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ABSTRACT	

	

Background	
The	potential	utility	of	microRNA	as	biomarkers	for	early	detection	of	cancer	and	other	

diseases	is	being	investigated	with	genome-scale	profiling	of	differentially	expressed	

microRNA.	Processes	for	measurement	assurance	are	critical	components	of	genome-scale	

measurements.	Here,	we	evaluated	the	utility	of	a	set	of	total	RNA	samples,	designed	with	

between-sample	differences	in	the	relative	abundance	of	miRNAs,	as	process	controls.				

	

Results	
Three	pure	total	human	RNA	samples	(brain,	liver,	and	placenta)	and	two	different	

mixtures	of	these	components	were	evaluated	as	measurement	assurance	control	samples	

on	multiple	measurement	systems	at	multiple	sites	and	over	multiple	rounds.	In	silico	
modeling	of	mixtures	provided	benchmark	values	for	comparison	with	physical	mixtures.	

Biomarker	development	laboratories	using	next-generation	sequencing	(NGS)	or	genome-

scale	hybridization	assays	participated	in	the	study	and	returned	data	from	the	samples	

using	their	routine	workflows.	Multiplexed	and	single	assay	reverse-transcription	PCR	(RT-

PCR)	was	used	to	confirm	in	silico	predicted	sample	differences.	Data	visualizations	and	
summary	metrics	for	genome-scale	miRNA	profiling	assessment	were	developed	using	this	

dataset,	and	a	range	of	performance	was	observed.	These	metrics	have	been	incorporated	

into	an	online	data	analysis	pipeline	and	provide	a	convenient	dashboard	view	of	results	
from	experiments	following	the	described	design.	The	website	also	serves	as	a	repository	

for	the	accumulation	of	performance	values	providing	new	participants	in	the	project	an	

opportunity	to	learn	what	may	be	achievable	with	similar	measurement	processes.	

	

Conclusions	
The	set	of	reference	samples	used	in	this	study	provides	benchmark	values	suitable	for	

assessing	genome-scale	miRNA	profiling	processes.		Incorporation	of	these	metrics	into	an	

online	resource	allows	laboratories	to	periodically	evaluate	their	performance	and	assess	

any	changes	introduced	into	their	measurement	process.	
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Background	

	

Studies	to	identify	potential	biomarkers	typically	involve	comparing	two	conditions	and	

identifying	features	that	distinguish	the	two	classes;	for	example,	disease	versus	normal	or	

treated	versus	control.	Quality	measurements	made	during	this	discovery	phase	are	

essential	for	the	success	of	all	subsequent	phases	of	biomarker	development.	Reference	

samples,	with	known	differences,	can	enable	laboratories	to	assess	and	improve	their	

ability	to	detect	relevant	biomarkers.	Within	the	framework	of	the	Early	Detection	

Research	Network	(EDRN)	of	the	National	Cancer	Institute	[1],	we	are	developing	a	

measurement	assurance	paradigm	for	genome-scale	measurement	systems	currently	used	

for	microRNA	(miRNA)	biomarker	discovery.	

	

Comparisons	of	the	results	for	genome-scale	measurements	of	two	different	biological	

samples	or	two	different	reference	samples	have	been	used	to	assess	both	microarray	[2,	3]	

and	RNA	sequencing	(RNAseq)	measurements	of	messenger	RNA	(mRNA)	[4].	Evaluations	

derived	from	this	type	of	comparison	are	limited	to	metrics	such	as	concordance	of	gene	

lists	and	correlations	of	rank	order	because,	in	both	cases,	the	true	difference	between	

samples	is	not	known.	For	both	microarray	and	RNAseq,	titration	designs	have	also	been	

used,	which	provide	some	information	regarding	signal	trends	[4,	5].	

	

Composite	reference	samples	with	designed-in	differences	provide	additional	metrics	for	

performance	assessment	and	have	been	demonstrated	to	be	useful	with	both	microarrays	

[6	–	9]	and	RNAseq	[10].	These	same	technologies	have	been	applied	more	recently	to	

profiling	miRNA,	a	class	of	small	non-protein-coding	RNAs	that	regulate	the	expression	of	

hundreds	of	target	genes	by	translational	repression,	controlling	biological	functions	

involved	in	differentiation	and	development.	Characterizing	miRNA	measurements	on	

multiple	platforms	has	been	performed	with	biological	samples	[11]	and	titrations	of	

biological	samples	[12].	Here	we	demonstrate	the	utility	of	one	of	these	mixture	designs	

(Figure	1)	with	corresponding	metrics	[7	–	10]	and	introduce	new	metrics	useful	for	

summarizing	and	evaluating	genome-scale	measurements	developed	in	an	interlaboratory	

study	spanning	multiple	rounds	of	measurement.		Multiple	data	visualizations	and	metrics	
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have	been	combined	into	a	single	standardized	view,	or	“dashboard”,	for	each	participant	

and	round	(see	Figure	2	for	an	example).		These	are	available	in	Additional	file	1.		

