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ABSTRACT 
Whole-genome bisulfite sequencing (WGBS) and reduced representation bisulfite sequencing 

(RRBS) are widely used for measuring DNA methylation levels on a genome-wide scale(1). Both 

methods have limitations: WGBS is expensive and prohibitive for most large-scale projects; RRBS 

only interrogates 6-12% of the CpGs in the human genome(16,19). Here, we introduce methylation-

sensitive restriction enzyme bisulfite sequencing (MREBS) which has the reduced sequencing 

requirements of RRBS, but significantly expands the coverage of CpG sites in the genome. We built a 

multiple regression model that combines the two features of MREBS: the bisulfite conversion ratios of 

single cytosines (as in WGBS and RRBS) as well as the number of reads that cover each locus (as in 

MRE-seq(12)). This combined approach allowed us to estimate differential methylation across 60% of 

the genome using read count data alone, and where counts were sufficiently high in both samples 

(about 1.5% of the genome), our estimates were significantly improved by the single CpG conversion 

information. We show that differential DNA methylation values based on MREBS data correlate well 

with those based on WGBS and RRBS. This newly developed technique combines the sequencing 

cost of RRBS and DNA methylation estimates on a portion of the genome similar to WGBS, making it 

ideal for large-scale projects of mammalian genomes. 

 
INTRODUCTION 

DNA methylation plays an important role in gene regulation and the maintenance of cell identity, 

although much remains to be uncovered regarding the specific mechanisms underlying the targeting 

and reading of methylcytosines(2-4). High-throughput DNA sequencing technologies have enabled 

the measurement of cytosine methylation on a genome-wide scale, leading to the application of these 

approaches in myriad studies(5-12). Many technologies have been developed over the past decade 

to measure DNA methylation(13). Some of these provide qualitative information about regions 

enriched for DNA methylation, such as approaches that select DNA fragments using proteins that 

selectively bind methylated cytosines (e.g. meDIP)(13,14), or methods to digest DNA with 
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methylation- sensitive restriction enzymes (e.g. MRE)(15). Other approaches are able to probe the 

methylation state of single cytosines, by chemically converting unmethylated cytosines to uracils 

using sodium bisulfite(16). The fraction of unconverted cytosines provides an estimate of the DNA 

methylation level at a particular locus. This read out can be determined from microarrays (e.g. 

Illumina 450K)(17) or next-generation sequencing(13,18-20). In addition, some single molecule 

sequencing technologies are able to directly detect methylcytosines by monitoring the incorporation 

rates of nucleotides (e.g. Pacific Biosciences)(21). 

Among these approaches, two widely used next-generation sequencing methods for assessing 

DNA methylation levels at single cytosines on a genome-wide scale are whole-genome bisulfite 

sequencing (WGBS, also known as BS-seq, methyl-seq, or methylC-seq)(18,19,22) and reduced 

representation bisulfite sequencing (RRBS)(20,23). As implied by their names, both protocols are 

based on bisulfite treatment of DNA. However, to obtain high-confidence methylation estimates, one 

requires a minimum level of read coverage per site, typically at least 5–10X. WGBS is far more 

comprehensive and can in theory assess the methylation status of nearly every single cytosine in the 

genome, but requires very deep sequencing to arrive at modest levels of coverage, and, hence, can 

be very costly, especially if one is working with large genomes, such as those of mammals. 

RRBS interrogates a smaller portion of the genome, significantly reducing the amount of 

sequencing required to obtain high-confidence methylation estimates at this subset of sites. The 

RRBS protocol introduces a step where genomic DNA is first digested, typically with the methylation-

insensitive restriction endonuclease MspI, which cuts at the recognition sequence CˇCGG. Digested 

fragments are then size selected, typically in the range of 50 to 300 nucleotides. This fraction enriches 

for CpG-rich regions, including many regions involved in transcriptional regulation such as promoters 

and enhancers, but typically only covers 6–12% of CpGs genome-wide(23,24). 

To address the respective limitations of WGBS and RRBS, we developed a new method, 

methylation-sensitive restriction enzyme bisulfite sequencing (MREBS), which adds a bisulfite step to 

an existing protocol: MRE-seq(15). Typically, MRE-seq utilizes three methylation-sensitive restriction 

endonucleases in parallel to digest DNA (HpaII (CˇCGG), HinP1I (GˇCGC), and AciI (CˇCGC)). 

Similarly to RRBS, a size selection step enriches for fragments between 50 bp and 300 bp. DNA 

methylation levels are inferred by the inverse relationship between MRE-seq read coverage and CpG 

methylation at the restriction enzyme target sites. Although the three aforementioned restriction 

enzymes only cut DNA at unmethylated CpG dinucleotides, the DNA methylation state of other CpGs 

within the resulting fragments could still be either methylated or unmethylated. We reasoned that the 

addition of a bisulfite conversion step to the MRE-seq protocol would directly measure the methylation 

state of cytosines within MRE fragments. Typically 70 – 80 % of CpG dinucleotides in the genome are 

methylated(2), and the rationale behind this approach is that we direct our sequencing resources to 

the regions of the genome that are more likely to be unmethylated by using MRE to digest the DNA. 

