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Abstract:  
Identification of individuals at increased genetic risk for a complex disorder such as coronary 
disease can facilitate treatments or enhanced screening strategies. A rare monogenic mutation 
associated with increased cholesterol is present in ~1:250 carriers and confers an up to 4-fold 
increase in coronary risk when compared with non-carriers. Although individual common 
polymorphisms have modest predictive capacity, their cumulative impact can be aggregated into 
a polygenic score. Here, we develop a new, genome-wide polygenic score that aggregates 
information from 6.6 million common polymorphisms and show that this score can similarly 
identify individuals with a 4-fold increased risk for coronary disease. In >400,000 participants 
from UK Biobank, the score conforms to a normal distribution and those in the top 2.5% of the 
distribution are at 4-fold increased risk compared to the remaining 97.5%. Similar patterns are 
observed with genome-wide polygenic scores for two additional diseases – breast cancer and 
severe obesity. 
One Sentence Summary: A genome-wide polygenic score identifies 2.5% of the population 
born with a 4-fold increased risk for coronary artery disease. 
	  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 15, 2017. ; https://doi.org/10.1101/218388doi: bioRxiv preprint 

https://doi.org/10.1101/218388


Main Text:  
The identification of individuals at increased genetic risk for a common, complex disease can 
facilitate treatment or enhanced screening strategies to prevent disease manifestation. For 
example, with respect to coronary disease, ~1:250 individuals carry a rare, large-effect genetic 
mutation causal for increased low-density lipoprotein cholesterol (1-3). A recent analysis in a 
large U.S. health care system demonstrated that such individuals have an odds ratio for coronary 
disease of 2.6 when compared to non-carriers and an odds ratio of 3.7 for early-onset disease (1). 
Aggressive treatment to reduce circulating low-density lipoprotein cholesterol levels among 
carriers of such mutations can reduce coronary disease risk (4). 
Beyond rare monogenic mutations, a decade of genome-wide association studies (GWAS) has 
demonstrated that common single nucleotide polymorphisms contribute to a range of complex 
diseases (5). However, because the effect size of such polymorphisms tends to be modest, any 
individual polymorphism has limited utility for risk prediction. Polygenic scores (PS) provide a 
mechanism for aggregating the cumulative impact of common polymorphisms by summing the 
number of risk variant alleles in each individual weighted by the impact of each allele on risk of 
disease (6). We recently demonstrated that a coronary disease PS consisting of 50 common 
variants that had achieved genome-wide levels of statistical significance in previous studies can 
stratify the population into varying trajectories of risk (7,8). 

Simulated analyses based on GWAS effect size distributions suggest that the predictive power of 
such PSs may be markedly improved by considering a genome-wide set of common 
polymorphisms (9-11). But, it remains uncertain whether the extreme of a PS distribution can 
confer risk equivalent to a monogenic mutation (e.g., 4-fold increased risk). Here, we 
demonstrate that a PS comprised of a genome-wide set of common variants permits 
identification of individuals with 4-fold increased risk for coronary disease and subsequently 
generalize this approach to two additional complex diseases, breast cancer and severe obesity. 
In order to develop an optimized polygenic score for coronary disease, we derived two new PSs 
and compared them with two previously published scores in a testing dataset of 120,286 
individuals of European ancestry from the UK Biobank – 4,831 with coronary disease and 
115,455 controls (7,12,13). The UK Biobank is a large observational study that enrolled 
individuals aged 45 to 69 years of age from across the United Kingdom beginning in 2006 (14). 

We derived the two new PSs using summary association statistics from our earlier GWAS as a 
starting point for the relationship of millions of common polymorphisms to risk for coronary 
disease (Supp. Methods; 15). A reference population of 503 Europeans from the 1000 Genomes 
study was used to assess the correlation of a given polymorphism with others nearby (‘linkage 
disequlibrium’) (16). For the first score, we implemented a ‘pruning and thresholding’ strategy 
(PSP&T) to combine independent variants (r2 < 0.8 with other nearby variants) that exceeded 
nominal significance (p-value < 0.05) in the previous GWAS. For the second score, we used the 
recently developed LDPred computational algorithm (17). This involves a Bayesian approach to 
calculate a posterior mean effect for all variants based on a prior (effect size in the prior GWAS) 
and subsequent shrinkage based on linkage disequilibrium. 

