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Abstract 29 

There is a pressing need for in vitro experimental systems that allow for functional 30 

investigation of psychiatric disease biology. We developed an analytical framework that 31 

integrates genome-wide disease risk from GWAS with longitudinal in vitro gene expression 32 

profiles of human neuronal differentiation. We demonstrate that aggregate polygenic disease 33 

risk of specific psychiatric disorders is significantly associated with genes that are 34 

differentially expressed across neuronal differentiation. We find significant evidence for 35 

schizophrenia, which is driven by a longitudinal synaptic gene cluster that is upregulated 36 

during differentiation. Our findings reveal that in vitro neuronal differentiation can be used as 37 

an experimental model system to translate genetic findings to schizophrenia disease biology. 38 

Overall, this work emphasizes the use of longitudinal in vitro transcriptomic signatures as a 39 

cellular readout and the application to the genetics of complex traits. 40 
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Introduction 57 

Major psychiatric disorders feature a high heritability (h2) but have a largely unknown 58 

etiology1, 2. The increasing sample sizes of genome-wide association studies (GWAS) 59 

successfully result in identification of more susceptibility loci for these disorders3. A major 60 

challenge is to understand how genetic findings translate to biological pathways and to 61 

develop in vitro model systems that recapitulate molecular and cellular processes underlying 62 

these devastating diseases4. 63 

Early brain development has been implicated in psychiatric disorders such as 64 

schizophrenia (SCZ)5–8, autism spectrum disorder (ASD)9, 10, and self-reported depression 65 

(SRD)11. Differentiation of human embryonic stem cells (hESCs) into neuronal lineages has 66 

been demonstrated to hold great promise to model early brain development12–14, and may 67 

thus offer a unique opportunity to study psychiatric disease biology in vitro. However, it has 68 

remained unclear whether the molecular dynamics underlying in vitro human neuronal 69 

differentiation are associated with psychiatric disease susceptibility. 70 

We set out to investigate in vitro human neuronal differentiation in the context of 71 

polygenic psychiatric disease risk. To accomplish this, we performed a densely sampled 72 

time series experiment to robustly detect transcriptome-wide changes across neuronal 73 

differentiation. By integrating longitudinal gene expression signatures with GWAS summary 74 

statistics we observe significant enrichment of genetic risk for SCZ in genes that are 75 

differentially expressed across differentiation. We further show that this enrichment is driven 76 

by a specific longitudinal gene cluster that is involved in synaptic functioning. These findings 77 

support the use of in vitro genome-wide gene expression profiles to study psychiatric 78 

disease processes and establish in vitro neuronal differentiation as a promising model 79 

system to investigate molecular mechanisms that underlie schizophrenia based on evidence 80 

from GWAS. 81 
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Material and Methods 85 

Approval for stem cell research 86 

This study and all described work was approved by the University of California, Los 87 

Angeles Embryonic Stem Cell Research Oversight (ESCRO) committee.  88 

  89 

In vitro human neuronal differentiation 90 

WA09(H9)-derived hNSCs were commercially obtained (Gibco) as neural progenitors 91 

and subsequently expanded as adherent culture according to the manufacturer’s guidelines 92 

(Supplementary Methods). Low passage hNSCs (< 4 passage rounds) were plated in 12-93 

well plates coated with poly-D-lysine (0.1 mg/mL, VWR) and laminin (4.52ug/cm2, CorningTM) 94 

at 1.5x105 cells, which were equally distributed and subsequently cultured in expansion 95 

medium as described above. After 24h of proliferation, media was changed to neuronal 96 

differentiation medium consisting of Neurobasal® Medium (Gibco), 2% B-27® Serum-Free 97 

Supplement (Gibco), 2mM GlutaMax™-I Supplement, 0.05 mM β-mercaptoethanol (Gibco), 98 

and 1x Pen Strep. Media was changed every 2-3 days. 99 

  100 

 Experimental design and assessment of gene expression 101 

 Human neural stem cells were differentiated over a course of 30 days and RNA 102 

harvested at seven time points (day 0, 2, 5, 10, 15, 20, and 30) in triplicates or 103 

quadruplicates (n = 24) (Supplementary Methods). Genome-wide array-based transcriptome 104 

data was collected at the UCLA Neuroscience Genomics Core using Illumina’s HumanHT-12 105 

v4 Expression BeadChip Kit. 106 

  107 

Data preprocessing and quality control 108 

Gene expression data was extracted using the Gene Expression Module in 109 

GenomeStudio Software 2011.1. Data was background corrected with subsequent variance-110 

stabilizing transformation and robust spline normalization was applied15, 16. We excluded low 111 

quality probes and subsequently performed sample outlier detection by Euclidean distance 112 
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and standardized connectivity (see Supplementary Methods). The FactoMineR package 113 

(v1.28) in R was used to perform principal component analysis (PCA). For subsequent 114 

downstream analyses, we used the normalized expression values of 19,012 high quality 115 

filtered probes for all 24 samples. 116 

  117 

In vitro cellular identity 118 

We identified cell-type specific genes of neurons, astrocytes, oligodendrocyte 119 

precursor cells (OPC), newly formed oligodendrocytes (NFO), myelinating oligodendrocytes 120 

(MO), microglia, and endothelial cells from mouse cerebral cortex17 (Supplementary 121 

Methods). Next, we extracted normalized gene expression values of these genes for each 122 

cell type from our own in vitro dataset. We then standardized expression values to time point 123 

zero and calculated mean standardized expression levels of cell type-specific genes for 124 

these seven cell types across time points to investigate cellular identity across differentiation. 125 

  126 

Transition mapping to a spatiotemporal atlas of early human brain development 127 

To investigate global transcriptomic matching between in vitro gene expression 128 

profiles and in vivo gene expression profiles of neocortical brain regions, we applied 129 

transition mapping (TMAP), which is implemented in the online CoNTExT bioinformatic 130 

pipeline (https://context.semel.ucla.edu)14. Analyses were run for in vitro time points day-0 vs 131 

day-30, day-0 vs day-5, day-5 vs day-15, and day-15 vs day-30 across both temporal and 132 

spatial dimensions of human cortical development (see Supplementary Methods). 133 

  134 

Time-series differential gene expression analysis 135 

 Two multivariate empirical Bayes models were used to identify differentially 136 

expressed genes across in vitro neuronal differentiation. The first method was implemented 137 

in the Timecourse package (v 1.42) in R. We used the mb.long() function to calculate the 138 

one-sample T2 statistic that ranks genes based on their log10 probability to have differential 139 

expression over time18. Bayesian Estimation of Temporal Regulation (BETR), an extension 140 
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of the first approach, uses a flexible random-effect model that allows for correlations 141 

between the magnitude of differential expression at different time points19. BETR is 142 

implemented in the betr package (v 1.26) in R. Differentially expressed genes were classified 143 

as the union of the set of genes with a probability of 1.0 using BETR and an equally-sized 144 

set of top ranked genes using the T2-statistic. 145 

  146 

Fuzzy c-means cluster analysis 147 

 To identify probes with similar expression patterns across differentiation, we applied 148 

fuzzy c-means clustering to all differentially expressed probes. We calculated cluster 149 

membership values using the fclusList() and membership() function in the Mfuzz package in 150 

R20, 21. See Supplementary Methods for more details. Each probe receives a membership 151 

value for each cluster. Probe membership values represent gene affiliation to a cluster and 152 

highlights the extent of similarity in expression between genes. These values were used for 153 

subsequent downstream analyses. We annotated clusters using Database for Annotation, 154 

Visualization, and Integrated Discovery (DAVID, v6.8) and probes with a membership > 0.5 155 

(Supplementary Methods). 156 

  157 

Integration of GWAS data with in vitro transcriptomic signatures 158 

We first mapped Illumina probe IDs to Ensembl gene IDs using NCBI build 37.3, 159 

removed duplicate Ensemble IDs, and extended gene boundaries symmetrically by 10kb to 160 

include regulatory regions. Probe T2-statistic and cluster membership values were collapsed 161 

per gene ID using the mean value across probes. The mean gene-level T2-statistic was then 162 

log-transformed and the mean cluster membership values rank-transformed. These mean 163 

gene values were then used to integrate in vitro signatures with GWAS data using Multi-164 

marker Analysis of GenoMic Annotation (MAGMA) and stratified LD score regression 165 

(sLDSR). 166 

  167 

GWAS summary statistics and ancestry matched reference panels 168 
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 GWAS summary statistics were obtained for SCZ22, major depressive disorder 169 

(MDD)23, SRD11, bipolar disorder (BPD)24, ASD25, attention deficit hyperactivity disorder 170 

