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Abstract

We explore the application of Generative Adversarial Networks to the domain
of morphological profiling of human cultured cells imaged by fluorescence mi-
croscopy. When evaluated for their ability to group cell images responding to
treatment by chemicals of known classes, we find that adversarially learned repre-
sentations are superior to autoencoder-based approaches. While currently inferior
to classical computer vision and transfer learning, the adversarial framework en-
ables useful visualization of the variation of cellular images due to their generative
capabilities.

1 Introduction

Advances in high-throughput microscopy systems have enabled acquisition of large volumes of
high-resolution cell images [3]. This paves the way for novel computational methods that can
leverage these large quantities of data to study biological systems. Our work focuses on the task of
morphological profiling, which aims to map microscopy images of cells to representation vectors that
capture salient features and axes of variation in an unsupervised manner [4]. These representations
ideally divide the morphological space into clusters of cells with similar properties or, in the case of
chemical or genetic treatments added to the cells, similar function.

Current techniques for morphological profiling broadly fall in two categories: a) classical image
processing, using specialized software like CellProfiler [5] to capture representations via manually-
tuned segmentation and traditional computer vision pipelines, and b) transfer learning to extract
features learned by deep convolutional neural networks originally trained to classify miscellaneous
objects [16, 1]. Classical computer vision approaches offer better interpretability of features but
require more human tuning of the segmentation algorithms, and are limited by the feature set
implemented in the image analysis software. Current transfer learning techniques have been shown
to outperform classical methods in at least one dataset [16, 1]. However, given that these networks
were trained on natural images (in RGB), they do not discover the relations of the biologically
meaningful image channels. Instead, their superior performance is likely due to their ability to extract
high-level vision features, which appear to capture the overall structure of cells, but not necessarily
all the intricate details of their morphological variations. Therefore, we hypothesized that learning
representations specifically adapted to cell images would be valuable.
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We employ Generative Adversarial Networks (GANs) [7] to build a generative model of single cell
images from the BBBC021 dataset [12]. We show that this model learns rich feature representations
and synthesizes realistic images that are useful for exploring morphological variation in cells. The
main advantages of this method are:

• Adaptability: Because this method learns from its training data it is able to disentangle factors
of variation and extract inherent semantic relationships. Transfer learning approaches lack
this ability and cannot capture the intrinsic relations between the biologically meaningful
channels.

• Translating into biological phenotypes: The generative abilities of this method enable useful
visualizations of cells to help translate data variations into biological phenotypes.

2 Related Work

Our work lies at the intersection of automated morphological profiling, and representation learning
with deep neural networks, in particular generative architectures. Caicedo et al. [3] recently outlined
the state and challenges of the morphological profiling problem. Prior to this, Ljosa et al. [11]
compared the performance of various dimensionality reduction techniques for CellProfiler features
on the BBBC021 benchmark [12], consisting of MCF7 cells exposed to different chemical treatments.
Pawlowski et al. [16] for the first time reported a representation-learning method based on deep
learning that is competitive with hand-engineered features at the task of predicting mechanism-of-
action (MOA) of chemicals. Ando et al. [1] also applied transfer learning with a different architecture
and introduced a novel feature normalization method. Other related work on this dataset include
supervised classification [10], transfer learning on CellProfiler features [9], and dimensionality
reduction using autoencoders [19].

Few published studies have applied unsupervised deep learning techniques to the task of feature
extraction in morphological profiling. Pawlowski [15] first investigated autoencoder-based methods
but reported results far inferior to hand-tuned features or transfer learning approaches. Our model is
more related to the work by Osokin et al. [14] and Johnson et al. [8], wherein GANs were used to
model cell images, although their applications did not include morphological profiling.

3 Using GANs for Representation Learning

Goodfellow et al. [7] introduced GANs as a game of two players: a generator G and a discriminator
or critic D. The former receives samples z drawn from a noise prior Pnoise which it maps to values
G(z) that should resemble elements of some data distribution Pdata. The discriminator must learn to
distinguish such synthetic samples from real values x ∼ Pdata. The critic’s confidence in the realism
of the generator’s productions is used as feedback to G, guiding it to synthesize ever more realistic
replicates of samples from the data prior. This procedure is formalized in a zero-sum game,

min
G

max
D

V (G,D) = Ex∼Pdata [log(D(x)] + Ez∼Pnoise [log(1−D(G(z))].

