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Abstract

In mathematical epidemiology, a well-known formula describes the impact of

heterogeneity on the basic reproductive number for situations in which trans-

mission is separable and for which there is one source of variation in suscep-

tibility and one source of variation in infectiousness. This formula is written

in terms of the magnitudes of the heterogeneities, as quantified by their coeffi-

cients of variation, and the correlation between them. A natural question to ask

is whether analogous results apply when there are multiple sources of variation

in susceptibility and/or infectiousness. In this paper we demonstrate that under

three or more coupled heterogeneities, the basic reproductive number depends

on details of the distribution of the heterogeneities in a way that is not seen

in the well-known simpler situation. We provide explicit results for the cases

of multivariate normal and multivariate log-normal distributions, showing that

the basic reproductive number can again be expressed in terms of the magni-

tudes of the heterogeneities and the pairwise correlations between them. The

results, however, differ between the two multivariate distributions, demonstrat-

ing that no formula of this type applies generally when there are three or more
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coupled heterogeneities. We see that the results are approximately equal when

heterogeneities are relatively small and show that an earlier result in the lit-

erature (Koella, 1991) should be viewed in this light. We provide numerical

illustrations of our results.

1. Introduction1

The basic reproductive number, R0, plays a crucial role in determining both2

whether a pathogen is able to spread and the strength of control measures needed3

to halt its spread. The simplest descriptions of R0 assume simple transmission4

scenarios, such as perfect mixing of a population and homogeneity of the individ-5

uals in the population, e.g. in terms of their susceptibility and infectiousness.6

The inadequacies of such descriptions have long been realized and much at-7

tention has been directed towards understanding the impact of heterogeneities8

in transmission on the basic reproductive number. Early efforts included ac-9

counting for differing activity levels amongst the population and various mixing10

patterns of the population (e.g. proportionate/random mixing, assortative and11

disassortative mixing). Much of this work was prompted by the heterogeneities12

known to exist for the spread of sexually transmitted infections, notably gonor-13

rhea and HIV (Nold (1980); Hethcote and Yorke (1984); Anderson et al. (1986);14

May and Anderson (1987); Jacquez et al. (1988); Gupta et al. (1989)). In the15

context of vector-borne diseases, it has long been realized that vectors’ bites16

are not distributed uniformly across hosts; instead, there is a heterogeneity in17

hosts’ attractiveness to vectors, with some individuals being disproportionately18

favored to receive bites (Carnevale et al. (1978); Dye and Hasibeder (1986); De19

Benedicitis et al. (2003); Liebman et al. (2014)).20

A now standard argument shows that the basic reproductive number for a21

multi-type transmission system can be calculated as the dominant eigenvalue of22

the next generation matrix (Diekmann and Heesterbeek (2000)). For an n-type23

setting, the next generation matrix is an n by n non-negative matrix whose24

(i, j)’th entry gives the average number of secondary infections of type i caused25
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by a type j individual in an otherwise entirely susceptible population. Conse-26

quently, much attention has been directed towards those special cases of het-27

erogeneous transmission that lead to next generation matrices whose dominant28

eigenvalue is analytically tractable and hence for which the basic reproductive29

number can be calculated explicitly. In the context of spatial heterogeneity,30

these include symmetric spatial configurations such as equally-sized patches31

with all-to-all or nearest neighbor contacts (see, for example Lloyd and May32

(1996)).33

More generally, a commonly-studied situation involves separable transmis-34

sion (Diekmann and Heesterbeek (2000)), where each group has a susceptibility,35

ai and an infectiousness, bi. In this case, the next generation matrix is of rank36

one, and, taking groups to be of equal sizes, has entries aibj/n, and dominant37

eigenvalue38

R0 =
1

n

n∑
i=1

aibi. (1)

Using the result39

E(XY ) = E(X)E(Y ) + Cov(X,Y ) (2)

for the expectation of a product of random variables, eqn (1) can be rearranged40

into the following well-known formula (Dietz (1980); Dye and Hasibeder (1986))41

that sheds insight into the impact of heterogeneity on R0 in this separable42

setting:43

R0 = āb̄ (1 + rabCVaCVb)

= Rhom
0 (1 + rabCVaCVb) . (3)

