the quasi species system, consider the function that defines the rate of
double-hit mutant production. This is given by

Qqs = s1ȳ + s3w̄,
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Figure 4: A parametric plot showing the dependence of the production term for the quasi
species equations, Qqs, on the rate of passenger mutations, q. The horizontal axis is s3, with
vertical dashed lines restricting this quantity to the range s1s2 ≤ s3 ≤ s2. The vertical axis
is q, with dashed lines restricting this quantity to the range 0 ≤ q ≤ 1 − s3. The shaded
regions correspond to the quantity Qqs increasing with q (i.e. dQqs/dq > 0); they correspond
to condition (18). The parameters s2 = 0.9, and (a) s1 = 0.99; (b) s1 = 0.95.

where the number of intermediate TSG+/− cells is taken at the selection-mutation equilib-
rium. We have

Qqs =
Nu(1− q)[s1(1− s2)(1− s3)− q(s1 − s3)]

(1− s1)(1− s2)(1− s3 − q)
,

where terms of order u2 and higher are omitted. It is interesting to investigate how this
quantity depends on q, the rate of passenger mutant production. Considering dQqs/dq, we
can see that this quantity can be positive only if s3 > s1s2, which, together with inequality
(5) gives the following bounds for the quantity s3:

s1s2 < s3 ≤ s2.

Under this restriction, we have dQqs/dq > 0 as long as

1− s3 −

√
s3(1− s3)(s3 − s1s2)

s1 − s3
< q < 1− s3 +

√
s3(1− s3)(s3 − s1s2)

s1 − s3
. (18)

This is illustrated in figure 4.

2 The contact process: further details

2.1 Stochastic fitness of passenger mutants

The main analysis has been done by assigning passenger mutants an “average fitness”, defined
by their division rate. In reality, however, different passenger mutations can bring about
different costs to fitness. Therefore, we also constructed a model in which the fitness cost
of the passenger mutants was drawn from a distribution with values between 0 (maximum
cost) and 1 (no cost, the division rate is equal to that of the x population), and a mean
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of s2. Specifically, upon generation, each mutant cell was assigned a fitness value, given by
g1/α, where g is a uniformly distributed random number in [0, 1], and α = s2/(1− s2). This
corresponds to the beta distribution B(α, 1), which is a power function distribution on [0, 1],
which has mean s2. Similar methodology was used to generate passenger mutants with one
copy of TSG inactivated (type w). As seen in Figure 5, the accelerating effect of passenger
mutations remains robust in this model.

2.2 Spatially structured cell populations

We also investigated a model version which violated the assumption of mass-action. Thus,
upon division, we assumed that the offspring cell could only be placed into the immediate
vicinity of the source cell. To do so, we constructed a two-dimensional grid and tracked the
location of each cell on the grid. The place for the offspring cell was randomly chosen from
the eight nearest neighboring spots. If the chosen spot was empty, the daughter cell was
placed there, otherwise, the division was aborted. Apart from that, the model remained the
same. As seen in Figure 5, the accelerating effect of passenger mutations remains robust in
the spatially structured model, although the extent of the acceleration is less pronounced in
the spatial compared to the non-spatial model. The reason is that evolution of the double
mutant in the absence of passenger mutations is accelerated in the spatial relative to the
non-spatial model, while the rate of evolution is the spatial and non-spatial models is similar
in the presence of passenger mutations. The effect of space on the rate of fitness valley
crossing in this type of model is complex. Space can accelerate or slow down the rate of
fitness valley crossing, depending on the exact parameter combinations. Therefore, in the
spatial model, the effect of passenger mutations can in principle be either weaker than in
the non-spatial model (as shown here), or it can be stronger. This has not been explored
further here, because it is beyond the scope of the current investigation.