Then, rather than simply relying on the inverse relationship between MRE-seq read coverage and 

DNA methylation levels around cut sites, we additionally directly measure the DNA methylation levels 

of their flanking regions. In principle, the advantage afforded by MREBS over WGBS and RRBS, is 

that we focus our sequencing effort on hypomethylated loci. 
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Since MREBS reads are expected to show an overall bias for lowly methylated regions due to the 

propensity of the restriction enzymes to digest demethylated regions, their methylation levels do not 

provide an unbiased measurement of absolute DNA methylation levels. However, the data can be 

readily used to determine differential methylation between two samples, which is often of greater 

interest. With this in mind, we developed a computational model that determines differential DNA 

methylation in two ways. First, based on read coverage alone, which is expected to anti-correlate with 

DNA methylation levels, we determined differential methylation within a region around each CpG 

dimer by looking at the difference in read counts between samples, as is done with traditional MRE-

seq. Second, in those regions with sufficient read coverage for reliable estimates, we determined 

differential DNA methylation at single CpG resolution based on a model of bisulfite conversion ratios. 

To test our approach, we first compared MREBS conversion-based methylation estimates and 

coverage to those based on WGBS and RRBS data, using two cell types that represent very different 

developmental stages, namely mouse embryonic stem cells (ESCs) and an early somatic cell 

reprogramming intermediate obtained by inducing the expression of Oct4, Sox2, Klf4, and cMyc in 

mouse embryonic fibroblasts (MEFs) for 48 hours, where we had observed substantial differential 

methylation by WGBS and RRBS. We found that MREBS bisulfite conversion-based DNA methylation 

estimates correlated well with WGBS and RRBS-based values. The number of CpG dimers with 

sufficient read coverage to obtain MREBS conversion-based methylation estimates was comparable 

to that of RRBS. Importantly, in contrast to RRBS, we found that nearly 60% of all CpGs in the mouse 

genome had sufficient reads within the surrounding region in at least one of the two cell types to 

determine differential DNA methylation estimates based on MREBS read counts alone. Within lower 

coverage regions, we compute the counts in 1kb windows around CpGs to obtain approximate 

differential methylation as with traditional MRE-seq. In high coverage regions (~3% of CpGs), we use 

a multiple regression model that considers both cytosine methylation estimates from converted reads 

and read count data to predict differential DNA methylation values. The differential methylation 

estimates generated by this model compared favorably to measurements from RRBS data.  

We found that MREBS provides a level of sequence coverage with nucleotide resolution similar to 

that obtained with RRBS. Additionally, with MREBS one can estimate DNA methylation levels for 

broader swathes of the genome based on differential MRE read counts around CpGs, thereby 

providing a level of coverage that begins to approach that obtained by WGBS, but at a fraction of the 

cost. 

 

MATERIAL AND METHODS 
Methylation-sensitive restriction enzyme bisulfite sequencing (MREBS) 

Three enzymatic digestions were performed on 1 μg of purified genomic DNA using 10 U of each 

one of the MRE restriction enzymes (HpaII, Hin6 and AciI - Fermentas) in a 50 μl final volume with 

TANGO buffer. 2.5 μl of RNase cocktail mix (Ambion) were added and the reaction was incubated 

overnight at 37°C. After the digestion, the three reactions were pooled and the DNA was purified 

using AMPure XP beads (Beckman Coulter). Subsequent reactions of DNA End Repair, A-tailing and 

Adapter Ligation were performed using Illumina TruSeq reagents, following manufacturer’s 
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instructions and the DNA was size selected between 200 and 500 bp using AMPure XP beads. Size 

selected DNA was then treated with bisulfite using the EpiTect kit (QIAGEN) according to the protocol 

suggested from the manufacturer, except that the conversion step was performed twice, for a total 

time of 10 h. For each bisulfite-converted sample, two parallel PCR reactions were set up in a final 

volume of 50 μl using MyTaq HS Mix (Bioline) and 2.5 μl of Illumina TruSeq PCR Cocktail Primers. 

The amplification cycles were as follows: 98°C – 2 min; 12 cycles of: 98°C – 15 sec, 60°C – 30 sec, 

72°C – 30 sec; 72°C – 5 min. The final PCR products were purified using AMPure XP beads and the 

final concentration of the libraries was measured using Qubit DNA BR Assay (Life Technologies). 

Single-end sequencing for 100bp reads was performed on an Illumina Hiseq 2000.  

Whole-genome bisulfite sequencing (WGBS) 

Genomic DNA from induced MEFs (48h OSKM) and ESCs was isolated using the Blood and 

tissue DNeasy kit (Qiagen). Isolated DNA was treated with RNAseA for 30 min at 37oC and cleaned 

up using AMPure XP beads. 5 μg of treated DNA was fragmented to 100–500 bp using a Bioruptor 

Sonicator. 5 minutes in pulses of 30 sec on, 1 minute off. DNA fragments were visualized on 1% 

agarose gel, gel extracted and purified using a QIAGEN gel extraction minelute kit. End-repair 

reactions (50 μl) contained 1x T4 DNA ligase buffer (NEB), ATP, 0.4 mM dNTPs, 15 units T4 DNA 

polymerase, 5 units Klenow DNA polymerase, 50 units T4 polynucleotide kinase (all NEB) and were 

incubated for 30 min at 20°C. DNA clean-up was performed using a 2x volume of AMPure XP beads 

and eluted in 32 μl of dH2O. Adenylation was performed for 30 minutes at 37°C in 50 μl volumes that 

contained 5 μl 1x Klenow buffer, 0.2 mM dATP and 15 units Klenow exo− (NEB). Adenylated DNA 

fragments and methylated adapters (Illumina) were ligated for 15 min at 20oC in a 50 μl reaction 

containing 5,000 units quick ligase (NEB) and 5 μl of adapters. Adaptor-ligated DNA of 200-600 bp, 

was size-selected on a 2% agarose gel. Bisulfite conversion was performed with an EpiTect Bisulfite 

Kit (QIAGEN) following the manufactures conditions. Bisulfite converted DNA was amplified for 15 

cycles with PfuTurboCx Hotstart DNA polymerase (Agilent technologies). The final library DNA was 

quantified using a Qubit fluorometer and a Quant-iT dsDNA HS Kit (Invitrogen).  Single-end 

sequencing for 100bp reads was performed on an Illumina Hiseq 2000.  