Representative	panels	are	described	in	detail	in	the	results.		 	
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Results	

	

Selection	of	human	tissue	total	RNA		

Previous	studies	have	demonstrated	the	feasibility	of	using	a	pair	of	reference	mixtures	

with	designed-in	differences	to	provide	performance	benchmarks	[6-10].	These	rely	on	a	

combination	of	pure	total	RNA	components	with	a	large	number	of	transcripts	that	are	

distributed	across	a	broad	dynamic	range	of	relative	abundance.		Each	component	should	

contain	a	subset	of	miRNA	that	are	either	unique	to	that	tissue	or	enriched	relative	to	the	

other	two	components.	These	tissue-selective	miRNAs	will	be	used	in	metrics	to	assess	

assay	performance.	The	tissue-selectivity	can	be	quantified	[7]	and	used	to	assess	whether	

a	sufficient	number	of	differentially	abundant	miRNA	are	available	in	each	subset	to	span	

the	dynamic	range	of	the	measurement	process.	Laboratories	performing	biomarker	

discovery	may	prefer	one	of	the	components	be	similar	in	nature	to	the	tissue	being	

profiled	in	their	own	research.	

	

To	select	components	for	reference	mixtures	described	in	this	paper,	a	published	study	

comparing	the	miRNA	expression	profiles	of	nine	different	tissues	using	both	microarrays	

and	RT-PCR	was	utilized	[13].	The	two	sources	of	human	RNA	with	the	most	tissue-

selective	content	were	placenta	followed	by	brain.	These	two	tissue	RNAs	were	used	as	

variable	components	in	a	reciprocal	two-to-one	design,	with	liver	as	the	invariable	(one-to-

one)	component	(Figure	1)	[14].	

	

In	silico	modeling	

The	miRNA	signals	in	each	mixture	should	be	an	additive	and	linear	combination	of	the	

signals	from	pure	tissue	components	[6	–	10].	Therefore,	an	expected	signal	and	predicted	

ratio	can	be	calculated	based	upon	the	fractional	proportion	of	each	tissue	component	in	a	

mixture	using	the	following	equations:	

	

Si,Mix1	=	 !!,! ⋅ !!,!  +	 !!,! ⋅ !!,! 	+		 !!,! ⋅ !!,! 	 	 	 (1)	

Si,Mix2	=	 !!,! ⋅ !!,!  +	 !!,! ⋅ !!,! 	+		 !!,! ⋅ !!,! 	 	 	 (2)	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 27, 2017. ; https://doi.org/10.1101/210310doi: bioRxiv preprint 

https://doi.org/10.1101/210310
http://creativecommons.org/licenses/by-nd/4.0/


	

	

Equations	1	and	2	show	the	formulae	for	the	pair	of	three	component	mixture	designs,	

where	S	is	the	signal	from	a	particular	miRNA	i	and	Φ	is	the	fraction	of	total	RNA	for	each	

tissue	(liver=L,	brain=B,	and	placenta=P)	in	mixtures	1	and	2.	For	example,	using	mixture	

proportions	of	1:1:2	and	1:2:1	(L:B:P)	provides	corresponding	Φ	of	0.25,	0.25,	0.5	and	0.25,	

0.5,	0.25,	respectively.	With	this	design,	the	maximum	possible	ratio	(Si,Mix1/Si,Mix2)	for	any	

miRNA	in	the	final	mixture	comparison	corresponds	to	a	2-fold	difference	(i.e.,	log2	

difference	between	Mix1	and	Mix2	of	-1	or	1)	which	would	be	observed	for	brain-specific	

or	placenta-specific	miRNAs.	For	miRNAs	that	are	not	tissue-selective,	some	signals	will	be	

contributed	from	each	component,	resulting	in	ratios	falling	somewhere	within	that	range.	

Estimating	mixture	signals	from	measured	signals	of	unmixed	tissues	using	in	silico	

modeling	with	Equations	1	and	2	provides	predicted	values	for	comparison	to	observed	

results	for	Mix1	and	Mix2.	