3 Moran process

As explained in the main text, the assumptions underlying the contact process were also for-
mulated as a Moran process, which assumes a constant population. We analyzed the model
assuming that passenger mutants are characterized by an average fitness cost, s2, and that
cells can mix perfectly (mass action). The Moran process was used for the following rea-
sons: (i) This model is more amenable to mathematical analysis, which is presented below.
(ii) The constant population Moran process is more suited to describing the evolutionary
dynamics in healthy tissue, which is tightly regulated by homeostatic mechanisms. While
the occurrence of passenger mutations is mostly discussed in the context of a cancer, the
literature documents an array of seemingly non-functional mutations in the healthy tissue
of people, especially with advancing age [6, 11].
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Figure 5: Effect of alternative model assumptions. The fold-acceleration of evolution due
to passenger mutants is plotted for different models. The computer simulations were run
repeatedly, and the fraction of realizations in which the double mutant was created before a
time threshold was determined. The fold acceleration is the fraction of runs where the double
mutant was generated in the presence of passenger mutations divided by the fraction in the
absence of passenger mutations. This is done for one specific value of passenger mutant
fitness, s2/s3. The standard model corresponds to the model explored in the main text.
The random fitness models draws passenger mutant fitness from a distribution as explained
in the text of the supplementary materials. The spatial model assumes that cell offspring
can only be placed into the eight nearest neighboring spots, as explained in the text of the
supplementary materials. All three fold increases are statistically significant by the Z-test
(p < 0.05). Parameters were chosen as follows. Lx = 0.15, D = 0.01, µ = 10−6, s1 = 0.99,
s2 = 0.99, s3 = 0.99, n = 5× 10−2/µ, Tthr = 120, 000, N = 2500.
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3.1 Numerical simulations

The accelerating effect of passenger mutations is the same as that observed in the contact
process, and the parameter dependencies remain qualitatively the same as in the contact
process. Figure 6 repeats the analysis and shows the same plots as done for Figure 2 in the
main text.

A mathematical analysis of the Moran process is presented next.

3.2 No passenger mutations

We envisage a Moran process where a constant population of N cells is in a steady turnover.
At each elementary update, each cell has the same probability to die (given by 1/N), and
then this cell is replaced by an offspring of another cell. Cells are chosen for reproduction
with a probability proportional to their fitness value. One unit of time corresponds to N
elementary updates. We will investigate a general process where three types of mutations
are possible. The first mutation (which corresponds to the inactivation of the first copy of a
TSG) happens with probability u1 per cell division. The second copy of a TSG is inactivated
with probability u2 . Finally, passenger mutations are acquired with probability nu.

Denote the number of TSG+/− mutants of fitness s1 by i, i ∈ {0, 1, 2, . . .}, and by ϕi(t)
the probability to have i mutants at time t. State E corresponds to the creation of the first
double-hit mutant, and this is an absorbing state. We have:

Pi→i+1 =
N − i
N

(
N − i

s1i+ (N − i)
u1 +

si

si+ (N − i)
(1− u2)

)
≈ u1 +

s1i

N
(1− u2),

Pi→i−1 =
i

N

N − i
s1i+ (N − i)

(1− u1) ≈
i

N
(1− u1),

Pi→E =
s1i

s1i+ (N − i)
u2 ≈

s1iu2
N

, (19)

where we neglected i compared to N . We will rescale time by having N elementary events
during a unit time. The function ϕi(t) satisfies the following Kolmogorov forward equation,

ϕ̇i = ϕi−1 (Nu1 + s1(i− 1)(1− u2)) + ϕi+1(i+ 1)(1− u1)− ϕi (Nu1 + (s1 + 1− u1)i) .

Introducing the probability generating function,

Ψ(x, t) =
∑
i

ϕix
i,

we can derive the following 1st order PDE:

∂Ψ

∂t
=
∂Ψ

∂x

(
x2s1(1− u2) + (1− u1)− x(s1 + 1− u1)

)
−Nu1Ψ(1− x).