Reduced Representation Bisulfite sequencing (RRBS) 

5 μl of genomic DNA was digested with 50 units of MspI (NEB) in a 100 μl reaction for 6 hours at 

37oC. Digested DNA was run on a 3% low-melt agarose gel (Lonza) and fragments of 25 to 300 bp 

were extracted and purified using a MinElute gel extraction kit (QIAGEN) according to the 

manufacturers instructions. DNA end-repair and adenylation was as described above with the 

exception of using a dNTP mix consistent of dATP, dGTP and 5medCTP. Ligation to methylated 

adapters and subsequent library construction was performed similarly to the WGBS protocol. Single-

end sequencing for 100bp reads was performed on an Illumina Hiseq 2000. 

Bisulfite sequencing data processing 

DNA methylation calling was performed using BS-Seeker2(27) using Bowtie 0.12.9(30) for read 

alignment. WGBS and MREBS reads were mapped to the mm9 reference genome while RRBS reads 

were mapped to a reduced reference that was in silico digested using the MspI recognition sequence 

and limited to fragments of 20–500bp in length. The 100bp reads were trimmed of adapter sequences 
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and allowed 5 mismatches during mapping. MREBS reads were first filtered so that only the expected 

5’ trimers (CGG and CGC; Supplementary Table 1) were retained. For conversion based DNA 

methylation level calling, only CpG dimers covered by at least 5 reads on both were used in an effort 

to obtain reliable methylation levels. 

ChIP-seq library preparation and chromatin states analysis  

The protocol and the model is described in detail in a separate manuscript(26), but briefly 18 

chromatin states in the MEFs, EARLY intermediates, LATE intermediates, and ESCs were identified 

at a resolution of 200 bp using chromHMM as described by Ernst and Kellis(31) using ChIP-seq data 

sets for nine histone modification, one histone variant (H3.3), and an input, as listed in Figure 2. 

Differential DNA methylation modeling 

Linear regression was used to model differential CpG dimer methylation estimates based on 

WGBS (the response vectors) using differential methylation estimates based on RRBS and MREBS, 

as well as differential read counts within 1kb windows based on MREBS data around corresponding 

CpG dimers with R's lm() function(29). The coefficients in in Supplementary Table 5 are outputs from 

R's summary.lm() function(29). 

Data submission 

All high-throughput sequencing data will be made available on GEO at the time of publication. 

 

RESULTS 
Study design and data sets 
We chose to test our approach on two cell lines where we expected to see significant differential 

methylation as they represented distinct developmental stages and differentially methylated regions 

(DMRs) were observed using WGBS and RRBS. The two cell types were: 1) MEFs that were induced 

to ectopically express the Yamanaka reprogramming factors OCT4 (O), SOX2 (S), KLF4 (K), and 

MYC (M; also known as ‘cMYC’)(25) for 48 hours, representing an early somatic cell reprogramming 

intermediate (EARLY), and 2) mouse embryonic stem cells (ESCs) representing the pluripotent stem 

cell state reached upon successful reprogramming (Figure 1A). Both states have been recently 

described in detail (26). WGBS libraries for the two cell types were generated and reads were 

mapped to the mm9 genome using BS-Seeker2(27). The WGBS data sets for the two cell types 

showed comparable sequencing depth and CpG coverage (Figure 1B, Supplementary Table 2). 

RRBS and MREBS libraries for the same cell lines were also generated, with the MREBS libraries 

produced in duplicate to test reproducibility. RRBS reads were mapped to an in silico MspI-digested 

reduced reference mm9, and MREBS reads were mapped to the whole genome after being filtered for 

the expected 5’ cut sites (Figure 1C/D, Supplementary Table 1). Although the sequencing depth for 

RRBS and MREBS was comparable, twice as many CpGs were covered by at least one read with 

MREBS (Figure 1C/D, Supplementary Table 2). 

MREBS read counts provide high coverage of the genome 
To determine DNA methylation estimates using bisulfite conversion rates, one typically requires at 

least 5X read coverage. As expected, the proportion of the 21.3 million CpGs in the mouse genome 

covered with a minimum of 5X coverage was substantially higher for the WGBS samples (~80%), 
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than for either the RRBS (6%) or the MREBS samples (4–5%) (Supplementary Table 3). And, as was 

the case for the individual samples, the pairwise 5X coverage was substantially higher for the WGBS 

samples (75.5% of all CpG dimers between the two samples) than for either the RRBS (5.6%) or the 

MREBS samples (~3%) (Supplementary Table 4). However, apart from using bisulfite conversion 

ratios to determine DNA methylation, we reasoned that for the MREBS samples we might be able to 

model DNA methylation based on differential read coverage alone as with traditional MRE since 

MREBS utilizes methylation sensitive digestion, read counts around each CpGs should anti-correlate 

with their methylation levels (Tables 1 and 2). In other words, MREBS read counts within windows 

around CpGs could be used to determine methylation, thereby providing broader coverage than one 

would obtain by relying only on high confidence DNA methylation calls at each CpG based on bisulfite 

conversion ratios. 42–48% of CpG dimers had two or more reads falling within a surrounding 1kb 

window (Supplementary Table 3), with nearly 60% of CpG dimers had at least two MREBS reads 

falling within the surrounding 1kb window in at least one of the two cell types (Supplementary Table 

4). This suggested that MREBS could be utilized for determining differentially methylated regions 

(DMRs) between a pair of samples using both read counts and bisulfite conversion ratios. 