	

Ratio	Estimates	

The	first	two	rounds	of	measurement	(Rounds	1	and	2,	not	shown)	were	pilot	studies	used	

for	tissue	profiling	alone,	and	did	not	include	mixtures.		A	total	of	7	sites	participated	in	the	

three	rounds	(Rounds	3	to	5)	that	included	the	three	pure	RNA	samples	and	the	two	

mixtures	of	them.	In	each	of	these	rounds,	each	site	received	three	replicates	for	each	of	the	

5	samples,	with	sample	identities	hidden.	Participants	profiled	miRNA	expression	with	the	

platforms	used	in	their	routine	workflow	(one	site	used	two	different	platforms).	Labs	

using	genome-scale	platforms	reported	all	detectable	miRNAs.	Labs	using	RT-PCR	

performed	assays	for	a	subset	of	miRNAs	of	interest	to	confirm	that	the	mixtures	could	

produce	observed	ratios	similar	to	predicted	values.	

	

Log2	transformed	ratio	estimates	for	miRNAs	were	calculated	for	each	round	and	

compared	across	multiple	participants.	For	analysis	of	genome-scale	data,	detectable	

miRNAs	(counts	≥	1	in	any	one	sample)	were	normalized	to	the	median	total	count	among	

the	samples	and	then	log2	transformed.		However,	raw	count	tables,	as	well	as	datasets	

preprocessed	with	other	strategies,	could	also	be	used	as	input.	For	RT-PCR	data,	the	

quantitation	cycle	(Cq)	values	were	negatively	transformed	to	provide	comparable	log2	

transformed	data.	Predicted	log2	ratios	were	calculated	from	the	pair-wise	differences	of	
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the	modeled	mixtures	derived	from	Equations	1	and	2	using	the	linear	transformed	means	

for	each	pure	tissue	component,	Si.		Observed	log2	ratios	were	estimated	from	the	pair-

wise	differences	between	means	for	each	mixture,	Mix1	and	Mix2,	described	in	Methods.	

	

Visualizations	and	analyses	

For	the	sites	using	genome-scale	technologies,	the	log2	ratios	for	all	detectable	miRNA	can	

be	visualized	using	a	Bland-Altman	plot	[15]	to	evaluate	the	ratio	data	throughout	the	

dynamic	range,	and	any	miRNA	that	are	highly	enriched	in	one	tissue	relative	to	the	other	

tissues	should	approach	the	benchmark	values	of	the	mixture	designs.	

	

In	Figure	3,	the	predicted	ratios	for	all	detected	miRNA	were	calculated	using	Equations	1	

and	2.	The	10X	selective	miRNA	(those	miRNA	that	are	at	least	10	times	more	prevalent	in	

one	tissue	relative	to	the	others)	are	derived	from	comparisons	of	the	profiles	of	the	three	

pure	RNA	samples	included	in	the	sample	set,	and	are	color-coded	according	to	tissue	type	

as	in	Figure	1.	Panels	A	to	D	represent	multiple	sites	using	different	NGS	platforms,	with	

different	sequencing	depths.	One	site	(panel	A)	was	able	to	detect	1130	miRNA	consistently	

across	the	15	samples	in	the	set,	with	107	brain-selective	and	105	placenta-selective	

miRNA	with	log2	ratios	distinguishable	from	the	“1-to-1”	class,	59	miRNA	with	predicted	

log2	ratios	of	approximately	zero	(i.e.,	no	difference	between	Mix1	and	Mix2).	The	1-to-1	

class	includes	23	liver-selective	miRNA	and	36	miRNA	with	approximately	equal	amounts	

of	signal	for	brain	and	placenta.		For	much	of	the	dynamic	range	the	tissue-selective	miRNA	

are	predicted	to	approximate	the	designed-in	log2	ratio	limits	of	±	1.	In	comparison,	

another	site	(panel	D)	using	a	different	NGS	platform	producing	fewer	reads	and	detected	

291	miRNA	in	total.		Of	those,	only	18	brain-selective,	9	placenta-selective,	and	16	miRNA	

predicted	to	be	1-to-1	were	identified.	Panel	E	shows	the	results	from	the	site	using	a	

hybridization-based	platform	[16].	The	large	cluster	of	non-selective	(NS)	miRNA	near	the	

low	end	of	the	dynamic	range	is	consistent	with	a	background	level	of	hybridization	and	

this	type	of	additive	noise	is	known	to	contribute	to	ratio	compression.	One	site	(panel	F,	

circles)	used	a	multiplexed	PCR	platform	targeting	32	different	miRNA	that	were	selected	

for	their	presence	on	common	fixed	content	platforms	[17].	Based	on	modeling	of	the	data	

from	the	microarray	study	[13],	two	additional	PCR	sites	were	asked	to	measure	a	subset	of	
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miRNAs	predicted	to	provide	differences	between	mixtures:	~2	-fold	up	for	miR-451a	and	

miR-335;	~2	-fold	down	for	miR-125b	and	miR-218;	and	no	change	for	miR-375.	One	PCR	

site	measured	all	five	miRNAs	in	Round	3	(panel	F,	squares)	and	the	other	site	measured	

two	(panel	F,	triangles).	Detection	metrics	are	part	of	the	summary	table	included	in	the	

dashboard	view	for	each	site	and	round	(Additional	file	1).	