Suppose x(t) is the solution of the initial value problem,

ẋ = x2s1(1− u2) + 1− u1 − x(s1 + 1− u1), x(0) = 1. (20)
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Figure 6: Accelerated evolution through passenger mutations in the Moran process model.
The computer simulation was run repeatedly, and the fraction of realizations in which the
double mutant was created before a time threshold Tthr was determined. Each graph plots
the “fold acceleration”, which is the fraction of runs where the double mutant was generated
in the presence of passenger mutations with fitness s2, divided by the same measure in the
absence of passenger mutations. (A) Parameter regime where the double mutant evolved
through a tunneling pathway. Panels (i-iii) show that a reduced cost of the intermediate
TSG+/− mutant (higher value of s1) leads to a reduced effect of passenger mutations on
the rate of evolution. (B) Parameter regime where the double mutant evolves by sequen-
tial fixation, in which passenger mutants have a stronger accelerating effect on the rate of
evolution. Parameters were chosen as follows. We assumed s3 = s2, although results do
not depend on this constraint, see above; n = 5 × 10−2/µ. The total population size was
N = 2500. The time threshold are given as follows. (A) (i) Tthr = 5, 000; (ii) Tthr = 500; (iii)
Tthr = 200. (B) (i) Tthr = 50, 000; (ii) Tthr = 50, 000. Differences between outcomes with
and without passenger mutations were statistically significant (p < 0.05) for A(i) s2 ≥ 0.85,
A(ii) s2 ≥ 0.9, A(iii) s2 ≥ 0.95, B(i) s2 ≥ 0.85, B(ii) s2 ≥ 0.8.
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The probability to create a double-hit mutant by time T is given by

P (T ) = 1− exp

(
−
∫ T

0

R(t) dt

)
, (21)

where the tunneling rate is given by

R(t) = Nu1(1− x(t)). (22)

3.3 Including the possibility of passenger mutations

Consider a Moran process. We assume that n� 1, such that the rate of passenger mutations
is much larger than the TSG mutation rate. Let us ignore the TSG mutations, and find the
population equilibrium. This can be done by considering the quasi-species equations:

Ẋ1 = r1X1(1− µ)− φX1, Ẋ2 = r1X1µ+ r2X2 − φX2, φ ≡ r1X1 + r2X2, X2 = 1−X1,
(23)

where µ is a one-way mutation rate and r1 > r2 are the fitness values of the two populations,
X1 and X2, respectively. We have

X1 = 1− r1µ

r1 − r2
, X2 =

r1µ

r1 − r2
, (24)

as long as µ < 1− r2
r1

; otherwise we have X1 = 0 and X2 = 1.
Populations x and w have the fitness values of 1 and s2 respectively, and the mutation

rate is given by nu. Therefore, we can assume that at a quasi-steady state, we have a
population of wild type cells of size x = N − j0, and the population of cells with passenger
mutations, w = j0, given by

j0 =
Nnu

1− s2
.

The mean fitness of this “resident” population is given by

(N − j0) + s2j0
N

= 1− nu.

We further assume that the following processes happen in the system:

• population w acquires passenger mutations, population z, at rate 2u.

• population x creates mutants y at rate 2u,

• population z creates double-hit mutants at rate u2,

• population y creates double-hit mutants at rate (1− nu)u2.

By following the same method as before, we denote the number of mutants of fitness s1
by i, and the number of mutants of fitness s3 by j, with i, j ∈ {0, 1, 2, . . .}. The function
ϕi,j(t) is the probability to have i and j mutants of each type at time t. As before, state
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E corresponds to the creation of the first double-hit mutant, and this is an absorbing state.
We have:

Pi,j→i+1,j =
N − i− j

N

(
(N − j0)(1− nu)u1 + s1i(1− nu)(1− u2)

s1i+ s3j + (1− nu)(N − i− j)

)
≈ (N − j0)(1− nu)u1 + s1i(1− nu)(1− u2)

N(1− nu)
,

Pi,j→i,j+1 =
N − i− j

N

(
s2j0u1 + s3j(1− u2) + s1inu(1− u2)
s1i+ 32j + (1− nu)(N − i− j)

)
≈ s2j0u1 + s3j(1− u2) + s1inu(1− u2)

N(1− nu)
,

Pi,j→i−1,j =
i

N

(N − i− j)(1− nu)

s1i+ s3j + (1− nu)(N − i− j)
(1− u1) ≈

i

N
(1− u1),

Pi,j→i,j−1 =
j

N

(N − i− j)(1− nu)

s1i+ s3j + (1− nu)(N − i− j)
(1− u1) ≈

j

N
(1− u1),

Pi,j→i−1,j+1 =
i

N

s2j0u1 + s3j(1− u2) + s1inu(1− u2)
s1i+ s3j + (1− nu)(N − i− j)

