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Abstract

An important goal in behaviour analytics is to connect disease state or genome
variation with observable differences in behaviour. Despite advances in sensor
technology and imaging, informative behaviour quantification remains challenging.
The nematode worm C. elegans provides a unique opportunity to test analysis
approaches because of its small size, compact nervous system, and the availability
of large databases of videos of freely behaving animals with known genetic differ-
ences. Despite its relative simplicity, there are still no reports of generative models
that can capture essential differences between even well-described mutant strains.
Here we show that a multilayer recurrent neural network (RNN) can produce di-
verse behaviours that are difficult to distinguish from real worms’ behaviour and
that some of the artificial neurons in the RNN are interpretable and correlate with
observable features such as body curvature, speed, and reversals. Although the
RNN is not trained to perform classification, we find that artificial neuron responses
provide features that perform well in worm strain classification.

1 Introduction

As the principal output of the nervous system, behaviour plays a fundamental role in neuroscience
and is also an important diagnostic criterion in psychiatric and motor diseases [1]. Quantifying
behaviour is therefore of both scientific and technological interest. However, behaviour arguably
encompasses the complete set of actions made by an animal over the course of its life, making it
difficult to determine which aspects of behaviour to focus on. There is therefore growing interest in
alternative representations and unsupervised methods to identify behaviours [2, 3, 4].

The nematode worm C. elegans has several useful features for testing new approaches for behaviour
quantification. Its morphology is simple and it maintains a relatively constant length and width so
that its motion can be captured by the coordinates of its midline over time and there are data available
for thousands of individuals from several hundred genetically different strains [5]. Furthermore, the
posture space defined by the angles of the midline is low-dimensional and can be well-described
using a relatively small number of basis shapes [6]. This reduces the problem of behaviour analysis to
finding patterns, features, or models that best describe trajectories through this shape space. Finally,
because C. elegans is transparent and has a compact nervous system with only 302 neurons with
well-described connectivity [7], mapping between neural activity and behaviour is more tractable
than for many other animals.

In this paper, we test the hypothesis that a generative model that is able to produce realistic trajectories
will need to learn essential aspects of the behavioural data it is trained on and therefore may also
learn to distinguish animals based on their motion. To do this, we trained a Long Short-Term
Memory (LSTM) recurrent neural network (RNN) to predict the next worm shape given previous
shapes using back propagation through time. The trained model generates convincing behaviour
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that is difficult to distinguish from real behaviour and models trained on different strains generate
trajectories that capture some of the known idiosyncrasies of those strains. We analyse the properties
of the trained model and find cells with interpretable activation, including a cell related to reversals
that is qualitatively similar to the activity of a real worm neuron measured in freely behaving
animals. Notably, although the model is not specifically designed for classification, we achieve good
performance on worm strain classification using artificial neuron derived features.

2 Model Training and Motion Prediction

Figure 1: Projecting worm shapes onto the 6-
dimensional basis formed by the eigenworms plus
1-dimensional angle mean changes so a sequence
of behavior can be compactly represented as a 7-
channel time series.

We used a previously published data set consist-
ing of 15 minute videos of single worms crawl-
ing on the surface of an agar plate [5, 2].

To describe the shape of the worm in each frame,
we use the tangent angles of segments along the
worm midline which are projected onto a lower-
dimensional set of basis shapes, or ‘eigenworms’
[6]. Rather than using principal component anal-
ysis (PCA) [6] to find the basis shapes, we used
independent component analysis (ICA) since
it more effectively separates oscillating compo-
nents [8]. We keep the top 6 shapes in our rep-
resentation, which capture 98% of the variance
across the mutant shapes, to ensure our model is
able to capture even subtle motions that worms
perform at the tip of their heads. The data that
we use for training consists of the projected am-
plitudes 1�6 as well as the mean angle that was
subtracted before projection to keep track of ori-
entation (Fig. 1 and Supplementary Material).

We used Keras [9] to train an RNN with 4 hidden
layers, each consisting of 260 LSTM [10] cells
followed by a dropout cell to avoid overfitting
[11, 12]. We chose to use LSTM cells because
of their high performance in other domains. Us-
ing fewer than 260 cells per layer led to poor
generative models (See Supp. Mat.) The last layer is a fully connected layer with a 7-dimensional
vector as output. The data are subsampled to 10 frames per second and we used a 50 frame window
to predict the next frame during training. The 5-second window used for training is on the same order
as the body oscillation period of the worm.

We trained a separate model for each of four genetically different worm strains: the lab strain N2,
two wild strains isolated from different parts of the world (CB4856, and ED3049), and a mutant
trp-4(sy695). For the classification problem, we trained a single model on input data from 18 wild-
isolates. Each model was trained using data from ten individuals (around 9⇥ 104 frames in total per
strain). The dropout rate was set to 0.2.