	

Figure	4	shows	the	experimentally	observed	ratios	for	miRNAs	in	Mix1	and	Mix2	(see	

Figure	1	for	composition)	and	corresponds	to	the	same	labs	displayed	in	Figure	3,	panels	A	

to	F.		There	is	more	dispersion	in	the	observed	log2	ratio	data	when	compared	to	the	

predicted	values,	which	also	becomes	more	apparent	at	the	lower	end	of	the	dynamic	

range.	This	is	expected	in	part	because	the	predicted	log2	ratios	are	bounded	by	Equations	

1	and	2	and	use	the	averages	of	the	three	pure	samples	in	both	equations.	For	the	subset	

miRNAs	measured	with	PCR	(Figure	4,	panel	F),	the	observed	ratios	confirm	that	the	

mixture	design	provides	the	predicted	differences.	Estimation	of	the	useable	region	of	the	

dynamic	range	based	upon	deviation	from	benchmark	log2	ratios	has	been	described	for	

mRNA	measurements	using	microarrays	[9].	This	metric	relies	on	the	subset	of	tissue-

selective	miRNAs	to	behave	similarly	to	log2	ratio	values	derived	directly	from	the	mixture	

proportions.	However,	as	shown	in	Figure	3,	measuring	the	pure	tissue	components	

provides	predicted	log2	ratio	values	for	every	detected	miRNA,	and	these	can	be	used	for	

direct	comparison	to	the	corresponding	observed	log2	ratios.	By	assessing	the	deviation	

from	predicted	log2	ratios	for	all	observed	values,	the	entire	measurement	system	can	be	

evaluated	using	all	miRNA	regardless	of	their	level	of	enrichment	in	any	single	tissue	

component.	Figure	5	shows	these	differences	for	the	same	data	as	Figures	3	and	4.	As	

summary	metrics	for	the	overall	measurement	system,	the	median	deviation	value	can	be	

used	as	an	indicator	of	bias	and	the	inter-quartile	range	(IQR)	can	be	used	as	an	estimate	of	

precision	(solid	and	dashed	horizontal	lines,	respectively).	An	IQR	for	each	tissue-selective	

classification	can	also	be	determined	(see	Figure	6).	

	

It	is	clear	that	the	majority	of	values	falling	outside	the	IQR	occur	at	the	lower	end	of	the	

dynamic	range.	A	lower	limit	for	the	useable	range	of	the	measurement	system	can	be	

determined	for	a	particular	level	of	tolerance	for	deviation	–	for	example,	modeling	how	the	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 27, 2017. ; https://doi.org/10.1101/210310doi: bioRxiv preprint 

https://doi.org/10.1101/210310
http://creativecommons.org/licenses/by-nd/4.0/


	

	

distribution	of	deviation	changes	along	the	dynamic	range	and	locating	the	lowest	average	

log2	signal	for	which	at	least	95	%	of	the	modeled	distribution	falls	within	one	half	fold-

change	(±	0.585	log2	difference).	This	lower	limit	and	the	maximum	value	demarcate	the	

reliable	region	of	the	dynamic	range	in	Figure	5.		A	tolerance	for	deviation	can	also	be	used	

to	define	the	upper	limit	for	technologies	that	may	experience	performance	declines	at	

higher	signals,	for	example	saturation	in	microarrays	[9].	

	

The	tissue-selective	subsets	provide	both	true	positive	(brain	and	placenta)	and	true	

negative	(1-to-1)	classifications	useful	for	preparing	receiver-operating	characteristic	

(ROC)	curves,	and	the	area	under	the	curve	(AUC)	can	be	used	as	a	summary	metric	[7].	For	

each	site,	the	tissue-selective	miRNA	are	ranked	by	p-values	using	a	paired	t-test	

comparison	of	the	log2	signals	for	the	three	replicate	Mix1	and	Mix2	samples.	Figure	7	

shows	the	corresponding	ROC	curves	for	all	detected	tissue-selective	data	as	well	as	the	

ROC	curves	derived	from	data	within	the	reliable	region	of	the	dynamic	range	described	in	

Figure	5.	Within	a	laboratory,	both	the	AUC	and	the	reliable	range	can	be	used	to	monitor	

alterations	in	performance	introduced	by	changes	in	technology,	reagents,	or	operator	

experience	[7-9].	However,	the	AUC	metric	is	limited	by	the	availability	of	true	positive	and	

true	negative	differences	identified	by	the	pure	sample	profiles,	and	direct	comparisons	

between	different	measurement	systems	may	not	be	meaningful	if	there	is	a	significant	

difference	in	the	number	of	miRNA	being	assessed.	Range	limitations	and	AUC	values	per	

site	and	round	are	included	in	Table	1	and	in	the	metrics	tables	of	Additional	file	1.	