All four scores demonstrated robust association with coronary disease in the testing dataset. But, 
the newly-derived genome-wide polygenic score of 6.6 million common single nucleotide 
polymorphisms (PSGW) demonstrated the maximal area-under-the-curve of 0.64 and was selected 
for use in subsequent analyses (Table 1). 
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Next, we sought to validate this score in an independent dataset of the remaining 288,890 
individuals of European ancestry in the UK Biobank. Mean age was 57 years and 55% of the 
cohort was female. 8676 (3.0%) of the participants had been diagnosed with coronary disease, as 
defined based on verbal interview with a trained nurse or hospitalization for myocardial 
infarction or coronary revascularization in the electronic health record prior to enrollment.  
We tested the hypothesis that individuals with high PSGW might have risk equivalent to a 
monogenic coronary disease mutation (e.g., four-fold increased risk) by assessing progressively 
more extreme tails of the PSGW distribution and comparing risk with the remainder of the 
population (Table 2; Fig. 1A). Across UK Biobank participants, PSGW conformed to a normal 
distribution and individuals in the top 2.5% of the PSGW distribution had a four-fold increased 
coronary disease risk (odds ratio 3.96) when compared with the remaining 97.5% of the 
population in a logistic regression model adjusted for age, sex, genotyping array, and the first 
four principal components of ancestry. We defined those individuals in the top 2.5% of the 
distribution as having high PSGW in subsequent analyses. 

Coronary disease was noted in 663 of 7225 (9.2%) individuals with high PSGW as compared to 
8013 of 281,755 (2.8%) of those in the remainder of the distribution (Fig. 1B). Of the 8676 
individuals with coronary disease, 663 (7.6%) were predisposed on the basis of high PSGW. 
Several traditional coronary disease risk factors including family history of heart disease were 
enriched in those with high PSGW (Table 3). However, attenuation in the risk estimate for high 
PSGW was modest after additional adjustment for history of hypertension, type 2 diabetes, 
hypercholesterolemia, current smoking, and family history of heart disease (adjusted odds ratio 
3.15; 95% confidence interval 2.86 – 3.46).  

In order to assess the generalizability of these observations, we used a similar approach to 
construct separate PSs for two additional complex diseases with major public health implications 
– breast cancer and severe obesity. As for coronary disease, we used summary association 
statistics from large prior GWASs as a starting point for the relationship of common 
polymorphisms to breast cancer or body-mass index (18,19). 
Among 157,897 females of the UK Biobank validation dataset, 6567 (4.2%) had been diagnosed 
with breast cancer at the time of enrollment. Individuals with high PS for breast cancer had a 2.9-
fold increased risk when compared with the remaining 97.5% of the population (Table 4). Breast 
cancer was noted in 10.5% of individuals with high PS as compared to 4.0% of those in the 
remainder of the distribution (Fig S1). Of individuals with breast cancer, 6.4% were predisposed 
on the basis of high PS. Attenuation in the risk estimate for high PS was modest after additional 
adjustment for family history of breast cancer, age at menarche, current smoking, body-mass 
index, and previous use of hormonal replacement therapy (adjusted odds ratio 2.78 95% 
confidence interval 2.49 – 3.09; Table S1) 