MREBS conversion ratios correlate and MREBS read counts anti-correlate with WGBS and 
RRBS DNA methylation estimates, respectively 
To investigate the relationship between WGBS, RRBS and MREBS-based DNA methylation 

estimates, we computed global correlations between them (Table 1). MREBS bisulfite conversion-

based methylation estimates correlated more closely with the WGBS and RRBS-based estimates in 

the EARLY reprogramming intermediate, than they did with the ESC counterparts. Moreover, MREBS 

conversion-based methylation estimates for ESCs correlated more closely with the ESC RRBS and 

WGBS data than they did with the methylation estimates of EARLY reprogramming intermediate 

(Table 1). As expected, MREBS read counts anti-correlated with the DNA methylation levels based on 

WGBS-, RRBS-, and MREBS data, though not in a particularly cell type-specific manner (Table 1). 
Correlations based on differential data were substantially stronger than those based on absolute 

levels. MREBS differential data correlated with the differential WGBS and RRBS differential DNA 

methylation in the expected directions: differential read counts between the EARLY reprogramming 

intermediate and ESCs (EARLY - ESC) based on MREBS anti-correlated strongly with the differential 

DNA methylation values based on WGBS and RRBS, while MREBS differential bisulfite conversion 

ratio estimates correlated positively with those of WGBS and RRBS (Table 2). This suggested that 

MREBS data might be best utilized to estimate differential DNA methylation. Additionally, based on 

these observations, we hypothesized that by combining the MREBS differential conversion ratio 

estimates and MREBS differential read counts, we could make use of both domains of MREBS data 

to better estimate differential DNA methylation.  
Distributions of MREBS bisulfite conversion-based DNA methylation estimates across 
different chromatin states are similar to those of WGBS and RRBS-based estimates 
To ensure that DNA methylation estimates based on MREBS data corresponded to those based on 

WGBS and RRBS in all genomic contexts, we compared DNA methylation estimates across different 

chromatin states. To determine chromatin states, we took advantage of a hidden Markov model of 
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chromatin states generated by using chromHMM(28). The model is described in detail in Chronis et 

al.(26). Briefly, the genomes of the two cell types were tiled into 200 bp windows and assigned to one 

of 18 chromatin states based on ChIP-seq signals for nine histone modifications and one histone 

variant (histone H3.3), including a native input library. Functional annotations were determined for 

each of the 18 states based on the prevalence and combination of the histone mark peaks and the 

enrichment of genomic features (Figure 2A). 

Mean DNA methylation levels were estimated for all those 200 bp windows containing a minimum of 

one CpG with 5X read coverage. Distributions of DNA methylation levels genome-wide and within the 

200 bp windows belonging to each chromatin state were then plotted for each cell type (EARLY 

intermediates (Figure 2B) and ESCs (Figure 2C)) and for each bisulfite sequencing method (WGBS 

(i), RRBS (ii), and MREBS (iii)). Different chromatin states showed characteristic DNA methylation 

distributions that were similar in both cell types (Figure 2B/C). For instance, the promoter-associated 

chromatin states (1 and 2) were comparatively hypomethylated, while several of the enhancer-related 

chromatin states (3, 4, 5, and 7) showed wide spread DNA methylation levels and an intermediate 

mean DNA methylation. Most of the other chromatin states were largely hypermethylated (Figure 

2B/C). 

Apart from differences across chromatin states, there were also some differences between the cell 

types, as well as differences between approaches. For instance, the distributions of the MREBS-

based DNA methylation estimates are systematically lower in most chromatin states as might be 

expected due to the use of methylation-sensitive endonucleases (Figure 2Biii/Ciii). Most notably the 

genome-wide DNA methylation levels based on MREBS estimates are low, (dark blue violin plots) 

close to that of the more demethylated chromatin states. Indeed, the MREBS samples are particularly 

enriched for two states of regulatory importance having the lowest DNA methylation levels, namely 

promoter and specific enhancer states (chromatin states 1–5, 7, and 15, Figure 2B/C). Although 

MREBS conversion-based DNA methylation estimates are systematically lower than those obtained 

by WGBS and RRBS data, their distributions within different chromatin states are very similar. 

Reassured that MREBS DNA methylation estimates mirrored patterns see by WGBS and RRBS 

across all chromatins states, we hypothesize that MREBS could be used to determine methylation 

levels in and between samples, if scaled appropriately, or incorporated into a model to predict 

differential DNA methylation.  

 

Differential CpG-level methylation can be modeled using MREBS data 
We hypothesized that WGBS-based differential DNA methylation values could be modeled using the 

MREBS data. To investigate this, we built four different linear regression models, as follows: 

1. !" = 	%& + 	%("	 ) = 1. . ,- 		 
2. !" = 	%& +	%()"( + 	%*)"*	 + = 1. . .* 		 
3. !" = 	%& + 	%()"(	 * = 1. . -. 		 
4. !" = 	%& + 	%()"(	 * = 1. . -. 		 

 
Here, y represents the WGBS conversion-based differential DNA methylation (EARLY - ESC), r the 

RRBS conversion-based differential DNA methylation, and x1 the MREBS conversion-based 
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differential DNA methylation, in each case for those CpG dimers with 5X coverage in both cell types. 

x2 represents the differential MREBS read count within a 1kb window around each CpG dimer for 

windows with at least 2 reads in at least one of the two cell types. n1 = 666,214; n2 = 318,400 for 

MREBS replicate 1 and n2 = 322,431 for MREBS replicate 2; n3 = 319,304 for MREBS replicate 1 

and n3 = 323,431 for MREBS replicate 2; n4 = 9,485,471 for MREBS replicate 1 and n4 = 9,670,440 

for MREBS replicate 2.  