Here, ā and b̄ denote the average values of ai and bi, rab denotes the Pearson44

product-moment correlation coefficient between the ai and bi, CVa and CVb45

denote the coefficients of variation (i.e. standard deviation divided by the mean)46

of ai and bi and Rhom
0 denotes the value of R0 that would be predicted if the47

heterogeneity was ignored, i.e. the average values of ai and bi were used. We48
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emphasize that these results are exact, holding for arbitrary distributions of the49

ai and bi.50

Heterogeneity can inflate or deflate the value of R0, depending on whether51

there is positive or negative correlation between susceptibility and infectivity52

across the groups (Dietz, 1980). In the special case where susceptibility and53

infectivity are proportional, e.g. for a situation such as differing activity levels or54

mosquito biting preferences where the heterogeneity impacts both susceptibility55

and infectiousness in the same way, the formula reduces to56

R0 = Rhom
0

(
1 + CV2

a

)
= Rhom

0

(
1 +

Var(a)

ā2

)
. (4)

This formula has appeared in the literature numerous times in a number of57

different settings and guises (Dietz, 1980; Dye and Hasibeder, 1986; May and58

Anderson, 1987).59

Particularly with the increasing realization that many systems are subject60

to multiple, often coupled, heterogeneities (Paull et al., 2012; Vazquez-Prokopec61

et al., 2016), an important question is whether results such as eqns. (3) and (4)62

generalize to situations in which there are more than two heterogeneities. In63

this paper, we show that the answer to this question is no: the effect of multiple64

interacting heterogeneities on the basic reproductive number depends on the65

details of the distributions of the heterogeneities, in contrast to what occurs in66

the two-heterogeneity setting. We provide results for both multivariate normal67

and multivariate log-normal distributions of heterogeneities and demonstrate68

that the two settings can give markedly different results.69

2. Results70

We assume that there are n types of individuals, resulting from N different71

heterogeneities, N1 of which impact susceptibility and N2 of which impact in-72

fectiousness. We further assume that the susceptibility of a type i individual73
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can be written as the product x1ix
2
i · · ·xN1 , taken over the heterogeneities that74

impact susceptibility, and that the infectivity of a type j individual can sim-75

ilarly be written as x1j · · ·x
N2
j . Taking group sizes to be equal and assuming76

separable transmission, the entries of the next generation matrix will have the77

form x1ix
2
i . . . x

N1
i x1j · · ·x

N2
j /n, where N1 +N2 = N . This matrix is of rank one78

and has dominant eigenvalue given by79

R0 =
1

n

n∑
i=1

x1ix
2
i · · ·xNi . (5)

As explained above, the well-known result arises from the ability to express80

the expectation of the product of a pair of random variables in terms of their81

two expectations and their covariance. Extension of the result requires corre-82

sponding manipulations of expectations of products of three or more random83

variables—the so-called product moments of the joint distribution.84

2.1. Analytic Results85

In the case of a set of random variables whose joint distribution is multivari-86

ate normal, numerous authors have obtained results for product moments (see,87

for example, Isserlis (1918), Bendat and Piersol (1966), Bär and Dittrich (1971)88

and Song and Lee (2015)). For instance, in the four dimensional case we have89

(Bendat and Piersol (1966) and Bär and Dittrich (1971))90

E(X1X2X3X4) = E(X1X2)E(X3X4) + E(X1X3)E(X2X4)+

E(X1X4)E(X2X3) − 2E(X1)E(X2)E(X3)E(X4). (6)

The expectations of pairwise products can be rewritten in the way described91

above to give92

E(X1X2X3X4) = E(X1)E(X2)E(X3)E(X4)×{
(1 + rX1,X2

CVX1
CVX2

) (1 + rX3,X4
CVX3

CVX4
) +

(1 + rX1,X3CVX1CVX3) (1 + rX2,X4CVX2CVX4) +

(1 + rX1,X4
CVX1

CVX4
) (1 + rX2,X3

CVX2
CVX3

)−

2
}
. (7)
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We remark that the case of three random variables can be obtained by setting93

X4 = 1.94

For a set of N multivariate lognormally distributed random variables, prod-95

uct moments are given by the formula (Kotz et al. (2000))96

E

 N∏
j=1

X
rj
j

 = exp

(
rTξ +

1

2
rTV r

)
, (8)

where ξ and V are the mean and variance of the corresponding multivariate97

normal distribution. Some simple manipulation leads to98

E(X1X2X3X4) = E(X1)E(X2)E(X3)E(X4)×

(1 + rX1,X2CVX1CVX2) (1 + rX1,X3CVX1CVX3)×

(1 + rX1,X4
CVX1

CVX4
) (1 + rX2,X3

CVX2
CVX3

)×

(1 + rX2,X4
CVX2

CVX4
) (1 + rX3,X4

CVX3
CVX4

) . (9)