Among 288,018 individuals of the UK Biobank validation dataset with body-mass index 
available, 5232 (1.8%) were severely obese at the time of enrollment, defined as body-mass 
index ≥ 40 kg/m2. Individuals with high PS had a 5.5-fold increased risk of severe obesity when 
compared with the remaining 97.5% of the population (Table 4). Severe obesity was noted in 
8.4% of individuals with high body-mass index PS as compared to 1.6% of those in the 
remainder of the distribution (Fig S2). Of individuals with severe obesity, 11.6% were 
predisposed on the basis of high PS. Results were similar when considering a less stringent 
definition for obesity of body-mass index ≥ 30 kg/m2 (Table S2). 
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For three common diseases, we demonstrate that the incorporation of a genome-wide set of 
common polymorphisms into a PS can identify subsets of the population at substantially 
increased risk. 
These results permit several conclusions. First, we provide empiric evidence that the cumulative 
impact of common polymorphisms on risk of disease can approach that of rare, monogenic 
mutations. The predictive capacity of PSs will likely continue to improve as larger discovery 
GWAS studies more precisely define the effect sizes for common polymorphisms across the 
genome (9-11). Second, high PSGW seems operable in a much larger fraction of the population as 
compared to rare monogenic mutations. For coronary disease, the largest gene-sequencing study 
to date identified a monogenic driver mutation related to increased low-density lipoprotein 
cholesterol in 94 of 12,298 (0.76%) afflicted individuals (1). Here, we identify high PSGW in 
7.6% of individuals with coronary disease, a prevalence an order of magnitude higher. Third, 
traditional risk factor differences of high PSGW individuals versus the remainder of the 
distribution are modest and these individuals would thus be difficult to identify without direct 
genotyping. Fourth, a key advantage of a DNA-based diagnostic such as PSGW is that it can be 
assessed from the time of birth, well before the discriminative capacity of most traditional risk 
factors emerges, and may thus facilitate intensive prevention efforts. For example, we recently 
demonstrated that high polygenic risk for coronary disease may be offset by adherence to a 
healthy lifestyle or cholesterol-lowering therapy with statin medications (8,20,21). Finally, we 
demonstrate similar patterns for two additional heritable diseases – breast cancer and severe 
obesity – suggesting that this approach will provide a generalizable framework for risk 
stratification across a range of common, complex diseases. 

Several limitations deserve mention. First, the risk associated with a high polygenic score is not 
the result of a discrete underlying mechanism, but rather a quantitative blend of numerous risk 
pathways. Monogenic mutations predispose to disease on the basis of a specific driving 
pathophysiology that can sometimes enable targeted therapy. For example, homozygous 
deficiency in the POMC gene is associated with extreme obesity and precise targeting of the 
perturbed pathway can lead to significant weight loss (22). However, this monogenic etiology of 
obesity is exceedingly rare in the general population (23). To the extent that strategies to mitigate 
increased risk have utility regardless of underlying mechanism (e.g., statin therapy for coronary 
disease, dietary modification for severe obesity, or mammography screening for breast cancer), 
identification of individuals with high polygenic risk may prove useful. Second, the polygenic 
scores described here were derived and tested in individuals of European ancestry. Because allele 
frequencies, linkage disequilibrium patterns, and effect sizes of common polymorphisms vary by 
ancestry, future studies are needed to extend this approach across additional ancestral 
backgrounds (24). Lastly, the potential utility of genetic risk disclosure must be weighed against 
possible untoward consequences, including increased cost of care, psychological distress or 
discrimination, and a sense of fatalism in those at high risk. Additional work is needed to 
optimize genetic risk disclosure to patients and their health care providers and to test whether 
such disclosure can improve clinical outcomes. 
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Fig. 1. A new genome wide polygenic score (PSGW) identifies individuals with significantly increased risk 
of coronary disease. A near normal distribution of the PSGW was noted in the UK Biobank validation 
cohort (A). The x-axis represents PSGW, with values scaled to a mean of 0 and standard deviation of 1 to 
facilitate interpretation. Individuals were binned into 40 groups based on PSGW, with each grouping 
representing 2.5% of the population (~7225 individuals). The high polygenic risk group displayed in red 
(top 2.5% of the distribution) had a significantly higher prevalence of coronary disease (B).	
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Table 1. Association of 4 polygenic scores with coronary disease in testing dataset of 120,286 
individuals. Area-under-the curve and odds ratios determined via logistic regression adjusting for 
the first four principal components of ancestry. GWAS= genome-wide association study; SD= 
standard deviation; P&T= pruning and thresholding; GW= genome-wide 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
  

Polygenic score Derivation strategy N 
Variants 

Area-under 
the curve 

Odds ratio  
(per SD increment) 

Tada et al. (7) 
Variants that had achieved genome-wide 
levels of statistical significance in prior 

GWAS (p<5 x 10-8) 
50 0.59 1.38 

Abraham et al. (8) Linkage-disequilibrium based thinning of 
variants from prior GWAS 49,310 0.59 1.38 

PSP&T 

Pruning based on statistical significance (p 
< 0.05) and linkage disequilibrium (r2 < 

0.8) of variants from prior GWAS 
116,859 0.62 1.54 

PSGW 

LDPred computational algorithm to 
assign weights to all available variants 

from prior GWAS via explicit modeling 
of linkage disequilibrium 

6,630,150 0.64 1.67 
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Table 2. Prevalence and clinical impact of high polygenic score for coronary artery disease. 
Odds ratio for coronary disease calculated by comparing those with high polygenic score to the 
remainder of the population in a logistic regression model adjusted for age, sex, genotyping 
array, and the first four principal components of ancestry. 
 