(ADHD)26, cross disorder27, Alzheimer’s disease (AD)28, and adult human height29 171 

(Supplementary Methods and Table S2). The 1000 Genomes Project Phase 3 release (1KG) 172 

was used as reference panel to model LD30. We used 503 individuals of European ancestry 173 

and 301 individuals of East Asian ancestry in analyses of GWAS data derived from target 174 

population of Europeans and Han Chinese, respectively. 175 

  176 

MAGMA gene-set analysis 177 

Multi-marker Analysis of GenoMic Annotation (MAGMA v1.06)31 was used to run 178 

“gene property” analyses, which uses a multiple regression framework to associate a 179 

continuous gene variable to GWAS gene level p-values. SNPs were mapped to genes using 180 

Ensembl gene IDs and NCBI build 37.3 gene boundaries +/- 10kb extensions using the --181 

annotate flag. For each phenotype, we generated gene-level p-values by computing the 182 

mean SNP association using the default gene model (‘snp-wise=mean’). We only included 183 

SNP with MAF > 5% and dropped synonymous or duplicate SNPs after the first entry 184 

(‘synonym-dup=drop-dup’). For each annotation, we then regressed gene-level GWAS test 185 

statistics on the corresponding gene annotation variable using the ‘--gene-covar’ function 186 

while adjusting for gene size, SNP density, and LD-induced correlations (‘--model 187 

correct=all’), which is estimated from an ancestry-matched 1KG reference panel. In all 188 

analyses, we included only genes for which we had both the gene variable and GWAS gene 189 

level test statistic available. Testing only for a positive association, i.e. enrichment of GWAS 190 

signal, we report one-sided p-values along with the corresponding regression coefficient. 191 

  192 

Stratified LD Score Regression 193 

We applied a recent extension to stratified LD score regression (sLDSR), a statistical 194 

method that partitions h2 from GWAS summary statistics8. This extension allows us to 195 

partition h2 by continuous-valued annotations32. For each annotation, we first estimated 196 
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partitioned LD scores using using the ldsc.py --l2 function with MAF > 5%, a 1 centimorgan 197 

(cm) window, and an ancestry-match 1KG reference panel (Supplementary Methods). To 198 

partition h2 of each phenotype by our in vitro transcriptomic signatures, we ran sLDSR 199 

(ldsc.py --h2) for each annotation of interest while accounting for the full baseline model, as 200 

recommended by the developers8, 32, and an extra annotation of all genes detected in our in 201 

vitro model (n = 12,414). That is, for each annotation we partitioned h2 with the following 202 

annotations; 203 

1.     Full baseline model with 53 annotations 204 

2.     Annotation of all genes detected during in vitro neuronal differentiation. 205 

3.     Annotation of interest (e.g. cluster membership).   206 

Stratified LDSR defines enrichment of h2 of an annotation of interest (3) as the 207 

proportion of h2 explained by a category divided by the proportion of SNPs in that category. 208 

To determine if this enrichment is significant and specific to this annotation, it estimates the 209 

contribution of that annotation to the per-SNP h2 while accounting for the baseline and the all 210 

genes detected annotation (1 + 2). As we only test for enrichment, we report the contribution 211 

to the per-SNP h2 ( ) and the associated one-sided p-value, which is calculated using 212 

standard errors that are obtained via a block jackknife procedure8, 33. 213 

 214 

 215 

 216 

 217 
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Results 225 

Longitudinal in vitro gene expression profiling confirms neuron-specific 226 

differentiation and matches in vivo human cortical development 227 

To study the molecular dynamics underlying in vitro human neuronal differentiation, 228 

we differentiated an hNSC line (WA09/H9) to a neuronal lineage across 30 days. Genome-229 

wide gene expression profiles were assayed densely at seven time points in at least 230 

triplicates (n=24 samples). Principle component analysis (PCA) on normalized gene 231 

expression values shows a large proportion of the variance in expression to be explained by 232 

the differentiation process, with minimal effects of technical variation (Figure 1A & S1).  233 

Investigation of cell type-specific gene expression signatures of major classes of cell types in 234 

the cerebral cortex showed that relative neuronal gene expression increases as neuronal 235 

differentiation progresses over time (Figure 1B). There is no evidence of glial- or endothelial-236 

specific gene expression, which confirms a broadly neuronal in vitro cellular identity. 237 

  238 

[ Figure 1 about here ] 239 

  240 

         Having established that the in vitro differentiation process is predominantly neuronal, 241 

we applied transition mapping (TMAP) to assess the correspondence of longitudinal in vitro 242 

transcriptome data to in vivo signatures of human cortical development. TMAP uses a 243 

spatiotemporal transcriptome atlas of the human neocortex and laminar expression data to 244 

assess global overlap in differential gene expression (DGE) profiles between in vitro time 245 

points and in vivo brain developmental stages or laminae of the human neocortex. We find 246 

significant matching between the in vitro longitudinal DGE profiles (day-0 vs day-30) and in 247 

vivo developmental stage from 4 weeks post-conception (PCW) to 24 PCW (Figure S2). This 248 

overlaps with the primary period of neurogenesis in the neocortex, which starts around 6 249 

PCW34, 35. To gain more insight into this overlap, we partitioned the TMAP analyses in three 250 

comparisons and examined how in vitro to in vivo matching progressed over time across in 251 

vitro neuronal differentiation. We see a clear progression in matching from early 252 
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developmental stages to later stages (Figure 2). For example, in vitro day-0 vs day-5 show 253 

strong overlap with in vivo period-1 (4-8 PCW) vs period-4 (13-16 PCW), while in vitro day-254 

15 vs day-30 shows stronger overlap with in vivo period-2 (8-10 PCW) vs period-8 (birth-255 

6M). Similarly, in vitro longitudinal DGE shows progression from overlap of early time points 256 

with inner laminae, to overlap with more upper cortical layers as in vitro neuronal 257 

differentiation advances (Figure 2 and S2). 258 

  259 

In vitro neuronal differentiation reveals specific longitudinal gene clusters 260 

To identify biological pathways associated with neuronal differentiation, we applied 261 

an analysis framework specifically tailored to time-series gene expression data (see 262 

Methods and Supplementary Methods). A total of 7,734 probes, mapping to 5,818 genes, 263 

were differentially expressed over time (Figure S3). We find that these genes are, on 264 

average, more constraint to genetic variation compared to non-differentially expressed 265 

genes (Supplementary Results). Using only differentially expressed probes, we next applied 266 

fuzzy c-means clustering and identified eight distinct longitudinal gene clusters (Figure 2 and 267 

S4). For each probe, we generated a corresponding cluster membership value, representing 268 

the degree to which a gene belongs to a cluster. To identify most informative biological 269 

interpretation of each cluster, we analyzed genes with high cluster membership for 270 

enrichment of functional annotations using DAVID (Supplementary Methods and Table S1). 271 

  272 

[ Figure 2 about here ] 273 

  274 

We identified three clusters with decreasing gene expression over time that are 275 

significantly enriched for cell division and RNA regulation and processing genes, reflective of 276 

stem cell proliferation and cell fate determination that is tightly controlled and regulated by 277 

RNA dependent processes36. Second, there are three clusters showing increased gene 278 

expression levels over time that are primarily enriched for neuronal processes, such as 279 

neuron formation and synaptic function. Another independent cluster shows an inverted U-280 
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shaped expression pattern during development, enriched for genes involved in 281 

transcriptional regulation. The final cluster is enriched for genes involved in extracellular 282 

region and cell adhesions. These processes are important for cell connectivity and have also 283 

been implicated in cell proliferation and neuronal migration37, 38. Together, these eight gene 284 

clusters reveal different biological mechanisms that are associated with neuronal 285 

differentiation and consistent with known biology of neurodevelopment. We hypothesize that 286 

the study of these longitudinal gene expression clusters can help decipher disease 287 

mechanisms involved in psychiatric phenotypes. 288 

  289 

Differentially expressed genes are associated with GWAS disease risk of 290 

schizophrenia 291 

         To investigate how aggregate psychiatric disease risk is distributed across genes that 292 

are important for neuronal differentiation, we applied gene-set analysis and partitioning of h2 293 

with MAGMA and sLDSR, respectively. We examined the distribution of genetic risk for 294 

major psychiatric disorders with GWAS results from large-scale studies. See Supplementary 295 