In other words, in each case WGBS-based differential methylation serves as the response variable. In 

model 1, RRBS-based differential methylation is used as the explanatory variable. Model 2 is a 

multiple linear regression model that uses both MREBS conversion-based differential methylation and 

MREBS-based differential reads counts to predict WGBS-based differential methylation estimates, 

while model 3 and model 4 use each of these predictors independently. The lm() function from the R 

statistical software environment was used to implement these models(29). Coefficients for each 

model are provided in Supplementary Table 5. Model 1 was used for comparison purposes and 

shows that WGBS-based differential DNA methylation values (EARLY - ESC) can be modeled using 

RRBS data for ~3% of the CpG dimers (666,214) in the mouse genome with sufficient coverage (5X) 

in both the WGBS and RRBS samples. The model had an R2 = 0.39, implying a correlation between 

the WGBS estimated differential DNA methylation values and the model-fitted ones of r = 0.63 (Table 

3). The root-mean-square error (RMSE) between the observed and fitted values was 20.4% and the 

mean absolute error (MAE) was 15.2%. The metrics ‘methyl15’ and ‘methyl25’ give the percentage of 

CpG dimers where the difference between the WGBS differential DNA methylation estimate and that 

of the model was at most 15% and 25%, respectively. Based on the methyl25 metric, the RRBS-

based model-fitted DNA methylation values show 80% concordance with the WGBS-based estimates 

(Table 3). 

Model 2 is a multiple regression model using both MREBS conversion-based differential DNA 

methylation (EARLY - ESC) and MREBS differential read count data to predict WGBS-based 

differential DNA methylation values. A model was built for each replicate pair. The fits for both 

replicates were similar (R2 = 0.35 and R2 = 0.36) and similar to those obtained using the RRBS data 

(Table 3). Interestingly, both RMSE (~18% for both replicates) and MAE (~12.5% for both replicates) 

values were better than those seen for the RRBS-based model. The concordance metrics (methyl15 = 

~73% and methyl25 = ~86%, for both replicates) were also superior to that obtained for the RRBS-

based model (Table 3). However, the differential DNA methylation values of only 1.5% (n = ~320 

thousand) of CpG dimers genome-wide could be predicted, half of that predicted by the RRBS data (n 

= 666,214 or ~3% of CpG dimers). However, these percentages could be increased with greater 

sequencing depth. 

Models 3 and 4 are both simple linear models using each of the two independent variables from 

model 2, respectively. The fit for model 3, using only MREBS conversion-based differential DNA 

methylation (EARLY - ESC), was somewhat worse without the additional count data (R2 = 0.30 and 

R2 = 0.31 for the replicate pairs), but, interestingly, the RMSE (~18.5% for both replicates) and MAE 

(~12.5% for both replicates) is still superior to that of the RRBS based model, as are the concordance 

metrics (methyl15 = ~73% and methyl25 = ~85%, for both replicates) (Table 3). 
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Model 4 is based only on MREBS differential read counts within 1kb window around each CpG 

(EARLY - ESC). Only those CpGs with at least two reads in the surrounding +/- 500bp in at least one 

sample were considered, amounting to 12.5 (58.8%) and 12.8 (59.7%) million CpG dimers for 

MREBS replicate 1 and 2, respectively (Table 3). This represents ~10X more CpG dimers than those 

that are available for use in the RRBS-based model 1 (1.2 million CpG dimers), and ~20X more CpG 

dimers than those that are available for use in models 2 and 3 based on MREBS sites with 5X 

coverage in both samples (~648–665 thousand CpG dimers). Although the fits for model 4 are worse 

than those based on the MREBS conversion-based DNA methylation estimates (R2 = 0.11 for both 

replicate pairs), the RMSE (~24–25%) and MAE (~18.5%) are not that much worse than the RRBS 

based model, nor are the concordance metrics (methyl15 = ~53% and methyl25 = ~73%) (Table 3). 

However, the differential DNA methylation values for 44–45% of CpGs were predicted using model 4, 

representing the overlap of those CpG dimers with 5X coverage by WGBS and those CpGs with at 

least 2 MREBS reads within the surrounding 1kb window. 

To sum the benefit of both the extended coverage of model 4 and the improved accuracy of model 2, 

we combined their results, updating the model 4 estimates with those of model 2 where available. 

This marginally improved all the applicable metrics discussed previously (Table 3). Figure 4 shows 

how these combined differential DNA methylation predictions (iii, green tracks, two replicates) 

compared to WGBS (i, dark blue tracks) and RBBS (ii, light blue tracks) at different length scales: 

611kb (A), 19kb (B), and an extended locus partitioned in three 18kb panels (C). Below the modeled 

estimates are tracks showing the MREBS conversion-based differential DNA methylation (iv, orange, 

two replicates) and MREBS-based differential read counts (v, red, two replicates) – the data that was 

combined. While the MREBS conversion-based differential DNA methylation coverage is comparable 

to that of the RRBS data (cf. tracks iv and ii, Table 3), the MREBS differential read count coverage 

approached that obtained using WGBS data (cf. tracks v and i, Table 3). In other words, the majority 

of the differential DNA estimates modeled on MREBS data are obtained by the read count data. 

These estimates track WGBS-based estimates, both for regions that are more methylated in the 

EARLY intermediates (Figures 4B/C and Supplementary Figure 1A), as well as regions that are more 

methylated in the ESCs (Figures 4A and Supplementary Figure 1B). 