 
 
  

High polygenic score definition Reference group 
Odds ratio 

for coronary 
disease 

95% 
Confidence 

interval 
P-value 

Top 20% of distribution Remaining 80% 2.53 2.42 – 2.65 < 1 x 10-300 

Top 10% of distribution Remaining 90% 2.89 2.73 – 3.05 < 1 x 10-300 
Top 5% of distribution Remaining 95% 3.32 3.10 – 3.56 8.4 x 10-261 
Top 2.5% of distribution Remaining 97.5% 3.96 3.62 – 4.31 9.4 x 10-209 
Top 1% of distribution Remaining 99% 4.67 4.11 – 5.30 3.4 x 10-125 
Top 0.25% of distribution Remaining 99.75% 6.34 5.01 – 7.94 4.7 x 10-56 
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Table 3. Baseline characteristics according to high coronary disease polygenic score status. 
Values displayed are mean (standard deviation) for continuous variables and N (%) for 
categorical variables.  

 
 
 
 
 
  

 Remainder of population 
(0 – 97.5% of distribution) 

High polygenic score 
(top 2.5% of distribution) P-value 

Number of individuals 281,755 7225  
Age, years 56.9 (8.0) 56.7 (8.1) 0.01 
Male sex 127,894 (45.4%) 3189 (44.1%) 0.04 
Hypertension 78,999 (28.0%) 2460 (34.0%) < 0.001 
Type 2 diabetes 13,547 (4.8%) 441 (6.1%) < 0.001 
Hypercholesterolemia 38,001 (13.5%) 1600 (22.1%) < 0.001 
Current smoking 25,908 (9.2%) 691 (9.6%) 0.29 
Family history of heart disease 100,856 (35.8%) 3364 (46.6%) < 0.001 
Body mass index, kg/m2 27.4 (4.7) 27.7 (4.8) < 0.001 
Systolic blood pressure, mmHg 140 (19.7) 141 (19.6) < 0.001 
Lipid-lowering therapy 47,550 (17.0%) 1962 (27.3%) < 0.001 
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Table 4. Prevalence and clinical impact of high polygenic score for breast cancer and severe 
obesity (body-mass index ≥ 40 kg/m2). Breast cancer analysis was restricted to females. Odds 
ratios calculated by comparing those with high polygenic score to the remainder of the 
population in a logistic regression model adjusted for age, sex (for severe obesity only), 
genotyping array, and the first four principal components of ancestry. 
 

 
 
 
  

High polygenic score definition Reference group Odds ratio 
95% 

Confidence 
interval 

P-value 

Breast cancer     
Top 20% of distribution Remaining 80% 2.19 2.08 – 2.31 3.6 x 10-185 
Top 10% of distribution Remaining 90% 2.34 2.19 – 2.49 1.7 x 10-150 
Top 5% of distribution Remaining 95% 2.57 2.36 – 2.78 1.3 x 10-114 
Top 2.5% of distribution Remaining 97.5% 2.89 2.60 – 3.21 1.8 x 10-86 
Top 1% of distribution Remaining 99% 3.62 3.11 – 4.20 1.3 x 10-63 
Top 0.25% of distribution Remaining 99.75% 4.43 3.33 – 5.79 4.6 x 10-26 

Severe obesity     
Top 20% of distribution Remaining 80% 3.88 3.67 – 4.10 < 1 x 10-300 

Top 10% of distribution Remaining 90% 4.29 4.05 – 4.55 < 1 x 10-300 
Top 5% of distribution Remaining 95% 4.82 4.49 – 5.17 < 1 x 10-300 
Top 2.5% of distribution Remaining 97.5% 5.54 5.07 – 6.05 < 1 x 10-300 
Top 1% of distribution Remaining 99% 6.15 5.41 – 6.97 5.8 x 10-174 
Top 0.25% of distribution Remaining 99.75% 6.77 5.31 – 8.52 1.5 x 10-56 
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