Table S2 for details on all included phenotypes. For MDD, we included GWAS results from 296 

the China Oxford and VCU Experimental Research on Genetic Epidemiology (CONVERGE) 297 

consortium23 and 23andMe Inc., a personal genetics company11. The latter uses SRD as a 298 

proxy for major depression. Alzheimer’s disease (AD) and adult human height served as 299 

non-psychiatric control phenotypes that are heritable and polygenic. We used a two-step 300 

approach where we first investigated disease associations on overall differential expression 301 

level and subsequently proceeded to deconstruct these associations across the longitudinal 302 

gene clusters. Together, these analyses allow us to integrate in vitro longitudinal 303 

transcriptomic signatures with polygenic disease risk and assess if our model is relevant to 304 

study the etiology of psychiatric disorders. 305 

We find that genes that are differentially expressed across in vitro neuronal 306 

differentiation are enriched for multiple psychiatric disorders. We find significant MAGMA 307 

enrichment for SCZ (P=0.001), ADHD (P=0.002), and SRD (P=0.003) (Table 1 and Table 308 
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S3). With sLDSR, we find nominally significant enrichment for SCZ (P=0.01) and SRD 309 

(P=0.02) and a suggestive association for ADHD (P=0.06) (Table 1 and Table S4). We 310 

observed suggestive enrichment for BPD, and no enrichment for the cross disorder, ASD, 311 

MDD CONVERGE or for adult height and AD. 312 

We next investigated whether enrichment of differentially expressed genes was 313 

driven by up- or downregulation of genes during differentiation. We find that the enrichment 314 

of SCZ across differentially expressed genes is driven by genes that are upregulated 315 

(MAGMA P=5.0x10-7, sLDSR P=6.1x10-5) and not by genes that are downregulated 316 

(MAGMA P=0.98, sLDSR P=0.61) (Figure 3 and Figure S5). For SRD, we only find a 317 

stronger enrichment in upregulated genes with MAGMA (P=3.5x10-4), while ADHD shows no 318 

evidence for enrichment driven by either up or downregulated genes. 319 

  320 

[ Table 1 about here ] 321 

  322 

SCZ GWAS disease risk aggregates to specific temporal gene clusters 323 

Next, we explored the relationship between differentially expressed genes and 324 

disease risk on cluster level. For this analysis, we only included traits that show significant 325 

disease enrichment across differentially expressed genes using MAGMA after correcting for 326 

multiple testing (SCZ, ADHD, SRD) and our control traits (AD, height). These disease traits 327 

showed at least suggestive enrichment with sLDSR as well. Using both MAGMA and 328 

sLDSR, we integrated cluster membership values with GWAS summary statistics (n=5) and 329 

assessed whether genome-wide disease risk aggregates to any of the eight experimentally 330 

identified longitudinal gene clusters. Overall, MAGMA and sLDSR show a strong 331 

concordance across phenotypes and clusters (rho = 0.92, p<2.2x10-16, n=40, see also Figure 332 

S6). After Bonferroni correction (n=40), we find five significant phenotype-cluster 333 

associations with MAGMA and three with sLDSR (Figure 4 and Table S5/S6). 334 

  335 
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We find that multiple upregulated clusters show enrichment for SCZ with the 336 

strongest evidence for the synaptic function cluster (MAGMA P=1.8x10-7, sLDSR P=7.2x10-337 

5) (see Figure S7). For SRD, we find significant associations in the transcription regulation 338 

(P=2.5x10-5) and the neuron formation (P=1.2x10-4) gene cluster with MAGMA only. While 339 

the analysis of adult height using all differentially expressed genes did not yield any 340 

evidence for enrichment of genetic signal, enrichment is observed at the cluster level.  The 341 

cell connectivity cluster (P=3.7x10-4) is enriched for height, in addition to suggestive 342 

enrichments in the cell division and RNA regulation cluster, which are not present for any of 343 

the psychiatric phenotypes. Remarkably, across all 8 clusters the enrichments of SCZ and 344 

height are inversely correlated (rho=-0.85, P=0.011, n=8, see also Figure S8).  345 

  346 

[ Figure 4 about here ]                    347 

  348 

Finally, in order to take into account the full spectrum of correlations and 349 

dependencies between clusters (Figure S9), we performed a conditional analysis for SCZ, 350 

the trait for which the strongest cluster enrichments are observed with both methods. Using 351 

the same MAGMA model, for each cluster, we conditioned on the highest gene members 352 

(membership > 0.5) of the other seven clusters (Table 2). We find that the SCZ enrichment 353 

is driven by the synaptic function cluster (p=2.88x10-3) only. The same conditional analysis 354 

for SRD, which only showed significant enrichment with MAGMA, shows that this enrichment 355 

is primarily driven by the transcription regulation cluster (p=5.42x10-3) (Table S7). 356 

  357 

[ Table 2 about here ] 358 

  359 

  360 

 361 

 362 

 363 
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Discussion 364 

        We investigated a longitudinal in vitro stem cell model of human neuronal differentiation 365 

to study psychiatric disease susceptibility based on evidence from GWAS. Among five major 366 

psychiatric disorders, we observe that SCZ disease susceptibility is significantly enriched in 367 

a set of genes relevant to synaptic functioning that are upregulated during differentiation. We 368 

therefore propose in vitro human neuronal differentiation as an experimental system to 369 

further understand and decipher SCZ disease biology. 370 

We confirmed that our in vitro model recapitulates neuronal signatures of in vivo 371 

cortical development across specific developmental time periods and laminae of the human 372 

neocortex. This is in line with previous findings14 and highlights that longitudinal gene 373 

expression dynamics underlying our model of human neuronal differentiation can be 374 

informative to study genes and pathways involved in in vivo human cortical development. 375 

SCZ is such a disorder whose susceptibility has been hypothesized to lie in neuronal cell 376 

types39, 40 and in early brain development7, 22, 41. Here, we observe that genes differentially 377 

expressed across neuronal differentiation are significantly enriched for genome-wide disease 378 

risk of SCZ and that this risk mainly aggregates in genes involved in synaptic functioning 379 

during development. Although not the only pathogenic process contributing to SCZ, synaptic 380 

dysfunction is most strongly supported by genetic data, postmortem expression studies, and 381 

animal models40, 42–45. We are the first to provide evidence for this hypothesis using a 382 

longitudinal in vitro cell-based model and genome-wide disease risk. Two of the highest 383 

gene members of the synaptic function gene cluster enriched for SCZ include Calcium 384 

Voltage-Gated Channel Subunit Alpha 1C (CACNA1C) and Solute Carrier Family 45 385 

Member 1 (SLC45A1), both located at a genome-wide significant SCZ locus22. We find no 386 

evidence of enrichment for AD, a late-onset non-psychiatric brain disease, nor for adult 387 

human height in this neuronal cluster. Together, our findings demonstrate that longitudinal 388 

transcriptomic signatures important for neuronal differentiation recapitulate the in vivo 389 

context and align with the genetic basis of the disease. SCZ disease biology can thus be 390 

studied through these molecular processes captured by this in vitro model. 391 
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We also observed a significant enrichment of genetic signal with MAGMA for SRD in 392 

genes upregulated during differentiation, and show that this enrichment is predominantly 393 

driven by genes in the transcription regulation gene cluster. Interestingly, the SRD GWAS 394 

reported that the top SNPs were enriched for transcription regulation related to 395 

neurodevelopment11, which is in line with our in vitro findings. We observed no enrichment 396 

for GWAS signal from recurrent and severe MDD in Han-Chinese women23. The latter 397 

sample represents the most genetically and phenotypically homogeneous GWAS of MDD. 398 

The fact that for these results no enrichment for any of our gene sets was observed may 399 

suggest that neurodevelopmental processes play a lesser role in MDD46. Alternatively, larger 400 

sample sizes are needed to better capture the genome-wide genetic risk associated with 401 

MDD. Self-reported depression is a much broader phenotype that may include other 402 

psychiatric traits, which could drive the observed neurodevelopment and transcription 403 

enrichments. It is therefore unclear how our findings and the application of the model 404 

extrapolate to the MDD phenotype. 405 

We did not find any evidence of significant association in the neuronal clusters for 406 

ADHD. This could be due to the smaller sample size in the GWAS studies and thereby lack 407 

of power to find a significant association with our transcriptomic signatures (Figure S10). As 408 

GWAS sample sizes are expected to increase, these gene cluster associations should be 409 

revisited. 410 

For height, we found enrichment in opposite direction of psychiatric traits in the 411 

downregulated gene clusters. Strikingly, we observe an inverse correlation between SCZ 412 

and height enrichment stratified across gene clusters (Supplementary Results, Figure S8 413 

and S11), despite the absence of any evidence of a genetic correlation across the whole-414 

genome47. These observations not only illustrate the added value of individual longitudinal 415 

gene clusters, but also highlight a complex genetic relationship between these two 416 

phenotypes. 417 

 A strength of our approach is the longitudinal analysis framework that we developed. 418 