≈ i

N

s2j0u1 + s3j(1− u2) + s1inu(1− u2)
N(1− nu)

,

Pi,j→i+1,j−1 =
j

N

(N − j0)(1− nu)u1 + s1i(1− nu)(1− u2)
s1i+ s3j + (1− nu)(N − i− j)

≈ j

N

(N − j0)(1− nu)u1 + s1i(1− nu)(1− u2)
N(1− nu)

,

Pi,j→E =
(s1i+ s3j)u2

s1i+ s3j + (1− nu)(N − i− j)
≈ (s1i+ s3j)u2

N(1− nu)
,

where we neglected i and j compared to N . We will rescale time by having N elementary
events during a unit time. The function ϕi,j(t) satisfies the following Kolmogorov forward
equation,

(1− nu)ϕ̇i,j =

ϕi−1,j [(N − j0)(1− nu)u1 + s1(i− 1)(1− nu)(1− u2)]
+ ϕi+1,j(i+ 1)(1− nu)(1− u1)
+ ϕi,j−1 [s2j0u1 + s3(j − 1)(1− u2) + s1inu(1− u2)]
+ ϕi,j+1(j + 1)(1− nu)(1− u1)

+ ϕi+1,j−1
j0
N

(i+ 1)s2u1

+ ϕi−1,j+1
N − j0
N

(j + 1)(1− nu)u1

− ϕi,j

(
[(N − j0)(1− nu) + s2j0]u1 + (i+ j)(1− u1)(1− nu) + s1i+ s3j

+
u1
N

[s2j0i+ (N − j0)j(1− nu)]

)
. (25)
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In the above equation, higher order terms (nonlinear in i/N, j/N) are omitted. Introducing
the probability generating function,

Ψ(x, y, t) =
∑
i

ϕi,jx
iyj,

we can derive the following 1st order PDE:

(1− nu)
∂Ψ

∂t
= fx(x, y)

∂Ψ

∂x
+ fy(x, y)

∂Ψ

∂y
− g(x, y)Ψ, (26)

where

fx(x, y) = x2s1(1− nu)(1− u2) + (1− u1)(1− nu) + xys1nu(1− u2)

− x
[
s1 + (1− nu)(1− u1) +

u1
N
s2j0

]
+ y

j0
N
s2u1,

fy(x, y) = y2s3(1− u2) + (1− u1)(1− nu)

− y
[
s3 + (1− nu)(1− u1) +

u1
N

(N − j0)(1− nu)
]

+ x
N − j0
N

u1(1− nu),

g(x, y) = u1 [(N − j0)(1− x)(1− nu) + s2j0(1− y)] . (27)

Suppose that x(t) and y(t) are the solutions of the initial value problem,

ẋ = fx(x, y)/(1− nu), x(0) = 1, (28)

ẏ = fy(x, y)/(1− nu), y(0) = 1. (29)

Then the probability to create a double-hit mutant by time T is calculated as

Ppass(T ) = 1− exp

(
−
∫ T

0

Rpass(t) dt

)
, (30)

where the tunneling rate, R(t), is given by

Rpass(t) =
u1 [(N − j0)(1− x(t))(1− nu) + s2j0(1− y(t))]

1− nu
. (31)

We can see that if n = 0 (no passenger mutations), we have j0 = 0 and R(t) = Rpass(t), that
is, equations (22) and (31) coincide, as they should.

3.4 Comparisons

Figure 7 summarizes the theoretical results and compares them with the results of stochastic
simulations. For simplicity we assumed that the fitness of TSP+/− cells is s2, irrespective
of their passenger mutation status; similar results will hold for a range of assumptions on
fitness s3. The fitness of TSG+/− cells in the absence of passenger mutants, s1, was fixed,
and several values of parameter s2 = s3 were tested. For each value of s2, a large number
of simulations were run. Each simulation was stopped when either a TSG−/− mutant was
created, or a stopping time T was reached. For each simulation, we recorded whether a
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Figure 7: The probability to create a TSG−/− mutant by time T . Numerical simulations are depicted in
blue, and analytical results (formulas (21) and (30)) in red. The parameters are s1 = 0.9, u = 10−4, u1 = 2u,
u2 = u, n = 500, T = 2000. The number of simulation was more than 500, 000 for each value of s2.