		

Proportion-based	metrics	

While	ratio	based	metrics	are	useful	for	evaluating	a	site’s	ability	to	accurately	detect	

differences	between	samples,	evaluating	the	measurements	for	each	individual	mixture	

may	provide	additional	information.	A	model	can	be	fit	based	on	Equations	1	and	2,	and	

solved	for	the	expected	proportions	of	Φ	(see	above)	given	the	set	of	signals,	Si.	Genome-

scale	data	can	confidently	estimate	these	proportions	from	the	collected	data	for	each	pure	

component	and	mixture.	Deviations	from	the	designed	proportions	can	be	visualized	using	

target	plots	(Figure	8)	[10].	The	(x,	y)	coordinates	for	the	center	of	each	target					

correspond	to	the	designed	proportions	and	the	(x,	y)	coordinates	for	the	end	of	each	line	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 27, 2017. ; https://doi.org/10.1101/210310doi: bioRxiv preprint 

https://doi.org/10.1101/210310
http://creativecommons.org/licenses/by-nd/4.0/


	

	

segment	emanating	from	the	center	correspond	to	the	estimated	proportions	of	each	pure	

tissue	component	in	Mix1	and	Mix2,	respectively.	The	lengths	of	these	line	segments	

provide	an	indication	of	potential	bias	in	the	measurement	process.	Part	of	this	deviation	is	

due	to	intrinsic	differences	in	the	miRNA	content	of	each	pure	tissue,	seen	in	the	

consistency	of	the	direction	of	the	yellow	and	red	lines	across	labs.	An	mRNA	fraction	effect	

has	been	observed	for	transcriptomic	measurements,	and	a	means	to	assess	this	has	been	

developed	using	RNA	spike-in	controls	simulating	poly-A	mRNA	[18].	The	proportion	

estimates	and	bias	indicators	for	each	component	are	included	in	the	metrics	table	of	the	

dashboard.		The	sum	of	all	lengths	may	provide	a	single	useful	indicator	and	is	included	in	

the	dashboard	summaries	and	in	Tables	1	to	3.	The	ellipses	surrounding	the	line	segment	

ends	indicate	the	95	%	confidence	intervals	for	the	estimated	proportions	of	each	

component	in	Mix1	and	Mix2	and	are	influenced	by	a	combination	of	both	dispersion	and	

detection	within	each	tissue-selective	class.	Indications	of	poor	precision	are	apparent	in	

the	measurement	process	shown	in	panel	D	in	both	Figure	6	and	8.	

	

Minimizing	the	experimental	design	

It	should	be	noted	that	each	round	of	the	study	included	three	replicates	each	of	three	pure	

total	RNAs,	and	three	replicates	each	of	two	mixtures	for	a	total	of	15	samples,	and	

predicted	values	were	derived	from	and	compared	with	samples	processed	at	the	same	

time.	Figures	2	to	8	and	the	data	in	Table	1	correspond	to	these	within	round	comparisons	

using	three	replicates.	Modifying	the	experimental	design	to	minimize	the	number	of	

samples	required	may	be	accomplished	it	two	ways.	

	

First,	pure	total	RNA,	prepared	as	part	of	large	enough	batch	to	provide	mixture	samples	

that	span	several	rounds	may	provide	a	sufficient	baseline	in	the	first	round	to	allow	for	

subsequent	rounds	of	testing	to	be	based	on	the	paired	mixtures	alone,	reducing	the	

number	of	samples	required	for	processing	to	six.	To	test	this,	we	used	the	Round	3	pure	

tissue	profiles	as	the	baseline	predicted	values	for	comparison	with	the	mixtures	in	the	

subsequent	rounds.	Metrics	derived	from	this	baseline	approach	are	included	in	Table	2.	