We implemented an experimental design across a dense and repeatedly sampled time-419 
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series and integrated longitudinal transcriptomic signatures with genome-wide disease risk 420 

using available GWAS summary statistics. This increases statistical power to directly 421 

investigate the role of disease variants on genes important to our model system. While we 422 

specifically chose to perform our experiments across an isogenic background to minimize 423 

variation and maximize statistical power to identify transcriptomic signatures, our framework 424 

can easily be extended to a multi-sample design (e.g. cases vs controls)19, 48, which makes it 425 

relevant for many disease-specific experimental settings.  426 

Our experimental procedure applied differentiation towards a broad neuronal 427 

phenotype. Our work does not exclude disease associations with specific subtypes of 428 

neuronal cells nor with other major brain cell types. We provide a proof-of-concept of an in 429 

vitro model of neuronal cells for studying complex diseases, such as SCZ, and present an 430 

analytical framework that includes longitudinal assessment of gene expression profiles. This 431 

approach can readily be extended to study in vitro differentiation of other major brain cell 432 

types, such as astrocytes or oligodendrocytes. Although we show strong evidence for SCZ 433 

risk in early prenatal neurodevelopment, our findings do not preclude an additional 434 

contribution of postnatal neurodevelopment to the etiology of the disease49–51. 435 

In summary, the current study establishes WA09 neuronal differentiation as an in 436 

vitro genomic tool to study SCZ. Overall, this work contributes to understand the functional 437 

mechanisms that underlie psychiatric disease heritability and polygenicity in the post GWAS 438 

era. Our work highlights specific gene clusters involved in disease susceptibility during 439 

development and thereby provides a framework for experimental and analytical follow-up 440 

functional analyses in a model that is robust with standardized experimental procedures. 441 

These can now be extended to incorporate model perturbations, such as genomic 442 

manipulation, to study disease processes in finer detail across an isogenic background in a 443 

controlled environment. Our findings suggest that in vitro longitudinal transcriptomic 444 

signatures across neuronal differentiation could then serve as a functional readout to 445 

investigate schizophrenia. 446 

  447 
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Data Availability 448 

The Illumina HT-12 v4 gene expression data is available through the Gene 449 

Expression Omnibus (GEO) archive (Accession number is available for review). This dataset 450 

has the raw and normalized gene expression values on all samples. Supplementary table 8 451 

furthermore has specific probe annotations, such as probabilities of differential expression 452 

and probe membership values for all identified clusters. 453 
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Figure 1. In vitro gene expression profiles confirm a neuron-specific differentiation 637 
process and match in vivo human cortical development. (A) PCA of in vitro transcriptome 638 
data with PC1 (x-axis) and PC2 (y-axis) visualized. Variance explained per component is shown 639 
in parentheses. Time points are color-coded and labeled by days across differentiation. (B) 640 
Cellular identity is shown by average expression of cell type specific genes across days of 641 
differentiation. Cell types are highlighted by their name and corresponding color. The first number 642 
in the parentheses represents the number of genes for which the average expression is plotted. 643 
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The second number represents the corresponding number of probes assayed. OPC = 644 
oligodendrocyte precursor cells, NFO = newly formed oligodendrocytes, MP = myelinating 645 
oligodendrocytes. (C+D) TMAP output visualizes the amount of overlap between in vitro and in 646 
vivo DGE profiles colored by –log10(p-value) (see figure S2 for more details on interpretation). 647 
Abbreviations and numbering above maps correspond to schematic representations on the left 648 
(adopted from Stein et al., 2014) of different developmental stages (C) and laminae (D). VZ = 649 
ventricular zone, SZ = subventricular zone, IZ = intermediate zone, SP=subplate zone, CPi= 650 
inner cortical plate, CPo = outer cortical plate, MZ = marginal zone, PCW = post conception 651 
weeks, M = months, Y = years, Period = developmental stage.  652 
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 653 
 654 
Figure 2. Identified gene clusters highlight biological pathways important for neuronal 655 
differentiation. Significant functional annotations and corresponding enrichment score are 656 
shown for each gene cluster. Longitudinal gene expression is visualized for high member genes 657 
only (black line represents mean gene expression). Each cluster is color-coded with the number 658 
of genes at membership > 0.5 denoted. See table S1 for full annotation results. 659 
 660 
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 662 
 663 
Figure 3. Schizophrenia GWAS enrichment lies in genes up-regulated during neuronal 664 
differentiation. A more detailed investigation of the enrichment of h2 of SCZ, ADHD, and self-665 
reported depression across differentially expressed genes. The y-axis denotes the –log10 P-666 
value of the enrichment. No diff = genes that are not differentially expressed; Diff = log (T2-667 
statistic) as shown in Table 1; Up = genes up-regulated during differentiation; Down = genes 668 
down-regulated during differentiation. The dotted line represents the threshold for P=0.0056 (n=9 669 
traits).  670 
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 671 
 672 
Figure 4. Psychiatric GWAS enrichment is distributed across specific longitudinal gene 673 
clusters. Results from sLDSC (diagonal pattern) and MAGMA (solid colors) are shown for each 674 
phenotype (labels on the right) colored by gene cluster. Gene cluster annotation and cluster 675 
expression pattern are shown on top. The y-axis states the –log10 (p-value). The dotted 676 
horizontal line represents the threshold for Bonferroni correction (p=0.05/40). 677 
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	 MAGMA	 sLDSC	
Phenotype	 Beta	(SE)	 Beta_std	 P-value	 t	(SE)	 P-value	
Psychiatric	 	 	 	 	 	
		Schizophrenia	 0.022	(0.007)	 0.094	 0.001	 1.70	x	10-9	(7.45	x	10-10)	 0.01	
		ADHD	 0.014	(0.005)	 0.059	 0.002	 1.92	x	10-9	(1.25	x	10-9)	 0.06	
		Self-reported	depression	 0.013	(0.005)	 0.057	 0.003	 4.34	x	10-10	(2.10	x	10-10)	 0.02	
		Bipolar	disorder	 0.007	(0.005)	 0.032	 0.06	 6.16	x	10-9	(3.64	x	10-9)	 0.05	
		Cross	disorder	 0.005	(0.005)	 0.020	 0.16	 1.19	x	10-9	(1.00	x	10-9)	 0.12	
		MDD	CONVERGE	 0.000	(0.004)	 -0.001	 0.51	 6.07	x	10-9	(4.39	x	10-9)	 0.08	
		ASD	 0.000	(0.004)	 -0.002	 0.54	 2.97	x	10-9	(3.48	x	10-9)	 0.20	
	 	 	 	 	 	
Neurodegenerative	 	 	 	 	 	
		Alzheimer’s	disease	 0.003	(0.004)	 0.015	 0.22	 1.30	x	10-10	(1.02	x	10-9)	 0.45	
	 	 	 	 	 	
Non-brain	 	 	 	 	 	
		Height	 0.009	(0.011)	 0.037	 0.21	 -1.62	x	10-9	(1.36	x	10-9)	 0.88	
 679 
Table 1. Polygenic psychiatric disease enrichment across differentially expressed genes. 680 
Shown are enrichment results for MAGMA and sLDSR for gene differential expression. P-values 681 
highlighted in bold show phenotypes that survive multiple testing correction (n=9). See Table S3 682 
and S4 for more details. Beta = regression coefficient, SE = standard error, Beta_std = change in 683 

Z-value given a change of one standard deviation in log T2 statistic, t (tau) = the contribution to 684 

the per-SNP h2. 685 
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 687 
Table 2. Schizophrenia MAGMA cluster conditional analysis. Gene level association signal is 688 
regressed on cluster membership while adjusting for high membership genes of all other seven 689 
clusters. Shown are the results of the primary analysis (not adjusted for other clusters) and the 690 
conditional analysis. Beta = regression coefficient, SE = standard error.  691 

	 MAGMA	Primary	 MAGMA	Conditional	
Schizophrenia	-	clusters	 Beta	(SE)	 P-value	 Beta	(SE)	 P-value	
		Cell	division	 -0.045	(0.017)	 1.00	 -0.047	(0.027)	 0.96	
		RNA	regulation	 -0.040	(0.017)	 0.99	 -0.044	(0.027)	 0.95	
		RNA	processing	 -0.006	(0.017)	 0.64	 -0.011	(0.024)	 0.68	
		Neuron	formation	 0.048	(0.017)	 2.12x10-3	 0.018	(0.036)	 0.30	
		Synaptic	function	 0.077	(0.017)	 1.82x10-6	 0.070	(0.026)	 2.88x10-3	
		Cell	signaling	 0.052	(0.016)	 6.88x10-4	 0.032	(0.023)	 0.08	
		Transcription	regulation	 0.048	(0.016)	 1.67x10-3	 0.019	(0.025)	 0.22	
		Cell	connectivity	 -0.061	(0.017)	 1.00	 -0.076	(0.026)	 1.00	
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Supplementary Material and Methods 

Approval for stem cell research 

 The University of California, Los Angeles Embryonic Stem Cell Research Oversight 

(ESCRO) committee approved this work. Their policy is based on the recommendations of 

the National Bioethics Advisory Commission, the National Academies of Science-Institute of 

Medicine guidelines, and standards created by the California Institute for Regenerative 

Medicine. 