Given that eqns (7) and (9) differ, and that their reduced forms when X4 = 199

also differ, we have shown that there is no general formula of this type for the100

basic reproductive number when there are three or more coupled heterogeneities.101

We do notice, however, that the two formulae give approximately equal results102

in the limit of small coefficients of variation, i.e. when one can ignore products103

involving two or more pairs of coefficients of variation.104

The majority of papers in the literature that provide analytic results for105

the basic reproductive number under heterogeneity focus on at most two cou-106

pled heterogeneities. One notable exception is the work of Koella (1991), which107

provides—without proof or qualification for its applicability—the following for-108

mula for a vector-borne pathogen subject to heterogeneities in mosquito biting109

rate, a, human susceptibility, b, and duration of human infection, ρ110

R0 = Rhom
0

[
1 +

Var(a)

ā2
+ 2

Cov(a, b)

āb̄
+ 2

Cov(a, ρ)

āρ̄
+

Cov(ρ, b)

ρ̄b̄

]
. (10)

Note that the single biological heterogeneity in biting rate impacts both in-111

fectiousness and susceptibility, resulting in it being treated as two perfectly112

correlated heterogeneities.113
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We note that eqution (10) has no terms that involve products of pairs of114

covariances (or, in the language of the earlier formulae, correlation coefficients).115

As in the remark above comparing results between multivariate normal and116

lognormal distributions, this formula should, in general, be seen as an approx-117

imation that is likely most accurate when coefficients of variation are small118

(i.e. the heterogeneities are relatively minor). As a comment that is germane119

to a numerical example shown below, we remark that the Koella formula does120

agree with the result for the multivariate normal distribution, eqn (7), if the121

coefficient of variation describing either human susceptibility or the duration of122

human infection is equal to zero.123

2.2. Numerical Results124

We illustrate the above results using numerical simulation, allowing us to125

explore the differences between predictions made using the formulae for the two126

distributions and also using the formula in the small coefficient of variation limit.127

For concreteness, we place these simulations within the vector-host setting de-128

scribed by Koella (1991), but for simplicity we hold one of the factors constant.129

Specifically, hosts differ in their attractiveness to mosquitoes, impacting their130

susceptibility and infectiousness (thus treated as two perfectly correlated het-131

erogeneities, X1 and X2, within our framework), and also in their durations of132

infection, X3. Setting X4 = 1 and taking X2=X1, we obtain the following two133

formulae:134

R0 = E(X1)2E(X3)
{

1 + CV2
X1

+ 2rX1,X3
CVX1

CVX3

}
(11)

for bivariate normally distributed heterogeneities, and135

R0 = E(X1)2E(X3)
{

1 + CV2
X1

}{
1 + rX1,X3CVX1CVX3

}2
(12)

for bivariate lognormally distributed heterogeneities. We notice that in this136

reduced setting of X4 = 1, the first of these formulae coincides with the small137

coefficient of variation limit of the two general formulae, and, as discussed above,138
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also agrees with the Koella formula. Furthermore, we see that when the cor-139

relation coefficient, rX1,X3
, between the two heterogeneities is zero, the two140

formulae are identical.141

2.2.1. Bivariate Normal Distribution142

Figure (1) illustrates the performance of eqn (11) when the group attributes143

X1 and X3 are sampled from a bivariate normal distribution. Parameter values144

(given in the figure caption) were chosen for illustrative purposes and are not145

intended to represent a specific real-world infection. For each of a thousand146

replicates, either ten (panel a) or a thousand (panel b) pairs of values of biting147

rate and duration of human infection were sampled from a bivariate normal148

distribution. The actual R0 value for each replicate, calculated from eqn (5), is149

plotted against the value of R0 predicted for that replicate by the MVN formula,150

eqn (11). In addition, we show (using a red square) the R0 value that would be151

predicted if there was no heterogeneity (i.e. X1 and X3 are set equal to their152

respective average values) and the value predicted by the MVN formula for the153

underlying MVN distribution (green star).154

To aid comparison, the 45◦ diagonal line is shown on both plots: deviations155

from these lines represent deviations from the values predicted by the MVN156

formula. We quantitate these deviations by calculating the coefficient of deter-157

mination, R2, in a way that is familiar from regression theory. In both cases,158

the R2 value is high, and approximately equal to 0.99. The numerically calcu-159

lated values of R0 fall in a cloud centered on the value predicted by the MVN160

formula, with the size of the cloud being smaller for the panel resulting from the161

larger number of groups. The deviations here result from sampling error, with162

samples drawn from the bivariate normal not being perfectly representative of163

the entire distribution. This effect is more pointed when there are fewer samples164