Each strain-specific model was seeded with 50 frames of real data and then used to generate 9000
frames of simulated data. After the initial seed, all subsequent frames are predicted by the model.
We then used an updated linear resistive force theory algorithm to predict the worm’s x� y motion
based on the shape changes [13] so that we could generate trajectories from the shape time series and
extract motion features (such as speed) from the model-generated behaviour.

3 Results

3.1 Model generates realistic worm behaviour

Sample trajectories generated by the model are visually similar to those of real worms (Fig. 2). The
model produces stable worm-like output even when extrapolating far beyond the size of the initial
data seed. Since the x� y motion is predicted using a friction model from the shape changes and not
as a direct output of the LSTM, the fact that the simulated trajectories look reasonable is evidence that
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Figure 2: Real and simulated trajectories of different strains. A: real N2; B: simulated N2; C: real
CB4856; D: simulated CB4856; E: real trp-4; F: simulated trp-4; G: the boxplot of real vs. simulated
worms in terms of the feature midbody_speed_pos for N2, CB4856; H: the boxplot of real vs.
simulated worms in terms of the feature head_bend_mean_abs for N2 and trp-4.

the model has learned essential aspects of worm behaviour. Consistent with applications of LSTMs
in text analysis [14], we find that the simulated trajectories have realistic behaviour but at time scales
longer than the 50-frame training window including active ‘roaming’ periods, inactive ‘dwelling’
periods, and sharp turns and reversals. The simulated trajectories also show more gradual turning
during forward locomotion, again consistent with the behaviour of real worms.

Animals with deletions of the gene trp-4 have a more curved body posture because of a defect in
proprioception [15] and CB4856, a wild strain isolated from Hawaii, is more active than the laboratory
strain [16]. We generated simulated trajectories from models trained separately on data from each
of these strains. The expected differences are visible in the real and simulated trajectories shown in
Figure 2. These differences were consistent across 30 simulated trajectories using different seeds
for each run (Fig. 2, G and H). However, we also note the match is not perfect, confirming that the
model is not simply returning shape sequences already present in the training data, which might have
been expected if the models were overfit.

3.2 Interpretable LSTM cells and interpretable worm cells

Recent work has shown that interpretable cells, that is cells whose memory correlates with an
observable property of the modelled system, can exist in LSTMs trained on real-world data [14, 17].
When modelling behaviour, where we know that the training data were themselves generated by a
neural network, it is plausible that there could be an informative mapping between the artificial and
real neurons. In the case of C. elegans, this mapping may be more tractable than in other systems
because the worm has only 302 neurons with a known wiring diagram [7] and because it lacks voltage
gated sodium channels and therefore has non-spiking neurons [18].

By comparing the variation of LSTM cells’ memories over time with the features we routinely
calculate for worm behaviour, we identified cells with interpretable behaviour. In the 4th layer, we
find several cells with a strong correlation or anti-correlation (correlation coefficients above 0.8 or
below �0.8) with the worm’s midbody curvature. Given that some of the basis shapes used in our
representation encode curvature fairly directly, the presence of such cells is not surprising. However,
we also discovered single units that anti-correlate with speed (Fig. 3), a feature that is not directly
present in the input shape data (correlation coefficient �0.42). The relationship is clear upon visual
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Figure 3: Left: Time series of midbody speed (red) vs. LSTM memory (blue) (upper) and after
a 200 frame mean filter (bottom). Right: Sample trace showing the activity of RIM, a real worm
neuron (data from [19]), measured using a fluorescent calcium reporter in a freely behaving animal
(fluorescence ratio (black) and corresponding crawling speed (red)). Time series of LSTM memory
(black) and midbody speed (red) (bottom).

inspection when both signals are smoothed with a 200-frame mean filter (correlation coefficient
�0.75 after smoothing).

Finally, we found an LSTM cell that is more active when the worm is moving backwards (Fig. 3).
Interestingly, the RIM neuron in the real worm has a similar relationship to reversals, as shown by the
calcium (Ca2+) imaging dynamics in 3 (data from [19]). We do not find neurons that correlate with,
for example, dwelling states or omega turns, so we do not think the relationship between this LSTM
cell’s activation and reversals is a result of having enough neurons to find arbitrary correlations by
chance.