Human neural stem cell line 

WA09(H9)-derived hNSC is a commercially available and commonly used neural 

stem line with standardized and well-documented neuronal differentiation protocols1–3. These 

cells originate from a donated human embryo (F), produced by in vitro fertilization for clinical 

purposes, that was cultured to a blastocyst after which an ESC line was established4, 5. This 

cell line is of European ancestry6 and has a normal karyotype. It was in addition successfully 

tested for stem cell characteristics and approved by NIH for stem cell research7. WA09 

ESCs were differentiated to NSCs by the vendor and obtained by us as neural progenitors. 

Tissue culture plates were coated with CELLstart CTSTM (Thermo Fisher Scientific) diluted 

(1:50) in DPBS with Ca2+ and Mg2+ and hNSCs cells expanded in KnockOut™ DMEM⁄F-12 

Basal Medium (Gibco) with 2% StemPro® Neural Supplement (Gibco), 2mM GlutaMax™-I 

Supplement (Gibco), FGF Basic and EGF Recombinant proteins (Gibco, both at 20 ng/ml), 

and 1x Pen Strep (Thermo Fisher Scientific). Cells were plated at 1.0x105 cells per 3.8 cm2, 

dissociated with preheated StemPro Accutase (Gibco) and subsequently passaged at ~90% 

confluency. This cell line tested negatively for mycoplasma contamination both at the vendor 

and in our lab. 

Experimental design and RNA extraction 

Cells all originated from the same batch of hNSCs differentiated from the WA09 

hESC line. We specifically chose to perform our experiments across an isogenic background 
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to minimize variation and maximize statistical power to identify transcriptomic signatures 

across differentiation. Each sample was cultured in a separate well and represents an 

independent differentiation process, which makes for semi-technical replicates. After RNA 

extraction, samples were quantified using the Quant-iTTM RiboGreen® RNA Assay Kit 

(Thermo Fisher Scientific). RNA integrity was assessed through RIN scores using the Agilent 

2100 Bioanalyzer (mean +/- sd = 9.26 +/- 0.63).   

Data preprocessing and quality control 

We select for probes present in at least 1 sample at detection p-value of <0.01. 

Probes were in addition filtered for quality by “perfect” or “good” annotation using the 

illuminaHumanv4.db package (v1.26) in R. Network adjacency by Euclidean distance and 

standardized connectivity (Z.K) were calculated on filtered probes values using the WGCNA 

package to detect outliers, defined as having Z.K. < -28, 9. All samples survived this exclusion 

threshold. As RNA samples were randomized across gene expression arrays, batch has no 

explanatory value on days of differentiation (R2=0.0, p=1.0, see also Figure S1). 

In vitro cellular identity 

An RNA-sequencing (RNA-Seq) transcriptome database of major classes of cell 

types present in the cerebral cortex was used to assess cell type-specific gene expression 

across neuronal differentiation. Briefly, gene expression data of purified populations of 

neurons, astrocytes, oligodendrocyte precursor cells (OPC), newly formed oligodendrocytes 

(NFO), myelinating oligodendrocytes (MO), microglia, and endothelial cells from mouse 

cerebral cortex was downloaded from the database10. Fold changes in gene expression 

values, using fragments per kilobase of exon per million fragments mapped (FPKM), for 

each gene in each cell type were compared to the mean expression level across the other 

six cell types. To enrich for cell type-specific genes, we selected the top genes sorted by fold 

change, with a minimal fold change of 2 and FPKM < 5 in the other brain cell types. 
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Transition mapping to a spatiotemporal atlas of early human brain development 

     To investigate global transcriptomic matching between in vitro gene expression 

profiles and in vivo gene expression profiles of neocortical brain regions, we applied 

transition mapping (TMAP)11. This method uses a spatiotemporal transcriptome atlas of the 

human brain12 and laminar expression data dissected via Laser Capture Microdissection 

from fetal human brain as in vivo input13. Both data sets contain brain samples from multiple 

individuals. TMAP only includes neocortical regions in the analyses. The method performs 

serial differential gene expression (DGE) analysis between any developmental stages or 

cortical laminae in the in vivo datasets and DGE analysis between two in vitro time points of 

choice. Both DGE lists are sorted on –log10(p-value) and multiplied by the sign of the beta 

coefficient from the DGE analysis. TMAP subsequently implements the Rank Rank 

Hypergeometric Overlap (RRHO) test to determine overlap between the in vitro and in vivo 

DGE ranked lists and produces RRHO Difference maps that visualizes the extent of 

overlap14. The TMAP and RRHO analyses are implemented in the online CoNTExT 

bioinformatic pipeline (https://context.semel.ucla.edu). Analyses were run for in vitro time 

points day-0 vs day-30, day-0 vs day-5, day-5 vs day-15, and day-15 vs day-30 across both 

temporal and spatial dimensions of human cortical development.  

Time-series differential gene expression analysis 

Two multivariate empirical Bayes models are used to identify differentially expressed 

genes across in vitro neuronal differentiation. The first method exploits the correlation 

structure among time points and replicates to identify non-constant genes and applies 

moderation by borrowing the information across genes into the analyses to reduce type-I 

and type-II errors due to poorly estimated variance-covariance matrices15. This method is 

implemented in the Timecourse package (v 1.42) in R. We used the mb.long() function to 

calculate the one-sample T2 statistic that ranks genes based on their log10 probability to 

have differential expression over time. The second method, Bayesian Estimation of 

Temporal Regulation (BETR), is an extension of the first approach and uses a flexible 
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random-effect model that allows for correlations between the magnitude of differential 

expression at different time points16. This method explicitly models the joint distribution of the 

samples across time points and calculates the probability of a gene being differentially 

expressed using Bayes rule. BETR is implemented in the betr package (v 1.26) in R. These 

two methods complement each other as the first approach has increased sensitivity for 

transient expression differences while BETR has increased sensitivity to detect genes with 

non-constant expression that is small but sustained over multiple consecutive time points16. 

To maximize our power to detect differentially expressed genes across time points and 

replicates, we applied both methods to rank genes by their probability of having non-

constant gene expression across in vitro neuronal differentiation.  

Fuzzy c-means cluster analysis 

Fuzzy c-means clustering is a soft clustering approach that allows probes to obtain 

fuzzy memberships to all clusters, minimizes the effect of noise in the data, and avoids 

erroneous detection of clusters generated by random gene expression patterns. Fuzzy c-

means clustering is performed in Euclidian space on standardized gene expression values. 

This ensures that genes with similar changes in expression cluster together. Membership 

values represent cluster affiliations and highlight the extent of similarity in expression 

between genes. To calculate cluster membership values, we first have to estimate a 

fuzzifier, which determines the level of cluster fuzziness, and the optimal cluster number to 

use. These two parameters were empirically estimated from the data (fuzzifier = 1.55, 

number of clusters = 8) as previously described using the Mfuzz package in R17, 18 (Figure 

S12). We used these two optimal estimates and subsequently calculated cluster 

membership with the fclusList() and membership() function in the Mfuzz package. Because 

these functions only take gene expression values of a single-replicate time series as input, 

we randomly sampled 100 single-replicate time series from our data and calculated cluster 

membership values using standardized gene expression values for each independent time 

series (Figure S13). We then proceeded to calculate average cluster membership for each 
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probe for each cluster across our 100 independently sampled time series (Figure S14). 

These average cluster membership values were then used for all downstream analyses.  