(i.e. fewer groups), with the cloud of points shrinking as the number of groups165

increases. In fact, since the basic reproductive number, eqn (5), is calculated166

as the average of a sequence of independent, identically distributed quantities,167

the central limit theorem can be used to quantify the variation seen about the168
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(a)

(b)

Figure 1: Comparison of R0 values calculated numerically (using eqn 5) with

those predicted by the MVN formula (eqn 11) for heterogeneities distributed

according to an MVN distribution. Each blue circle represents the values of

R0 obtained for (panel a) a ten group model or (panel b) a thousand group

model with pairs of values of biting rate, X1, and average duration of human

infection X3 drawn from a bivariate normal distribution with means 1 and

5, respectively, variances Var(X1) = 0.2 and Var(X3) = 4, and correlation

rX1,X2
= 0.9. The value of the susceptibility parameter was fixed at 1 for each

group. The red square denotes the value of R0 if there was no heterogeneity,

i.e. obtained using the average values, Rhom
0 , while the green star denotes the

value of R0 calculated using the MVN formula using the means, variances and

covariances of the underlying bivariate normal distribution. As described in the

text, the predictive ability of the MVN formula is measured by the coefficient

of determination, R2, and equals: (panel a) 0.991 and (panel b) 0.988. Note the

different scales on the axes between the two panels.
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central predicted value. We remark that a corresponding figure generated in the169

case of two coupled heterogeneities would exhibit no deviation from the diago-170

nal line as eqn (3) is exact: it does not rely on any distributional assumption of171

heterogeneities across groups.172

2.2.2. Bivariate Lognormal Distribution173

Use of a multivariate lognormal distribution allows us to explore settings in174

which the components of transmission exhibit more severe heterogeneity and175

to assess the extent to which the impact of such heterogeneities are misrepre-176

sented by either the small coefficient of variation formula or by the formula that177

pertains in the multivariate normal case.178

In figure (2), the biting rates and durations of infectiousness are drawn from179

independent lognormal distributions, with means 1 and 3, and variances 1 and180

8, respectively. We compare the performance of the MVN formula (panel a)181

and MVLN formula (panel b) for a 1000-group setting (i.e. 1000 samples are182

drawn from the distributions). In this case, because there is zero correlation183

between the two heterogeneities, the population-level predictions of the MVN184

and MVLN formulae (i.e. the values obtained using the moments of the un-185

derlying distribution) are identical (shown by a yellow diamond). We see that186

the MVLN formula provides a better description (R2 = 0.748 using the MVN187

formula, while R2 = 0.852 using the MVLN formula), which is to be expected188

given that samples were drawn from an MVLN distribution.189

Figure (3) explores a situation in which there is a positive correlation (r =190

0.6) between the two components, i.e. the biting rate and duration of infectious-191

ness, of the bivariate lognormal distribution. We see that the MVLN formula192

performs well (panel b, R2 = 0.852). The positive correlation leads to the MVN193

formula underestimating R0 compared to the MVLN formula, for example as194

witnessed by the central estimates of R0 (yellow diamond: MVLN, green star:195

MVN). The MVN formula consistently provides a large underestimate of the196

true value of R0 (panel a), and its predictive ability is poor (the negative value197

of R2, -0.596, indicates that the formula performs worse on these points than a198
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(a)

(b)

Figure 2: Comparison of R0 values calculated numerically (using eqn 5) with

those predicted by the formula derived from the MVN distribution (eqn 11)