3.3 The generative model is also a good classifier

Some artificial neurons correlate with manually defined features, but not all do, suggesting the neural
features may contain independent information. We therefore checked whether the artificial neuron
activities could themselves be useful features for distinguishing strains. We trained a single RNN
on data from 18 wild isolate strains of C. elegans and then fed data from individuals not included in
the training set to the network and recorded the response of each artificial neuron. We used the 10th,
50th, and 90th percentile values of each neuron to generate a feature vector for each of the unseen
worms, followed by recursive feature elimination to find the top 30 features. Simple nearest neighbour
classification using the neural features achieved 52% accuracy using 5-fold cross-validation. This
outperforms the classification using the manually defined features from Yemini et al. [5] which
achieved 19% accuracy using nearest neighbours, and is comparable to the 56% (also 5-fold cross-
validation) achieved using a random forest with the Yemini et al. features. Given that the Yemini et
al. features have previously been shown to sensitively distinguish worm strains from each other [5]
and that the RNN was not trained on classification, this result was unexpected.

4 Conclusion

Quantifying behavioural dynamics remains challenging and there are still no general frameworks that
are effective for all problems. Following training, LSTMs are able to generate realistic trajectories
that capture known behavioural differences between genetically distinct worm strains. Although
trained on prediction, we also found that the LSTMs could achieve state-of-the-art performance on
strain classification.

We also found that the LSTMs have several interpretable cells. In at least one case the artificial
neuron’s activity could be direclty related to the activity of real worm neurons. Of course, the LSTM
used to model worm behaviour is very different from the worm’s actual nervous system, not least
because it takes in sensory input and outputs patterns of muscle contraction whereas the LSTM has
posture time series as both input and output. Nonetheless, many of the real worm neurons are not
currently ‘interpretable’. Finding LSTM cells that correlate with the activity of these enigmatic real
neurons could provide a complementary approach to understanding their role using the LSTM as a
more readily perturbed system to study these cells’ effects on behaviour.
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1 The Model

A B

C D

E

Figure 1: A: an example of a typical worm video
frame with the skeleton identified. B: the defi-
nition of points s and angles ✓. C: the curve of
angles and the adjustment by its mean value s

0.
D: fraction of variance explained as more basis
shapes are used. E: ICA returns 6 basis shapes
that explain 98% of the variance in the dataset.

We use a previously published data set that was
captured using a USB microscope mounted on
a motorised stage [1, 2]. Each individual animal
was recorded for 15 minutes at approximately
30 frames per second using the Worm Tracker
2.0 (WT2) system (http://wormbehavior.mrc-
lmb.cam.ac.uk/). In the videos, worms are con-
fined to the two-dimensional surface of an agar
plate. We have updated the tracking and stage
alignment algorithm from [1] to improve the
speed and accuracy.

The deep learning development toolkit Theano
(http://deeplearning.net/software/theano/) is used
to implemented the RNN. We adopted the Keras
Sequential model for training [3]. Our model
has 4 LSTM layers, each followed by a dropout
layer. The output layer is a fully connect dense
layer. For the LSTM layer, each layer has 260
units. The dropout is set as 0.2. The input data
are 7-dimension time series after dimension re-
duction of worm posture. The loss function is
mean squared error, and the optimizer is set as
the rmsprop optimizer in Keras. No regularizer is
adopted in the model and the activation function
of the dense layer is linear. It takes 600 epochs
(each epoch scans through all the training frames
exactly once) to obtain the model for one strain.

2 Dimension reduction

We use the skeleton, or midline, to describe the
shape of the worm at each frame k, defined as a
curve that passes through the centre of the body
(Fig. 1.A in red). The skeleton consists of a series
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of points s(1), · · · , s(n), where n is the number
of points on the skeleton from head to tail and ✓(s(i)) is the angle between the horizontal line and a
vector connecting two consecutive points s(i+1) and s(i) (Fig. 1.B). By subtracting the mean angle,
equivalent to rotating the worm shape by an angle s

0 (Fig. 1.C, solid line) we achieve a position and
orientation independent representation of the worm shape in each frame [4]. Given worm shapes
across many videos, we can calculate a set of basis shapes u

µ

(s), µ = 1, · · ·µ0 that can be used to
decompose ✓(s) to µ

0 dimensions as a superposition of ‘eigenworms’

✓(s) =
µ

0X

µ=1

↵

µ

u

µ

(s), (1)

where ↵

µ

are the amplitudes of the projections onto the eigenworms. Rather than using principal
component analysis (PCA) [4] to find the basis shapes, we used independent component analysis
(ICA) since it more effectively separates oscillating components [5]. We keep the top µ

0 = 6 shapes
in our representation, which capture 98% of the variance across the mutant shapes (Fig. 1.D). The
basis shapes over all mutants are shown in Fig. 1.E.