Using	predicted	data	derived	from	Round	3	pure	samples	alone	neither	obscures,	nor	

distorts	the	differences	among	the	measurement	processes	shown	in	Table	1.	This	
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indicates	that	using	the	paired	mixtures	alone,	after	establishing	a	baseline	prediction,	

might	be	sufficient	for	monitoring	processes	over	time.	Intentional	changes	to	a	

measurement	process	(e.g.,	reagent	kits,	instrumentation,	or	software)	may	require	re-

evaluation	of	the	pure	components.	In	this	study,	aliquots	initially	prepared	as	part	of	one	

large	set	of	samples	prior	to	Round	3	were	distributed	to	participants	every	six	months	for	

Rounds	4	and	5.	Reference	sample	stability	for	longer	periods	has	not	been	evaluated.	

	

The	second	approach	to	reducing	the	number	of	samples	would	be	running	the	sample	set	

(brain,	liver,	placenta,	Mix1,	and	Mix2)	without	replicates.		To	test	this	we	limited	the	

analysis	to	the	first	replicate	of	each	dataset.	Metrics	derived	from	this	approach	are	

included	in	Table	3.	In	this	case,	the	ROC	curves	derived	from	datasets	without	sample	

replication	are	based	on	ordered	ratios	instead	of	P-values	[7].	In	the	absence	of	technical	

replication,	the	resulting	AUCs	are	lower	when	all	tissue-selective	miRNA	are	evaluated,	the	

lower	limit	of	the	useable	range	is	higher,	and	the	IQR	is	increased.	Therefore	a	consistent	

approach,	either	with	or	without	replication,	should	be	used	when	tracking	a	measurement	

process	over	time.	It	should	also	be	noted	that,	in	the	absence	of	replication,	a	

measurement	failure	for	any	one	the	five	samples	in	the	set	would	render	some	of	the	

metrics	indeterminable.	
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Discussion	
	

The	total	RNA	reference	sample	set	described	here	provides	process	controls	for	genome-

scale	measurements	of	miRNA	that	are	reasonable	biological	mimics	and	provide	a	

sufficient	number	of	miRNAs	to	span	the	dynamic	range	of	a	measurement	system.	

Evaluation	of	the	deviations	in	ratios	designed	into	the	sample	set	provides	a	quantitative	

assessment	of	the	reliable	region	of	the	measurement	system.	These	sample	sets,	with	or	

without	replication	and	with	or	without	baseline,	can	be	run	in	parallel	with	or	in	between	

biomarker	profiling	experiments	at	some	frequency	to	provide	ongoing	measurement	

assurance	of	the	complete	measurement	process.	An	observation	of	poor	results	with	the	

process	controls	(lower	AUC,	decreased	reliable	range,	etc.)	may	indicate	that	profiling	

experiment	results	from	a	proximal	timeframe	may	also	have	issues.	However,	achieving	an	

acceptable	result	with	the	process	controls	only	indicates	that	a	measurement	process	is	

working	well,	but	does	not	confirm	experimental	observations	on	the	samples	under	study.	

	

This	study	was	designed	to	evaluate	the	reference	samples	and	develop	associated	metrics,	

and	is	not	intended	as	a	platform	comparison.	The	results	presented	are	from	those	sites	

that	accepted	samples	for	the	rounds	that	included	mixtures	and	subsequently	provided	

data	for	analysis.	Additional	details	for	each	measurement	process	are	available	in	

Additional	file	2	as	outlines	of	the	protocols	in	place	at	the	labs;	they	are	not	intended	to	be	

reproducible	resources.	This	study	demonstrates	of	the	utility	of	these	mixture	samples	

and	associated	metrics	to	evaluate	technical	performance	of	any	genome-scale	

measurement	process,	the	methods	and	protocols	are	incidental	to	the	study	presented	

here.	A	and	B	are	the	only	measurement	processes	using	the	same	platform.	Measurement	

processes	C	and	D	were	performed	at	a	single	site	using	two	different	platforms	(both	

different	from	the	platform	used	in	A	and	B).	Measurement	processes	E	and	F	are	unique	

sites	and	platforms.	

	

The	current	dataset	collection	provides	a	range	of	performance	and	demonstrates	that	the	

samples,	the	visualizations	presented	in	Figures	2	to	8,	and	the	summary	metrics	shown	in	

Table	1	can	be	used	to	discern	differences	in	performance.	Systematic	application	of	the	
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samples,	metrics,	and	methods	described	here	can	enable	evaluation	and	optimization	of	

both	laboratory	and	measurement	platform	performance.	Evaluating	the	relationship	

between	protocols	used	at	different	sites	and	observed	performance	may	also	be	useful	to	

identify	key	parameters	for	optimization.	