Functional annotation of clusters 

     The Database for Annotation, Visualization, and Integrated Discovery (DAVID, v6. 8) 

was used for functional annotation of each cluster19. We restricted our analysis to probes 

with high membership, i.e. cluster membership > 0.5, to identify most informative functional 

annotations (Table S1). At a membership value of > 0,5, there is no overlap in genes 

between clusters (Figure S15). With this setting, 4,318 genes were assigned to a cluster with 

an average cluster size of 540 genes with the smallest and largest cluster having 221 and 

891 genes, respectively. DAVID was run using unique Ensembl IDs and the following 

databases: UP_KEYWORDS, UP_SEQ_FEATURE, GOTERM_BP_FAT, 

GOTERM_CC_FAT, GOTERM_MF_FAT, BIOCARTA, KEGG_PATHWAY, INTERPRO, 

UCSC_TFBS. Genes significantly detected during differentiation (n = 12,414) were set as 

background to determine gene overrepresentation in clusters. The functional annotation 

clustering tool was applied at default settings to group gene list with overlapping gene IDs. 

Cluster annotations were called significant if the enrichment > 1.0 and at least 1 gene list in 

the annotation cluster survived Bonferroni correction (P < 0.05).  

Intolerance of loss-of-function variation across clusters 

The probability of being loss-of-function (LoF) intolerant (pLI) was used to infer 

functional gene constraint across clusters. pLI measures were downloaded (April 2017) for 

18,225 genes from the ExAC Browser (http://exac.broadinstitute.org/downloads). The 

statistical framework underlying the pLI metric is described by others in more detail 

elsewhere20. The Wilcoxon Rank-Sum test was used to test if cluster constraint was 

statistically different between groups. 
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GWAS summary statistics used 

GWAS summary statistics were checked and reformatted using the 

munge_sumstats.py program within the ldsc software, which removes low quality and 

ambiguous variants21. SNPs in the MHC region (hg19 - chr6: 28477797 – 33448354) were 

filtered out due to extensive linkage disequilibrium (LD) between markers in this region. The 

APOE locus (hg19 – chr19: 44,409,039–46,412,650) was removed from analysis of AD to 

minimize the effect of variants with large effect sizes in downstream regression analyses. 

For MDD, we included GWAS results from the China Oxford and VCU Experimental 

Research on Genetic Epidemiology (CONVERGE) consortium22 and 23andMe23. The latter 

uses a proxy of self-reported depression as a phenotype. We did not include the MDD 

GWAS of the PGC24 in our analyses as it has a strong genetic correlation with the self-

reported depression GWAS (rg=0.72)23 but a lower h2 z-score.  

Stratified LD Score Regression - generating annotation files and LD scores 

For sLDSR, we used a recent extension to the method that partitions h2 by 

continuous-valued annotations25. This extension relies on the assumption that if a 

continuous annotation is associated to increased h2, LD to SNPs with larger values of this 

annotation will increase the 2 statistic of a SNP more than LD to a SNP with smaller values. 

We first generated sLDSR annotation files and computed LD scores for each continuous-

valued annotation. We mapped  gene log(T2-statistic) and standardized cluster memberships 

to SNPs in 1KG reference panel BIM files. To increase the number of SNPs in our analyses, 

we extended gene boundaries with 100kb on each end, similar to here26. SNPs that 

intersected with a gene were annotated with the corresponding gene variable, while SNPs 

that did not map to genes were annotated with zero. For each annotation, we then estimated 

partitioned LD scores using using the ldsc.py --l2 function with MAF > 5% and a 1 

centimorgan (cm) window. As recommended, only HapMap3 SNPs IDs, with the MHC region 

removed, were written and used in the final regression model. In case of binary gene 

annotations, a 1 (in the annotation) and 0 (non in annotation) coding was used. In a similar 
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fashion, we computed LD scores for all 53 annotations in the baseline model (see 

Supplementary Methods for details). We in addition generated weight files that contain non-

partitioned LD scores using only SNPs that will be included in the final regression model. 

These are LD scores computed from the HapMap3 SNPs with the MHC region removed. 

Frequency files were generated with the --freq flag in PLINK 1.926–28. 

We next generated baseline annotation files using BED files of 52 functional 

annotations, which were downloaded from the LDSC web portal. Genomic interval 

coordinates in each BED file were intersected with SNPs present in 1KG reference panel 

BIM files. If a SNP intersected with an interval in a BED file it was annotated as 1 for that 

particular annotation. If a SNP did not intersect, it was annotated as 0. In addition to 52 

annotations, we also added a recommended base annotation that coded a 1 for every SNP. 

These 53 annotation makeup the baseline model. With the generated sLDSR annotation 

files and 1KG reference panels we estimated LD scores for each annotation using the 

ldsc.py --l2 function with MAF > 5% and a 1 centimorgan (cm) window. As recommended, 

only HapMap3 SNPs, with the MHC region removed, were written and used in downstream 

analyses. As a sanity check, we correlated our estimated CEU baseline LD scores to the 

baseline LD scores that can be downloaded from the LDSC web portal and found a high 

concordance. For example, the mean Pearson correlation between computed LD scores 

across baseline annotations on chromosome 22 is 0.99 (n=53, sd=0.002). Thus, we 

proceeded and used the baseline model in our analyses as it has been shown to provide 

more accurate mean estimates of enrichment. The baseline model and the details of each 

annotation are described elsewhere26, 29. 
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Supplementary Results 
 

Upregulated genes are more likely to be intolerant to loss-of-function functional variation 

     Recent work has shown that intolerance to loss-of-function (LoF) functional variation 

(i.e. constraint) in genes and gene sets can highlight core biological processes and likelihood 

of disease pathogenicity20, 30. High constraint genes have been implicated in 

neurodevelopmental disorders, such as autism spectrum disorder (ASD) and intellectual 

disability30, and are in addition more likely to be adjacent to GWAS signal than the average 

gene20. We therefore investigated constraint across clusters and extracted probabilities of 

LoF intolerance (pLI) from the ExAC database20. The median pLI across all 18,225 genes 

extracted from the browser is 0.027. Differentially expressed genes (n=5,545, median 

pLI=0.285) have increased average gene constraint compared to non-differentially 

expressed genes (n=6,839, median pLI=0.085). This difference between the groups is 

significant (W=2.09x107, P < 2.2x10-16). The increase in constraint is primarily driven by 

genes that are upregulated during development of neuronal cells in our in vitro model. More 

specifically, genes in clusters that are affiliated to neuronal maturation (median pLI = 0.55, 

n=633) and synaptic function (median pLI = 0.52, n=616) show a significant increase in pLI 

while genes affiliated to cell division (median pLI = 0.067, n=543), RNA binding (median pLI 

= 0.046, n=285), and extracellular matrix (median pLI = 0.104, n=490) show a significant 

decrease in pLI relative to differentially expressed genes (see Figure S16 for test statistics). 

This shows that genes that are upregulated during neuronal differentiation have a lower 

tolerance to functional disruption than the average gene expressed, which makes these 

genes interesting to study in the context of disease. 

Cluster enrichments of schizophrenia and height are inversely correlated 

We find an inverse correlation between enrichments of SCZ and height across eight gene 

clusters (rho=-0.86, P=0.011, n=8, see also Figure S8), despite the absence of any evidence 

of a genetic correlation across the whole-genome (rg=-0.002, p=0.95)31. Our findings 
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however do suggest a genetic correlation. Indeed, large-scale epidemiological studies have, 

for example, reported an inverse relationship between adult height and SCZ32, 33. A 

population-based cohort study of >1 million Swedish men describes a 15% reduction in SCZ 

risk for tall subjects compared to short subjects33. It has therefore been suggested that 

height and SCZ are likely to have overlapping genetic causes that can be both discordant 

and concordant34. Our results are in line with this hypothesis and suggest that discordant 

and concordant effects aggregate on pathway levels that are dependent on time and place 

during development (Figure S11). While future work is needed to further explore the genetic 

relation between SCZ and height, these results do highlight the strength of our approach to 

investigate shared and disease-specific genetic contributions among phenotypes and 

uncover patterns that would otherwise be missed. 
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Figure	S1.	Results	of	PCA	on	control	probes.	The	human	HT-12	 v4	beadchip	contains	887	 control	
probes	that	capture	technical	variation.	Plotted	above	are	PC1	and	PC2	with	variance	explained	in	
parentheses.	Dots	in	 the	graphs	represent	samples	and	are	color-coded	by	 (A)	array	and	 (B)	 time.	
PC1	explains	the	majority	of	the	information	of	the	control	probes	but	has	no	correlation	with	time	
in	culture.				
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Figure	S2.	Gene	expression	overlap	between	in	vitro	neuronal	differentiation	and	in	vivo	human	cortical	
development.	CoNTExT	was	used	 to	apply	 transition	mapping	and	generate	Rank	Rank	Hypergeometric	
Overlap	 difference	 maps.	 (A)	 Shows	 a	 toy	 example	 of	 how	 to	 interpret	 difference	 maps	 of	 overlap	
between	 in	 vivo	 time	 points	 and	 in	 vivo	 laminae.	 In	 vitro	 day-0	 vs	 day-30	 differential	 gene	 expression	
(DGE)	profile	was	mapped	to	serial	DGE	profiles	of	(B)	human	brain	developmental	stages	and	(C)	laminae	
of	the	human	cerebral	cortex.	Difference	maps	show	the	amount	of	matching	between	in	vitro	and	in	vivo	
DGE	profiles.	Maps	are	colored	by	–log10(p-value)	denoted	by	each	corresponding	color	bar.	On	the	right	
of	(B)	and	(C),	results	are	also	shown	for	analyses	with	permuted	in	vitro	sample	labels.	Abbreviations	and	
numbering	above	maps	correspond	to	schematic	 representations	on	 the	 left	 (adopted	 from	Stein	et	al.,	
2014)	of	different	developmental	stages	and	laminae.	VZ	=	ventricular	zone,	SZ	=	subventricular	zone,	IZ	=	
intermediate	zone,	SP=subplate	zone,	CPi=	inner	cortical	plate,	CPo	=	outer	cortical	plate,	MZ	=	marginal	
zone,	PCW	=	post	conception	weeks,	M	=	months,	Y	=	years,	Period	=	developmental	stage.		