3 Model Training and Motion Prediction

3.1 Training

Because of their successful applications in modelling sequential data [6], we used a multi-layer
LSTM [7] RNN to model the worm behaviour time series. We adopted the Keras Sequential
model for the training component [3]. In general, sequence learning tries to map an input se-
quence to a target sequence of fixed-size. An LSTM RNN estimates the conditional probability
p(y1, · · · , yT 0 |x1, · · · , xT

) given a sequence of data, where x1, · · · , xT

denotes the input sequence
and y1, · · · , yT 0 is the corresponding output sequence, with size T and T

0 respectively. We use
x

t

, h

t

, c

t

to represent input vector, output vector and memory cell vector respectively; W,U, and b

are the parameter matrices/vectors that need to be learned, and f

t

, i

t

, and o

t

denote the forget gate,
input gate, and output gate vectors. Then the precise form of the update is
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where �

g

,�

t

, � is the sigmoid function, hyperbolic tangent and entrywise product, respectively. A
schematic of the data processing pipeline is shown in Fig. 2. The worm video is segmented and the
skeleton is converted to a 7-dimensional time series that is used to train the RNN. We feed the last
50 time points to the model and use the next-frame values as outputs, stepping through the data one

worm video frames

training

RNN

Posture coordinates Eigen-coefficients

Recurrent neuron network:

L L d L d L d D

L LSTM d dropout D Dense layer

Figure 2: Worm behaviour is represented as a low dimensional time series. The posture coordinates
are the x� y coordinates of the points on the worm’s skeletons. The input and output of the training
component are time series data after dimensionality reduction. The LSTM has 4 hidden layers, each
followed by a dropout cell, with a fully connected final layer.
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…

N-1 previous step

…

1st step Nth step

(N+1)th prediction (N+2)th prediction

Figure 3: Schematic of prediction algorithm using an LSTM.

frame at a time. The data are subsampled to 10 frames per second and so 50 frames is of the same
order as the period of worm body oscillation.

Figure 4: Sample trajectories generated with RNNs with smaller numbers of neurons than the one
used in the main text.

3.1.1 Model Size Investigation

In the paper we trained an RNN model with 4 hidden layers, each consisting of 260 LSTM cells.
We tried smaller networks but did not perform as well as generative models. Sample trajectories are
shown in Fig. 4.

B C DA

Figure 5: Trajectory examples; A: real N2, B: simulated N2, C: real ED3049, D: simulated ED3049
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Figure 6: The programme interface shows examples of real or simulated videos before the formal
test.

Figure 7: The programme interface shows the correct identity immediately after an answer is
submitted during the formal test.

3.1.2 Real-or-Simulated test

Worm behaviour is more complex and diverse than the trajectories can illustrate because they do
not show differences in dynamics very clearly. To further assess the apparent similarity between
the real and simulated behaviour, we generated short 1-minute videos of real worm behaviour and
simulated worm behaviour, in each case displaying only the skeleton coordinates over time, and
asked volunteers to classify the clips as real or simulated. We divided the volunteers into two groups:
researchers working with C. elegans and those with no prior experience with C. elegans. After
watching 5 to 10 labelled examples to familiarise them with the task, users were given unlabelled
videos to watch and could press a button indicating that they thought the video was real or simulated
at any time during the video (Fig. 6). Both real and simulated videos only show the skeleton (in red)
and the head point (in blue) of the worm.

The correct answer will show immediately after the user makes a choice, and then the program goes
to the next video (Fig. 7). The test results are shown in Table 1.
In the table one can observe that non-experts achieved a test accuracy around 50%, equivalent to
random guessing. The results show that even people working with C. elegans on a daily basis have
difficulty distinguishing the real from simulated worms.

4 Interpreting Cells

For visual inspection, we check units during a 1-frame prediction by visualizing their values as the
worm video plays in realtime (Fig. 8). The interface shows the worm shape and location in the video
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real-or-simulated test Result
Tester samples testers TP TN FP FN Acc Sens Spec
Non-Experts 1949 84 471 498 495 485 0.50 0.49 0.51
Worm Experts 553 14 179 146 98 130 0.59 0.65 0.53

Table 1: Test results of real-or-simulated test to distinguish real or simulated worm videos. The
abbreviations in the table stand for: true positive, true negative, false positive, false negative, accuracy,
sensitivity and specificity, respectively.

(upper left), the specific unit which is under observation (upper right), and the realtime unit values in
each LSTM layer. We also can show the unit values in the format of time series data, which have
been shown in Sec. Interpreting LSTM Cells in terms of bend, speed and reversal.

Figure 8: The interface showing the values of units in each LSTM layer during the worm video
proceeds realtime.
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