	

To	promote	periodic	self-assessment	of	genome-scale	measurement	system	performance,	a	

web-based	version	of	the	analysis	pipeline	has	been	implemented	as	part	of	the	EDRN	

Informatics	Center	[https://xxxx.xxx.xxx.xxx/xxxxxxxxx].	Dashboard	views	of	the	results	

can	also	be	generated	online	(see	Additional	file	3	for	instructions).	Visitors	to	the	site	may	

view	descriptions	of	available	reference	samples	or	download	a	protocol	on	how	to	prepare	

them	in	their	own	laboratory	[14]	(a	brief	description	is	available	in	Methods).	Visitors	may	

also	view	or	download	publicly	available	datasets	and	results.	Current	participants	can	add	

to	their	datasets	and	compare	the	new	results	to	prior	datasets	to	assess	individual	site	

performance	over	time.	For	new	sites	interested	in	assessing	their	genome-scale	profiling	

workflows,	information	about	registration	and	availability	of	EDRN	prepared	reference	

sample	sets	is	provided	at	the	EDRN	website.	

		

	

Conclusions	

	

Metrics	and	visualizations	derived	from	mixture	samples	are	well	suited	for	assessing	

performance	of	genome-scale	measurement	systems	used	to	identify	differentially	

regulated	miRNAs.	They	are	made	from	biological	materials	similar	to	those	studied	by	

biomarker	profiling	laboratories	and	provide	a	sufficient	number	of	differentially	

expressed	miRNAs	with	predictable	ratios	to	serve	as	benchmarks.		Implementing	these	

metrics	and	visualizations	as	part	of	an	online	resource	offers	laboratories	the	opportunity	

to	evaluate	and	optimize	their	discovery	process.	
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Additional	files	

Additional	file	1:		Dashboard	views	of	measurement	processes	A	–	E	from	Rounds	3	–	5,	

using	three	replicates	(as	PDF).	

Additional	file	2:		Protocols	for	measurement	processes	A	–	F	(as	PDF).	

Additional	file	3:		Instructions	for	using	measurement	assurance	pipeline	online	(as	PDF).	
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Methods	

	

Mixture	design	

Human Brain Reference RNA (Cat. No. AM6050), Human Liver Total RNA	(Cat. No. 

AM7960),	and	Human Placenta Total RNA	(Cat. No. AM7950)	was	obtained	from	Ambion	

(Thermo	Fisher	Scientific).	Manufacturer’s	stock	solutions	of	1μg/μl	were	verified	on	a	

Qubit	(Thermo	Fisher	Scientific).	If	necessary,	stock	solutions	of	pure	tissue	components	

(same	lot	numbers)	were	combined	to	provide	a	sufficient	volume	of	identical	material	

prior	to	distribution.	Prior	to	mixing,	an	adequate	portion	of	stock	solutions	are	set	aside	

for	pure	tissue	aliquots.	The	remaining	liver,	brain,	and	placenta	stocks	were	then	mixed	by	

volume	using	the	proportions	of	1:1:2	and	1:2:1	for	Mix1	and	Mix2,	respectively.	These	five	

samples	(three	neat	tissues	and	two	mixtures)	were	then	divided	into	aliquots.	Three	

replicates	of	each	sample	were	distributed	to	participants	as	a	numbered	blinded	set	of	15	

tubes.	A	general	method	for	the	preparation	of	two	mixtures	of	total	RNA	(Mix1	and	Mix2)	

derived	from	three	different	pure	total	RNA	sources	(RNA1,	RNA2,	and	RNA3)	from	either	

commercially	available	or	laboratory	prepared	total	RNA	is	also	available	[14].	This	

protocol	allows	labs	to	recreate	previously	measured	sample	designs	for	comparison	or	to	

generate	new	sample	designs	with	different	components	and/or	mixture	formulations.	

	

Sample	handling	and	analysis	

Each	laboratory	used	its	routine	protocol	for	miRNA	biomarker	detection	and	evaluations.		

Individual	protocols	are	available	online	as	part	of	the	data	repository,	and	included	in	

Additional	file	2.	
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Figure Legends 
 
Figure 1. The relative input proportions from three total RNA components are shown for 
Mix1 and Mix2. 
 
Figure 2. Dashboard view combining visualizations and metrics. Metrics table displays 
values derived from data visualizations. The legends for Figures 3 to 8 describe each 
panel.	
	