A	

B	

C	
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Figure	 S3.	 A	 scatterplot	 showing	 the	 concordance	 between	 two	 methods	 that	 identify	 non-constant	
genes	 over	 time.	The	 x-axis	 shows	 the	 probability	 from	 BETR.	 The	 y-axis	 shows	 the	 log	 transformed	 T2	
statistic	 from	 the	second	method.	 Each	dot	represents	 a	probe.	Blue	color	 indicates	 the	union	of	probes	
that	 are	 confidently	 called	 as	 having	 non-constant	 expression	 over	 time	 (n=7,734).	 The	 Spearman	
correlation	between	the	ranks	is	shown	in	the	top	right	corner.	
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Figure	 S4.	 Experimentally-derived	 longitudinal	 gene	 clusters.	 An	 enlarged	 representation	 of	 gene	
expression	 patterns	 of	 high	 confidence	 gene	members	 for	 each	 cluster	 (see	 also	 figure	 3).	 The	 x-axis	
denotes	the	time	across	differentiation	and	the	y-axis	gene	expression	values	standardized	to	day-0.	The	
black	line	highlights	the	average	expression	patterns	of	each	cluster.	
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Figure	S5.	Height	and	Alzheimer’s	disease	show	no	h2	enrichment	in	up-regulated	genes.	A	more	detailed	

investigation	of	the	enrichment	of	h2	of	SCZ,	height,	and	Alzheimer’s	disease	across	differentially	expressed	

genes.	The	y-axis	denotes	the	–log10	P-value	of	the	enrichment.	No	diff	=	genes	that	are	not	differentially	

expressed;	Diff	=	log	(T2-statistic)	as	shown	in	Table	1;	Up	=	genes	up-regulated	during	differentiation;	Down	=	

genes	down-regulated	during	differentiation.	The	dotted	line	represents	the	threshold	for	P	=	0.0056	(n=9	

tests).			
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Figure	S6.	MAGMA	and	sLDSC	show	strong	concordance	in	results.	Each	dot	represents	the	results	of	
phenotype-cluster	combination	for	both	MAGMA	(y-axis)	and	sLDSC	(x-axis)	(n=40).	The	regression	line	
is	shown	in	blue	with	the	Spearman	correlation	between	the	ranks	in	the	bottom	right	corner.	
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Figure	S7.	A	plot	showing	the	association	between	SCZ	gene-level	association	statistics	and	synaptic	
cluster	 gene	 membership.	 Standardized	 membership	 values	 to	 the	 synaptic	 function	 cluster	 and	
standardized	 gene	 level	 association	 statistics	 are	 shown	 on	 the	 y-axis	 and	 x-axis,	 respectively.	 The	
regression	line	is	shown	in	blue	with	Pearson	correlation	test	statistics	denoted	in	the	top	right	corner.	
The	plotted	association	is	not	yet	corrected	for	gene	size,	SNP	density	nor	LD.	
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Figure	 S8.	 Schizophrenia	 and	height	 show	an	 inversely	 correlated	pattern	of	 enrichment	 results.	
Shown	are	MAGMA	results	with	each	dot	representing	the	regression	coefficients	of	enrichment	for	
schizophrenia	and	height	on	the	x-axis	and	y-axis,	 respectively.	The	Spearman	correlation	between	
the	ranks	of	both	methods	is	shown	in	the	top	right	corner	along	with	the	corresponding	significance	
level.	
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Figure	S9.	The	correlation	structure	across	clusters.	A	matrix	with	spearman’s	correlations	calculated	
between	gene	membership	values	across	clusters.	The	rho	is	denoted	in	each	cell	and	the	strength	of	
the	correlation	color	coded	according	to	the	bar	on	the	right.	
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Figure	S10.	GWAS	sample	size	matters.	(left)	A	bar	plot	showing	the	regression	coefficient	 (MAGMA)	of	
the	association	between	 the	T2	statistic	 (likelihood	of	being	differentially	expressed)	and	SCZ	gene	 level	
test	statistics	for	three	SCZ	GWAS	studies	of	increasing	sample	sizes.	The	numbers	of	cases	for	each	study	
are	denoted	on	the	x-axis	labels.	(right)	A	similar	plot	showing	the	association	of	SCZ	risk	and	membership	
to	 the	 synaptic	 function	 cluster	 for	 each	 GWAS.	 Regression	 coefficients	 are	 shown	with	 corresponding	
standard	errors.		
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Figure	S11.	The	genetic	correlation	between	 schizophrenia	and	height	 varies	 across	cluster	while	
absent	across	the	whole	genome.	Genetic	correlations	were	determined	using	cross-trait	LD	score	
regression	and	SNPs	with	MAF	>	5%.	Stratified	correlations	were	computed	using	only	a	subset	of	
SNPs	 that	 overlap	 with	 genomic	 coordinates	 of	 the	 highest	 gene	 members	 of	 that	 cluster	
(membership	>	0.5).	For	one	cluster	(RNA	processing),	the	subset	of	SNPs	was	too	few	to	compute	a	
genetic	 correlation.	 For	 differentially	 expressed	 genes	 (DEGs),	 the	 correlation	 was	 computed	 on	
SNPS	overlapping	the	union	of	DEGs	(n=5,818).	Error	bars	represent	the	standard	error.	
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Figure	 S12.	 A	 plot	 showing	 minimum	 centroid	 distance	 against	 increasing	 numbers	 of	 clusters.	 We	
sampled	100	independent	single-replicate	time	series	(see	supplementary	figure	5)	and	performed	fuzzy	c-
means	clustering	for	each	time	series	across	various	numbers	of	clusters	with	a	fuzzifier	of	1.55.	For	each	
we	 calculated	 the	minimum	 centroid	distance	across	 clusters.	 Shown	above	 in	 red	are	 the	mean	across	
time	series	with	corresponding	standard	errors	in	black.	The	x-axis	shows	the	number	of	clusters	and	the	y-
axis	 the	minimum	centroid	distance.	 The	optimal	 cluster	number	 is	 chosen	as	 the	number	before	which	
there	starts	a	gradual	decrease	in	minimum	centroid	distance	as	cluster	number	increases.	This	indicates	
that	additional	clusters	add	little	information.	The	optimal	cluster	number	was	set	at	8.										
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Figure	S13.	A	schematic	example	of	sampling	independent	single-replicate	time	series.	We	calculated	
average	 cluster	membership	 for	 each	probe	for	each	cluster	across	100	 independently	sampled	single-
replicate	time	series.	Give	the	data	we	can	sample	5,184	independent	single-replicate	time	series	(4^3	X	
3^4).	Above	are	two	dummy	examples	shown	of	how	a	single-replicate	 time	series	could	look	like.	The	
yellow	color	denotes	the	sampled	samples	and	the	red	line	shows	a	path	that	defines	the	single-replicate	
time	series	that	these	samples	make	up.	
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Figure	S14.	A	plot	showing	the	variation	in	cluster	membership	values	across	100	independently	
sampled	time	series.	We	performed	soft	clustering	on	7,734	probes	using	fuzzy	c-means	clustering	
with	 a	 fuzzifier	 of	 1.55	 and	 a	 cluster	 number	 of	 8.	 Cluster	 memberships	 were	 calculated	 as	 the	
average	membership	determined	across	100	independently	sampled	time	series.	The	x-axis	above	
shows	 average	 cluster	 membership	 and	 the	 y-axis	 the	 standardized	 standard	 deviation.	 Data	 is	
shown	 for	 a	 specific	 cluster	 with	 each	 dot	 representing	 a	 probe.	 The	 blue	 line	 represents	 a	
smoothened	 curve	 representing	 the	 relationship	 between	 standard	 deviation	 and	 average	
membership	 with	 95%	 confidence	 intervals	 in	 grey.	 This	 relationship	 is	 consistent	 across	 all	 8	
clusters.	
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Figure	 S15.	 	 The	 overlap	 between	 clusters	 across	 the	 membership	 range.	 The	 percentage	 of	 unique	
genes	 by	 Ensembl	 ID	 was	 calculated	 across	 different	 membership	 values	 for	 each	 cluster.	 These	
percentages	were	subsequently	averaged	across	8	clusters.	The	 y-axis	 shows	 the	average	percentage	of	
unique	genes	(i.e.	no	overlap	between	clusters)	with	membership	value	on	the	x-axis.									
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Figure	 S16.	 Genes	 upregulated	 during	 neuronal	 differentiation	 are	 intolerant	 for	 loss-of-function	
genetic	variation.	Cluster	annotations	shown	with	average	gene	constraint	shown	across	clusters.	
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Phenotype	 Cases	 Controls	 l	 Intercept	 h2	 h2	SE	 Z	 Reference	
ADHD	 19,099	 34,194	 1.25	 1.03	 0.24	 0.015	 15.6	 Demontis	et	al.,	20171	
Alzheimer’s	 17,008	 37,154	 1.09	 1.04	 0.06	 0.011	 5.6	 Lambert	et	al.,	20132	
Autism	 6,197	 7,377	 1.07	 0.99	 0.34	 0.042	 7.9	 ASD	PGC,	20173	
Bipolar	disorder	 7,481	 9,250	 1.16	 1.01	 0.45	 0.042	 10.7	 BPD	PGC,	20114	
Cross	Disorder	 33,332	 27,888	 1.22	 1.01	 0.17	 0.012	 13.9	 Smoller	et	al.,	20135	
Depression	self-report	 75,607	 231,747	 1.26	 1.01	 0.05	 0.003	 17.2	 23andMe	Inc.,	20166	
Height	 NA	 253,288	 2.00	 1.32	 0.31	 0.014	 22.4	 GIANT	20147	
Major	Depression	
CONVERGE	