TSG−/− mutant was created, and then the probability of TSG−/− creation by time T was
calculated. This is shown by blue dots in figure 7. Thes numerical results were compared
with quantity Ppass, equation (30), which is plotted as a red curve in figure 7. The horizontal
lines in this figure correspond to the numerically calculated (blue) and analytically obtained
(red, formula (21)) values P (T ), the probability to generate a TSG−/− mutant in the absence
of passenger mutations.

First of all, we observe that numerical and analytical results are in a very good agreement.
Secondly, we can see that the probability of TSG−/− mutant creation is higher in the presence
of passenger mutation, as long as the fitness of the corresponding cells is not too low (but
lower than the base fitness of single hit mutants, s1).

4 Connections between the role of 3D perturbations

in turbulence/ patterns and passenger mutations in

2-hit mutant generation

The idea that initially disadvantageous or passenger mutations might allow cells make a
more rapid transition to carcinogenesis by providing more effective pathways for normal
cells to reach that state stems from analogies with the onset of turbulence in fluids and the
nucleation of dislocation defects in natural patterns.

No one area of science stands alone. Analogies can provide useful insights. Behavior seen
in one context can be seen in another where it initially it might not have been expected. The
common denominator is often mathematics. For example, freak waves, about which ocean
navigators have many terrifying stories and experiences, also occur, surprisingly perhaps, in
optical fibers. Their common origin is modulated wave-trains whose behaviors are captured
in water waves, in optics, in plasmas by non-integrable corrections (in the water wave context,
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the full Euler equations) to the canonical and universal nonlinear Schroedinger equation for
wave envelopes. In the right circumstances, the slowly modulated wave-train can evolve into
a signal in which one sees a burst of very large amplitude waves over very few wavelengths.
The phenomenon is robust and universal.

The analogies which motivated the present studies had their origins in the onset of
turbulence and in pattern formation. The study of the onset of turbulence in shear flows
goes back to the classical experiments of Osborne Reynolds in 1883 on pipe flow in which
water flows along a pipe [14, 15]. He found that typically the flow will be in the turbulent
state at values of the Reynolds’ number, UD/ν, of about 2000 and laminar below that.
U is the flow velocity say on the center line, D the pipe diameter and ν the kinematic
viscosity. If he was very careful to avoid creating disturbances at the inflow point (he could
use a funnel to minimize these), then he, and others later, showed that one could retain the
laminar character of the flow up to Reynolds numbers of over 10,000. The conclusion is that
turbulence onset in pipes is a nonlinear and three dimensional phenomenon and requires
finite amplitude perturbations to trigger the turbulent state.

That conclusion is supported by the negative results emanating from linear stability
theory which, for shear flows such as pipe flow, plane Poiseuille flow (pressure driven flow
in a channel), Couette flow (flow between oppositely moving plates), boundary layer flow
(flow over a flat plate) does not predict what is observed. For both pipe and Couette flow,
the flows are linearly stable for all Reynolds numbers. For Poiseuille flow, linear instability
sets in at R ∼ 6000. In all cases, the observed onset of turbulence typically occurs at
values of R much less than what linear stability predicts. Moreover, the observed turbulent
fields have a richer character than do the original shear flows. The latter usually have the
form (U(y), 0, 0), namely a velocity in the x or streamwise direction depending on one of
the spanwise directions (the radial coordinate in pipes, the vertical coordinate in Couette,
Poiseuille and boundary layer flows). On the other hand, turbulent flow depends on all three
coordinates, x, y and z. Linear stability theory also gave rise to another misleading result.
A theorem, due to Squire [16], says that of all the disturbances, the two dimensional ones
are the least damped and, in the case of Poiseuille flow for R > 6000, would be the most
amplified. So surely, if they were the least damped, they would also be the most important.
Clearly that is not what is observed. Turbulence is strongly three dimensional. So linear
stability theory does not necessarily identify the right set of shapes from which a turbulent
field grows.