Figure 3. Predicted distribution of log2 ratios. Panels A to F correspond to measurement 
processes A to F described in Results. For each datapoint in panels A to F, the 
difference between the predicted Mix1 and Mix2 log2 signals (log2 ratios) is plotted 
against their average for each detected miRNA. Signal values for each mixture are 
predicted using Equations 1 and 2. Filled circles correspond to predicted values for 
miRNA that were at least 10-fold enriched in relative abundance compared with the 
other two tissues, or miRNA that were approximately equal in relative abundance 
between placenta and brain (1-to-1): red = 10X placenta, blue = 10X brain, and yellow = 
1-to-1 (10X liver and placenta = brain). Open circles correspond to detectable, but non-
selective miRNA. Red, yellow, and blue transparent bands indicate the 95% confidence 
interval for the loess (locally weighted smoothing) function (black lines) for the placenta, 
1-to-1, and brain subsets, respectively. Panel F includes data from three different PCR 
labs: one site using multiplexed PCR (circles) and two sites using individual PCR 
assays (squares and triangles). Five miRNA of interest are highlighted: miR-451a (red), 
miR-335 (orange), miR-375 (yellow), miR-218 (green), miR-125b (blue). The total 
number of detectable miRNA and their tissue-selective classification are included in the 
summary table of the dashboard. 
 
Figure 4. Observed distribution of log2 ratios. Panels A to F correspond to 
measurement processes A to F described in Results. For each datapoint in panels A to 
F, the difference between the Mix1 and Mix2 log2 signals (log2 ratios) is plotted against 
their average for each detected miRNA. Filled circles correspond observed values for 
miRNA that were at least 10-fold different in relative abundance compared with the 
other two tissues or miRNA that were approximately equal in relative abundance 
between placenta and brain (1-to-1): red = 10X placenta, blue = 10X brain, and yellow = 
1-to-1 (10X liver and placenta = brain). Open circles correspond to detectable, but non-
selective miRNA. Red, yellow, and blue transparent bands indicate the 95 % confidence 
interval for the loess (locally weighted smoothing) function (black lines) for the placenta, 
1-to-1, and brain subsets, respectively. Panel F includes data from three different PCR 
labs: one site using multiplexed PCR (circles) and two sites using individual PCR 
assays (squares and triangles). Five miRNA of interest are highlighted: miR-451a (red), 
miR-335 (orange), miR-375 (yellow), miR-218 (green), miR-125b (blue). 
 
Figure 5. Deviation from predicted ratios as a function of dynamic range. Panels A to F 
correspond to measurement processes A to F described in Results. Each datapoint in 
panels A to F represents the difference between the observed and predicted log2 ratios 
plotted against the average observed and predicted log2 signal for each detected 
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miRNA. Open circles correspond to all detectable non-selective miRNA and yellow, 
blue, and red filled circles correspond to 1-to-1, brain-, and placenta-selective miRNA, 
respectively. The median and interquartile range (IQR) of the deviation from predicted 
for all detected miRNA are indicated by the solid and dashed horizontal lines, 
respectively. The lower limit of acceptable dispersion (determined by a user selectable 
deviation of ± 0.585 log2, see Results) and the maximum detectable value are indicated 
by the margins of the darker grey areas, respectively. Margins were not assessed in 
Panel F. Panel F includes data from three different PCR labs: one site using multiplexed 
PCR (circles) and two sites using individual PCR assays (squares and triangles). Five 
miRNA of interest are highlighted: miR-451a (red), miR-335 (orange), miR-375 (yellow), 
miR-218 (green), miR-125b (blue). Limits and range included in the summary table of 
the dashboard. 
 
Figure 6. Bias and dispersion within tissue-selective classes. Panels A to E correspond 
to measurement processes A to E described in Results. The bias and dispersion for 
each tissue-selective class is shown in box (IQR) and whisker (1.5*IQR) format with 
outliers represented by black hash marks and median values indicated by black line 
(yellow = 1-to-1, blue = brain, red = placenta, and grey = none-selective (NS)). The 
median and interquartile range (IQR) of the deviation from predicted for all detected 
miRNA are indicated by the solid and dashed horizontal lines, respectively. 
 
Figure 7. Discrimination accuracy. Panels A to E correspond to measurement 
processes A to E described in Results. Receiver-Operating Characteristic Curves 
(ROCplots), where true positives correspond to 10X placenta and 10X brain miRNA; 
and true negatives correspond to 1-to-1 components using either the entire detectable 
range (solid line) or limited to the reliable region (dashed line). Area under the curve 
(AUC) values are included in the summary table of the dashboard. 
 
Figure 8. Deconvolved mixture proportions of tissue components in Mix1 and Mix2. 
Panels A to E correspond to measurement processes A to E described in Results. 
Concentric circles added to target values for emphasis. Line segments connect target 
values (central point of circles) to their corresponding estimates. Ellipses show the 95 % 
confidence interval range of the mixture proportions for the three tissue components 
(yellow = liver, blue = brain, and red = placenta).	
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