5,303	 5,337	 1.09	 1.04	 0.21	 0.055	 3.76	 CONVERGE,	20158	

Schizophrenia	 36,989	 113,075	 1.59	 1.05	 0.24	 0.009	 25.7	 SCZ	PGC,	20149	
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Table	S2.	Overview	of	GWAS	summary	statistics	used	

From	left	to	right;	numbers	of	cases	and	controls	included	in	the	GWAS;	the	lambda	GC	(l)	as	outputted	
by	LDSR,	the	intercept	of	LDSR,	the	h2	on	the	observed	scale,	the	h2	standard	error	(SE),	the	h2	z-score	
(h2/SE),	 and	 the	 reference	 of	 the	 GWAS	 study.	 Heritability	 was	 estimated	 using	 filtered	 and	
processed	summary	statistics	with	ancestry	matched	1,000	Genome	reference	panel	using	MAF	>	5%.	
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Phenotype	 Genes	(N)	 Beta	(SE)	 Beta_std	 P-value	 P.adj	
Psychiatric	 	 	 	 	 	
		Schizophrenia	 11432	 0.022	(0.007)	 0.094	 0.001	 0.012	
		ADHD	 11567	 0.014	(0.005)	 0.059	 0.002	 0.021	
		Self-report	depression	 11628	 0.013	(0.005)	 0.057	 0.003	 0.030	
		Bipolar	disorder	 10922	 0.007	(0.005)	 0.032	 0.063	 0.566	
		Cross	disorder	 11047	 0.005	(0.005)	 0.020	 0.164	 1.00	
		MDD	CONVERGE	 11584	 0.000	(0.004)	 -0.001	 0.514	 1.00	
		ASD	 11406	 0.000	(0.004)	 -0.002	 0.548	 1.00	
	 	 	 	 	 	
Neurodegenerative	 	 	 	 	 	
		Alzheimer’s	disease	 11570	 0.003	(0.004)	 0.015	 0.224	 1.00	
	 	 	 	 	 	
Non-brain	 	 	 	 	 	
		Height	 11580	 0.009	(0.011)	 0.037	 0.210	 1.00	

Table	S3.	MAGMA	results	across	differentially	expressed	genes	
	

Note:	Gene	level	association	signal	is	regressed	on	log	transform	Hotelling	T2	statistic	while	
adjusting	for	gene	size,	SNP	density,	and	LD	between	genes.	The	number	of	genes	included	
in	 the	 regression	 model	 can	 vary	 across	 phenotypes	 based	 on	 the	 number	 of	 markers	
reported	 in	 the	 summary	 statistics.	 Beta	 =	 regression	 coefficient,	 SE	 =	 standard	 error,	
Beta_std	=	change	 in	Z-value	given	a	change	of	one	standard	deviation	 in	the	predictor.	P-
values	are	adjusted	(P.adj)	for	the	number	of	phenotypes	tested	(n=9).		
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Phenotype	 t	 SE	 P-value	 P.adj	
Psychiatric	 	 	 	 	
		Schizophrenia	 1.70	x	10-9	 7.45	x	10-10	 0.011	 0.102	
		ADHD	 1.92	x	10-9	 1.92	x	10-9	 0.062	 0.559	
		Self-report	depression	 4.34	x	10-10	 4.34	x	10-10	 0.019	 0.174	
		Bipolar	disorder	 6.16	x	10-9	 6.16	x	10-9	 0.045	 0.407	
		Cross	disorder	 1.19	x	10-9	 1.19	x	10-9	 0.118	 1.00	
		MDD	CONVERGE	 6.07	x	10-9	 6.07	x	10-9	 0.084	 0.752	
		ASD	 2.97	x	10-9	 2.97	x	10-9	 0.197	 1.00	
	 	 	 	 	
Neurodegenerative	 	 	 	 	
		Alzheimer’s	disease	 1.30	x	10-10	 1.02	x	10-9	 0.449	 1.00	
	 	 	 	 	
Non-brain	 	 	 	 	
		Height	 -1.62	x	10-9	 1.36	x	10-9	 0.884	 1.00	

Table	S4.	Stratified	LDSR	results	across	differentially	expressed	genes	

Note:	 Heritability	 of	 each	 phenotype	 is	 partitioned	 along	 the	 Hotelling	 T2	 statistic	 while	
accounting	for	the	full	baseline	model	and	all	genes	detected.	For	each	trait,	we	report	the	
contribution	to	the	per-SNP	heritability	(t).	SE	=	standard	error.	P-values	are	adjusted	(P.adj)	
for	the	number	of	phenotypes	tested	(n=9).	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 30, 2017. ; https://doi.org/10.1101/211581doi: bioRxiv preprint 

https://doi.org/10.1101/211581
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
	

	

	

	 MAGMA	Primary	 MAGMA	Conditional	
Self-reported	depression	 Beta	(SE)	 P-value	 Beta	(SE)	 P-value	
		Cell	division	 -0.036	(0.014)	 1.00	 -0.031	(0.022)	 0.92	
		RNA	regulation	 -0.034	(0.014)	 0.99	 -0.019	(0.022)	 0.81	
		RNA	processing	 -0.001	(0.014)	 0.54	 0.013	(0.020)	 0.26	
		Neuron	formation	 0.050	(0.014)	 1.15x10-4	 0.053	(0.029)	 0.035	
		Synaptic	function	 0.036	(0.014)	 4.72x10-3	 0.015	(0.021)	 0.23	
		Cell	signaling	 0.023	(0.013)	 0.040	 0.017	(0.019)	 0.27	
		Transcription	regulation	 0.054	(0.013)	 2.51x10-5	 0.052	(0.020)	 5.42x10-3	
		Cell	connectivity	 -0.026	(0.014)	 0.67	 -0.010	(0.022)	 0.67	

Table	S7.	Self-reported	depression	MAGMA	cluster	conditional	analysis	
	

Note:	Gene	 level	association	 signal	 is	 regressed	on	cluster	membership	while	adjusting	 for	
high	 membership	 genes	 of	 other	 seven	 clusters.	 Shown	 are	 the	 results	 of	 the	 primary	
analysis	 (not	 adjusted	 for	 other	 clusters)	 and	 the	 conditional	 analysis.	 Beta	 =	 regression	
coefficient,	SE	=	standard	error.		
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