(panel a) and those predicted by the formula derived from the MVLN distribu-

tion (eqn 12) (panel b). Each blue circle represents the values of R0 obtained

for a thousand group model with values of biting rate, X1, and average dura-

tion of human infection, X3, drawn from independent lognormal distributions

(means 1 and 3, variances 1 and 8, respectively). The value of the susceptibility

parameter was fixed at 1 for each group. The red square denotes the value of R0

obtained using the average values, Rhom
0 , while the yellow diamond denotes the

value of R0 calculated using the MVLN formula using the means, variances and

covariances of the bivariate lognormal distribution. Because the distributions

of X1 and X3 are assumed to be independent in this figure, the population-

level predictions of the MVLN and MVN formulae are identical. The predictive

ability of the MVLN formula (panel b, R2 = 0.852) is greater than that of the

MVN formula (panel a, R2 = 0.748), as should be expected given that draws

were made from an MVLN distribution.
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constant predictor).199

Finally, we consider a setting in which the two heterogeneities are negatively200

correlated, with r = −0.2. Figure (4) shows that in this case, the MVLN201

formula correctly predicts lower values of R0 than does the MVN formula (e.g.202

compare the locations of the yellow diamond and the green star, obtained from203

MVLN and MVN formulae, respectively, using the moments of the underlying204

distribution). The MVLN formula provides reasonable predictions (R2 = 0.735),205

whereas the MVN formula (R2 = −4.34) consistently overestimates the value206

of R0, and often by a considerable amount.207

3. Discussion208

In this paper we have shown that the well-known result for the impact of two209

coupled heterogeneities on the basic reproductive number of an epidemiological210

system under separable transmission does not have a general counterpart when211

there are three or more coupled heterogeneities. In the more general setting,212

the formula for the basic reproductive number depends on details of the joint213

distribution of the heterogeneities in a way that is quite different than in the214

setting with two heterogeneities. We were able to derive formulae that related215

the basic reproductive number to the magnitudes of the heterogeneities and216

their pairwise correlations for the special cases of multivariate normal and mul-217

tivariate lognormal distributions of heterogeneities. Under particular limiting218

cases (typically in the limit of low levels of heterogeneity), the two formulae give219

similar predictions. We showed that an earlier result in the literature (Koella,220

1991) should be viewed as an approximate result, although we noted that in ap-221

propriate limiting cases, the result agrees with our formula for the multivariate222

normal distribution.223

Given the reliance of the R0 formulae obtained here on the joint distribution224

of the heterogeneities, our results are only exact as the number of groups in225

the multi-type model approaches infinity. For a finite number of groups, where226

the levels of the heterogeneities across groups are sampled from the underlying227
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(a)

(b)

Figure 3: Comparison of R0 values calculated numerically (using eqn 5) with

those predicted by the formula derived from the MVN distribution (eqn 11)

(panel a) and those predicted by the formula derived from the MVLN distribu-

tion (eqn 12) (panel b). Details are as in Figure (2), except that here there is a

positive correlation, r = 0.6, between the two components of the bivariate log-

normal distribution. In this case, the population-level predictions of the MVN

and MVLN formulae (green star and yellow diamond, respectively) differ. The

predictive ability of the MVLN formula (panel b, R2 = 0.828) is greater than

that of the MVN formula (panel a, R2 = −0.596). The MVN formula performs

worse than a constant predictor and consistently provides a large underestimate

of the true value of R0.
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(a)

(b)

Figure 4: Comparison of R0 values calculated numerically (using eqn 5) with

those predicted by the formula derived from the MVN distribution (eqn 11)

(panel a) and those predicted by the formula derived from the MVLN distri-

bution (eqn 12) (panel b). Details are as in Figures (2) and (3), except that

here there is a negative correlation, r = −0.2, between the two components of

the bivariate lognormal distribution. Again, the predictive ability of the MVLN

formula (panel b, R2 = 0.721) is greater than that of the MVN formula (panel

a, R2 = −4.91), with the latter performing worse than a constant predictor and

consistently providing a large overestimate of the true value of R0.
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distribution, the predictions made by these formulae are not perfect. This again228

is in contrast to the two heterogeneity setting, in which the well-known result229

is exact.230

Although theoretical attention has typically focused on the two heterogeneity231

case, and this has provided much insight, heterogeneous transmission in the real232

world typically involves more than two factors (Paull et al. (2012); Vazquez-233

Prokopec et al. (2016)). As such, it is important to gain understanding of234

how multiple coupled heterogeneities impact transmission and the limitations of235

general results that can be obtained in such more realistic settings. This paper236

provides a theoretical step in that direction and aims to guide more detailed237

studies that involve numerical exploration of specific situations, yielding further238

insights into the epidemiological role of individual variability.239
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