Such a conclusion was very evident in the early experiments of [7] (and earlier papers and
colleagues) who demonstrated that turbulence is clearly a three dimensional phenomenon.
Squire’s theorem pointed in the wrong direction. A theoretical breakthrough came with the
work of [1] who discovered that three dimensional spanwise oscillations could give rise to
shapes which grew algebraically in time. Such behavior could lead to a redistribution of
streamwise velocity via what Marten Landahl called “up-lift”. Start with a two dimensional
x, y perturbation with its vorticity (the swirl of the fluid) in the z direction. Think that the
fluid rotates around the vortex line in a clockwise direction, down in front, up in back. Now
perturb that vortex line, think cos(bz), so that near the front of this loop at z = 0, there is
a flow which lifts fluid parcels up. The slower moving fluid which is carried away from the
boundary into the faster moving flow outside can have a significant effect on the velocity
profile U(y) and even can produce points of inflexion where U ′′(y) = 0. In boundary layers,
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such behavior can lead to very fast instabilities and turbulent bursts. Variations on this
theme, namely the presence of algebraic in time growth of disturbances which are very weakly
exponentially damped (have a t dependence F (R)t ∗ exp(−at), F depends on the Reynolds
number R, a is very small) which can lead to amplitudes at which linear and nonlinear terms
in the flow equations are of equal importance, have been discussed in many papers in the
past forty years. We list some notable ones: [1, 4, 9, 2, 13, 3, 17, 18, 19, 20, 5]. Trefethen et
al identified the source of t growth multiplied by weak exponential decay behavior as generic
if the linear stability operator L is non-normal. That is the case for shear flows. In short, the
message is that comparing the relative and very slow exponential damping rates of different
structures and then choosing the least damped or most amplified state as the one which
controls the subsequent dynamics is not always correct.

In an altogether different context, similar behavior occurs when a pattern adjusts from
one wavelength to another. Let w = A cos(kx + f) sin z, A exp(if) is called the complex
amplitude, be the vertical velocity field of a set of roll-like cells whose axes are along the y
direction. If the wavenumber k is too much larger than some preferred value k0, then an
instability, called the Eckhaus instability, occurs, the net result of which is that the pattern
will remove roll pairs until the new wavenumber is inside the Eckhaus stability boundary.
The fastest growing linear instability mode has the envelope A remain a function of x and
t only. Along the axis, that is y dependent, perturbations have a lower growth rate. Now
in order to remove a roll pair with an envelope A only depending on x, the amplitude
A has to enter its nonlinear regime and become zero along the full length of one pair of
rolls. And, if one is very careful to control and suppress y dependent perturbations, that is
indeed what happens [10]. But in most cases, and especially near or just inside the Eckhaus
stability boundary, y dependent perturbations, which initially grow more slowly or decay
slightly faster, overtake the y independent perturbation and dominate the outcome. Instead
of having to remove a roll pair by making the real amplitude zero along the length of the roll,
the y dependent perturbation produces a pair of dislocations at which positions the complex
field A exp(if) is zero. The dislocations repel each other and travel to the boundaries at the
end of the roll axes where they are absorbed, thereby removing an excess roll pair. It is easy
to see that this scenario is a much more efficient means of wavenumber adjustment. The
three dimensional disturbance, although less favorable according to linear stability analysis,
is the one which eventually prevails. In short, allowing for three dimensional perturbations,
the flow is deformed so that it can find a more efficient pathway to remove the roll pair.

The lesson we draw from these examples is this. Just because a structure is deemed
disadvantageous with respect to others based on linear stability analysis does not mean
that when the full dynamics is in play, it does not play a significant role. Whereas the
structure may initially appear to be less fit, it may provide for a richer set of pathways
in order that a system can achieve some desired goal more readily. Motivated by these
ideas, we ask in this paper whether similar ideas might apply in enabling cells to use slightly
disadvantageous mutations, here called passenger mutations, in order to provide a higher
probability in reaching some genuinely malignant mutation by providing the deformed cell
with a richer set of pathways to reach that goal.
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