 
DISCUSSION 
WGBS(22) and RRBS(23) are two popular bisulfite sequencing based methods for assessing DNA 

methylation levels. WGBS can potentially determine the methylation status of every single cytosine, 

but the amount of sequencing required to obtain sufficient coverage to do so can be beyond the 

scope of most projects. Sequencing demands are significantly reduced by using RRBS, but one 

incurs an 80–90% loss in the number of cytosines that can be measured. In order to address these 

respective shortcomings, we introduce methylation-sensitive restriction enzyme bisulfite sequencing 

(MREBS), which adds a bisulfite conversion step to the existing MRE protocol, methylation-sensitive 

restriction enzyme digestion followed by high-throughput sequencing (MRE-seq)(15). 

Due to MREs reliance on methylation sensitive endonucleases, the distributions of the MREBS 

conversion-based DNA methylation estimates were systematically lower than those obtained using 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2017. ; https://doi.org/10.1101/217208doi: bioRxiv preprint 

https://doi.org/10.1101/217208
http://creativecommons.org/licenses/by-nc-nd/4.0/


WGBS or RRBS data. However, the MREBS conversion-based estimates followed similar trends 

across all chromatin states (Figure 2). Moreover, high-confidence MREBS conversion-based DNA 

methylation estimates (CpGs with 5X coverage) were particularly enriched in chromatin states with 

the lowest DNA methylation levels (Figure 3). Since these chromatin states are known to be 

associated with gene regulation, their enrichment in MREBS data is beneficial. For MREBS libraries, 

4.3–4.6% of CpG dimers had at least 5X read coverage, which we set as a threshold to generate 

bisulfite conversion based DNA methylation level calls. This fraction was comparable to the coverage 

obtained from RRBS libraries at a similar level of sequencing. However, for MREBS, ~60% of CpG 

dimers had two or more reads falling within the surrounding 1kb window in at least one of the two cell 

types (Supplementary Table 4). These can be used for estimating differential DNA methylation of a 

high proportion of CpGs, since MREBS utilizes methylation sensitive digestion and therefore read 

counts around CpGs anti-correlate with their methylation levels (Tables 5 and 6). 

 To obtain estimates of differential DNA methylation based on MREBS data, we built a multiple 

regression model that incorporates both MREBS conversion fractions and read count data to predict 

differential DNA methylation values for ~3% of CpGs. The fits for both replicates were similar and 

correspondence metrics comparing the model-fitted values to WGBS estimates were superior to 

those obtained from models built using RRBS methylation data alone (Table 3). Differential DNA 

methylation estimates for a much greater proportion of CpGs (~60%) could be obtained using a model 

that used only MREBS differential read data within 1kb windows around CpG sites. The accuracy of 

MREBS read count-based models was lower than those based on conversion ratios, nonetheless, the 

dramatically higher coverage makes these data useful for low resolution differential methylation 

estimates (Table 3, Figures 4 and 5). In this study, we utilized 1kb windows around CpG dimers for 

this purpose, but one could use different windows, as one sees fit. 

In summary, with respect to conversion-based DNA methylation estimates, MREBS provides a similar 

level of coverage to that obtained using RRBS. However, with MREBS one can additionally obtain 

DNA methylation estimates for a much larger proportion of the genome based on differential MREBS 

read counts around CpGs, providing a level of coverage that approaches that obtained by WGBS at a 

fraction of the cost.  
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TABLE AND FIGURES LEGENDS 
 
Figure 1. WGBS, RRBS, and MREBS for samples representing two stages of somatic cell 
reprogramming.  A. Schematic representation of the two cell types used in the study. Mouse 

embryonic fibroblasts (MEFs; blue), modified to harbor a ‘stem cell cassette’ allowing for the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2017. ; https://doi.org/10.1101/217208doi: bioRxiv preprint 

https://doi.org/10.1101/217208
http://creativecommons.org/licenses/by-nc-nd/4.0/


simultaneous induction of the four pluripotency factors (OCT4 (O), SOX2 (S), KLF4 (K), and MYC (M)) 

by the addition of doxycycline, were induced for 48 hours. These EARLY somatic cell reprogramming 

intermediates (yellow) were the first of the two cell types sampled, with embryonic stem cells (ESCs; 

green), representing the fully reprogrammed state, being the second.  B. Bar plots showing the 

number of CpGs obtained at five different coverage levels (1–20 X) in each of the two whole-genome 

bisulfite sequencing (WGBS) samples: i) EARLY intermediates (429 M mapped reads) and ii) ESCs 

(391 M mapped reads).  C. As in (B), but for reduced representation bisulfite sequencing (RRBS) 

samples (12.8 M mapped reads for i and 18.1 M mapped reads for ii).  D. As in (B), but for duplicate 

samples produced using methylation-sensitive restriction enzyme bisulfite sequencing (MREBS) (11.9 

and 12.4 M mapped reads for i; 11.8 and12.2 M mapped reads for ii). 

 

Figure 2. DNA methylation estimates based on WGBS, RRBS and MREBS data in different 
chromatin states.  A. Heat map and functional annotation for an 18-level chromatin state model at 

200 bp resolution built using peak calls made using ChIP-seq data sets for 10 histone modifications, 

as well as an input library, for each of the three cell types described in Figure 1A: i) MEFs, ii) EARLY 

intermediates, and iii) ESCs, as well as a late reprogramming intermediate (LATE), partially induced 

pluripotent cells, or pre-iPSCs, not otherwise used in the study. Candidate functional annotations 

were assigned to each of the 18 chromatins states based on the prevalence and combination of 

histone mark peaks, which could in turn be classified into the seven categories indicated in the left-

hand column. The probability of a window in each state to be contain a peak for a given histone 

modification is given as a percentage in each cell, and visually indicated by the intensity of color in the 

heat map. The proportion of the concatenated genome (MEFs + EARLY + LATE + ESCs) found in 

each of the 18 chromatin states is given in the third column.  B. Violin plots of the distributions of the 

DNA methylation estimates in each of the 18 chromatin states (described in A), as well as genome-

wide (blue), for EARLY intermediates using i) whole-genome bisulfite sequencing (WGBS), reduced 

representation bisulfite sequencing (RRBS), and iii) methylation-sensitive restriction enzyme bisulfite 

sequencing (MREBS). The mean DNA methylation estimates within 200 bp windows corresponding to 

those used for the chromatin state model were used, only considering those windows containing at 

least one CpG with 5X coverage, in an effort to ensure high-confidence estimates. White circles 

represent median values.  C. As in (B), but for ESCs. 

 

Figure 3. Chromatin state coverage by DNA methylation estimates by WGBS, RRBS, and 
MREBS.  A. Pie charts show the proportion of 200 bp windows with DNA methylation estimates found 

in each of the 18 chromatin states (as described in Figure 2.2A) using i) whole-genome bisulfite 

sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and iii) methylation-

sensitive restriction enzyme bisulfite sequencing (MREBS) EARLY intermediate samples, as 

compared to the proportion of chromatin states in genome for all 13.3 million windows (iv). Bar plots 

show the log2 fold change (observed / expected) number of windows with estimates per method: i) 

WGBS), RRBS, and iii) MREBS. The mean DNA methylation estimates within 200 bp windows 

corresponding to those used for the chromatin state model were used, only considering those 
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windows containing at least one CpG with 5X coverage, in an effort to ensure high-confidence 

estimates.  B. As in (A), but for ESCs. 

 

Figure 4. Differential DNA methylation levels modeled using MREBS data.  A. IGV tracks of 

differential DNA methylation estimates between EARLY intermediates and ESCs (EARLY - ESC) 

based on WGBS data (i, dark blue), RRBS data (ii, light blue), modeled data based on combined 

model 2 (iii, green, two replicates), MREBS conversion-based DNA methylation estimates (iv, orange, 

two replicates), and MREBS read count-based estimates (v, red, two replicates), within a 611 kb 

region of chr17. Bottom two tracks show CpG dimer and Refseq gene locations. Gray background 

reflects regions (CpG dimers) where data was not available.  B. As in (A), but for a 19kb region 

around the Gata2 gene.  C. As in (A), but for the extend Olig1/2 gene locus, divided into three 18 kb 

panels. 

 

Supplementary Figure 1. Examples of modeled differential DNA methylation around gene loci.  
A. As in Figure 4A, but for 13 genes up-regulated in EARLY intermediates relative to ESCs.  B. As in 

Figure 4A, but for 10 genes up-regulated in ESCs relative to EARLY intermediates. 

 

 

Table 1. CpG dimer-level correlations between bisulfite sequencing libraries.  Pearson 

correlation values between WGBS, RRBS, and MREBS CpG dimer-level conversion-based 

methylation estimates, as well as binned read counts within 1kb windows around CpG dimers, for 

those with at least two MREBS reads. Red intensity signifies the strength of a positive correlation, 

while blue intensity signifies the strength of the anti-correlation.  

 

 

Table 2. CpG dimer-level correlations between differential values for all bisulfite sequencing 
library pairs.  Pearson correlation values between WGBS, RRBS, and MREBS differential CpG 

dimer-level methylation estimates (EARLY - ESC), as well as differential read counts between all CpG 

dimers with at least two MREBS reads within a surrounding 1kb window. Red intensity signifies the 

strength of a positive correlation, while blue intensity signifies the strength of the anti-correlation. 

 

Table 3. Differential DNA methylation model metrics.  The table gives metrics (first column) for 

four different models, as well as a combined model, (top row and described in the text). The column 

labeled ‘Total / optimal value’ gives the maximum or best value achievable for each metric. The 

column labeled ‘WGBS differential DNA methylation’ provides coverage information for comparison 

purposes. *Note: In the case methylation levels, only CpG dimers with 5X coverage in both EARLY 

intermediates and ESCs were considered. With respect to counts, CpG dimes with 2+ reads in the 

surrounding 1Kb bin, in at least one sample, were considered. Red intensity signifies how close the 

metrics are to the optimal values.   
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Supplementary Table 1. Bisulfite sequencing library mapped reads and mean CpG coverage 
depth.  WGBS and MREBS reads were mapped the whole genome (mm9). Mean CpG coverage 

determined for CpGs on either strand. Mean CpG coverage determined for CpGs on either strand. 

RRBS reads were mapped to an in silico MspI digested reduced reference genome. MREBS reads 

were filtered in silico to have the expected 5’ start sites.  

 

Supplementary Table 2. MRE endonuclease recognition sequence frequency within the mm9 
genome.  MRE endonuclease recognition sites are highlighted to show their position within the 

ranked frequencies for all the 4mer CpG, including chrM. *Note: HpaII has the same recognition 

sequence as MpsI (the endonuclease typically used for RRBS libraries), albeit HpaII is methylation 

sensitive, as are Acil and Hin6I. 

 

 

Supplementary Table 3. CpG dimer coverage per bisulfite sequencing library.  The percentage 

of CpG dimers with at least 5X coverage for each bisulfite sequencing library, as well as the 

percentage of CpG dimers with the specified number of MREBS reads within a surrounding 1kb 

window. *Note: This is based on 21,342,493 CpG dimers in mm9, excluding chrM. 

 

Supplementary Table 4. CpG dimer coverage for differential analysis per bisulfite sequencing 
library.  The percentage of CpG dimers with at least 5X coverage in both the EARLY intermediate 

and ESC samples for each bisulfite sequencing library, as well as the percentage of CpG dimers with 

at least two MREBS reads within a surrounding 1kb window. *Note: This is based on 21,342,493 CpG 

dimers in mm9, excluding chrM.  

 

Supplementary Table 5. Differential DNA methylation model coefficients.  Coefficient values (first 

column) for four different models (top row and described in the text). 
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 EARLY  ESC  EARLY  ESC 
 EARLY 
Rep1 

 EARLY 
Rep2  ESC Rep1  ESC Rep2 

 EARLY 
Rep1 

 EARLY 
Rep2  ESC Rep1  ESC Rep2 

 EARLY 1.00 0.56 0.90 0.78 0.78 0.77 0.55 0.55 -0.14 -0.14 -0.18 -0.17 

 ESC 0.56 1.00 0.77 0.90 0.53 0.53 0.70 0.71 -0.15 -0.15 -0.24 -0.22 

 EARLY 0.90 0.77 1.00 0.88 0.82 0.82 0.66 0.66 -0.21 -0.21 -0.27 -0.27 

 ESC 0.78 0.90 0.88 1.00 0.64 0.64 0.80 0.80 -0.21 -0.21 -0.30 -0.29 

 EARLY Rep1 0.78 0.53 0.82 0.64 1.00 0.88 0.68 0.67 -0.07 -0.07 -0.09 -0.09 

 EARLY Rep2 0.77 0.53 0.82 0.64 0.88 1.00 0.69 0.68 -0.07 -0.07 -0.10 -0.09 

 ESC Rep1 0.55 0.70 0.66 0.80 0.68 0.69 1.00 0.83 -0.07 -0.07 -0.10 -0.10 

 ESC Rep2 0.55 0.71 0.66 0.80 0.67 0.68 0.83 1.00 -0.07 -0.07 -0.10 -0.09 

 EARLY Rep1 -0.14 -0.15 -0.21 -0.21 -0.07 -0.07 -0.07 -0.07 1.00 1.00 0.96 0.98

 EARLY Rep2 -0.14 -0.15 -0.21 -0.21 -0.07 -0.07 -0.07 -0.07 1.00 1.00 0.97 0.98

 ESC Rep1 -0.18 -0.24 -0.27 -0.30 -0.09 -0.10 -0.10 -0.10 0.96 0.97 1.00 0.99

 ESC Rep2 -0.17 -0.22 -0.27 -0.29 -0.09 -0.09 -0.10 -0.09 0.98 0.98 0.99 1.00

** For windows with at least two MREBS reads in at least one cell line

CpG dimer-level conversion-based methylation estimates *
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* For CpG dimers with 5X coverage in both cell lines 
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 Rep1  Rep2  Rep1  Rep2 

1.00 0.63 0.55 0.56 -0.34 -0.34 

0.63 1.00 0.64 0.64 -0.51 -0.52 

Rep1 0.55 0.64 1.00 0.64 -0.35 -0.35 

Rep2 0.56 0.64 0.64 1.00 -0.34 -0.34 

Rep1 -0.34 -0.51 -0.35 -0.34 1.00 0.87

Rep2 -0.34 -0.52 -0.35 -0.34 0.87 1.00

** For windows with at least two MREBS reads in at least one cell line

CpG dimer-level differential methylation                                          
using conversion-based estimates *

CpG dimer-level                     
differential methylation using 
conversion-based estimates *

Differential MREBS read 
counts within 1kb 

windows around CpG 
dimers **

Differential MREBS read counts within 1kb 
windows around CpG dimers **

* For CpG dimers with 5X coverage in both cell lines

WGBS

RRBS

MREBS

 WGBS  RRBS 
MREBS
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Model 1

Rep1 Rep2 Rep1 Rep2 Rep1 Rep2 Rep1 Rep2

 covered 
dimers* 21,342,492 16,113,172 1,204,249 648,635 664,446 649,614 665,431 12,542,720 12,746,080 12,542,720 12,746,080

 %  100.00 75.5 5.6 3.0 3.1 3.0 3.1 58.8 59.7 58.8 59.7

 fitted dimers 21,342,492 NA 666,214 318,400 322,431 319,304 323,336 9,485,471 9,670,440 9,485,471 9,670,440

 % 100.00 NA 3.1 1.5 1.5 1.5 1.5 44.4 45.3 44.4 45.3

 R-squared 1 NA 0.39 0.35 0.36 0.30 0.31 0.11 0.11 NA NA
 obs vs fitted 
correlation 1 NA 0.63 0.60 0.60 0.55 0.56 0.34 0.34 0.37 0.36

 RMSE 0 NA 20.4 17.9 17.9 18.6 18.5 24.7 24.6 24.5 24.4

 MAE 0 NA 15.2 12.5 12.4 12.7 12.5 18.5 18.4 18.3 18.2

 methyl15 100 NA 61.16 73.13 73.51 73.27 73.40 53.11 53.27 53.71 53.85

 methyl25 100 NA 80.09 86.11 86.12 85.16 85.14 73.30 73.46 73.69 73.82

 RRBS 
differential DNA 

methylation 

Total /         
optimal value

WGBS 
differential DNA 

methylation

MREBS differential DNA me + counts MREBS differential DNA me only MREBS differential counts only

 Model 4 estimates updated with 
Model 2 values where available 

Model 2 Model 3 Model 4
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