Radford et al. [17] first specialized GANs to image synthesis by introducing Deep Convolutional
GANs (DCGANs). DCGANs implement the generator and discriminator based on convolutional
operations. Derivations of DCGANs such as Least Squares GAN (LSGAN) [13] or Wasserstein GAN
(WGAN) [2] tackle instabilities in the training procedure of early generative adversarial models. In
our experiments, we found LSGAN to be most stable, in part leading to higher quality generated
images than both DCGAN and WGAN.

The original GAN framework does not include an explicit means of performing inference. As
such, we require extensions that allow mapping of a sample x drawn from the data prior to a
latent representation via some encoder transformation E(x). A common approach is to interpret
the penultimate layer of the discriminator as a latent space. The activations of this layer serve as
a source of representation vectors. These latent codes are thought to be meaningful because the
discriminator must develop a strong internal representation of its input to succeed at its discrimination
task. Furthermore, this method imposes no computational overhead compared to vanilla GANs.
Figure 1 shows a simplified schematic of our GAN architecture. More advanced encoders could tie
this encoding to a corresponding noise vector.

2

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 2, 2017. ; https://doi.org/10.1101/227645doi: bioRxiv preprint 

https://doi.org/10.1101/227645


z Generator

G(z)

x

D

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

C
on

vo
lu

tio
n

D
en

se
(`
)?

D
en

se
(1
)

? Representations

Figure 1: A simplified diagram of the modified DCGAN [17] architecture we employ for our
experiments. On a high level, the discriminator is a sequence of convolution layers, leading to a
fully connected (dense) layer with ` neurons. We interpret the activations of these ` neurons as
latent vectors and further feed them into a final dense layer with just one activation, forming the
discriminator’s output.

4 Exploring Biological Phenotypes Using Cell Image Synthesis

GANs have been proven to synthesize realistic images both within and beyond the biological domain
[7, 17, 14]. We examine if this ability transfers to cell images extracted from the BBBC021 dataset of
human breast cancer cell lines. Each image in BBBC021 consists of three channels corresponding to
DNA, F-Actin and β-Tubulin, cellular components visualized by fluorescence microscopy. We stack
these channels and treat them as RGB images via a simple DNA 7→ R, β-Tubulin 7→ G,F-Actin 7→ B
mapping. We obtain 1.3 million single cell images by segmenting the raw images using CellProfiler.
Finally, we normalize the luminance of each channel to the range [0 – 1].

Figure 2 shows examples of images generated with LSGAN, WGAN and DCGAN architectures
alongside real images. The synthetic images, particularly those produced by LSGAN, are not only
highly detailed and realistic, but also consistent with their biological nature. For example, it is
characteristic that β-Tubulin (green) forms a circular halo cradling the nucleus. This property is
maintained clearly in most generated images.

To assess the quality of synthesized images we presented three expert biologists with 50 real cell
images and 50 artificial cells generated with LSGAN. We randomized the order of images and asked
the experts to judge whether each cell was real or fake. On average, 30% of the time the synthetic
cells were realistic enough to fool the human jurors into believing they were real.

Current approaches to morphological profiling extract features that are challenging to translate into
biological meaning, such as Zernike moments. While other features capture readily understandable
concepts such as the area occupied by the nucleus, even these are difficult to interpret when a given
class of cells is defined by several such features in combination. For transfer learning it is nearly
impossible to visualize the concept of a feature. In contrast, the noise space of GANs is known to
be highly interpretable and reveal rich semantic structure [17]. We are able to demonstrate this for
images of cells. Figure 3 exhibits how interpolating between two noise samples leads to smooth
transitions in synthesized cells. This supports the fact that the generator learned a low-dimensional

Real LSGAN WGAN DCGAN

Figure 2: Examples of real BBBC021 cell images juxtaposed with synthetic cell images generated
with LSGAN, WGAN and DCGAN.
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Figure 3: Interpolating between two points z1, z2 ∼ Pnoise results in smooth transitions in the
synthesized cell images. Each row shows the transition from z1 to z2 from left to right.

Figure 4: Vector algebra in the noise space translates to biologically valuable relationships in
generated images. In the first row, subtracting the vector for a cell with small quantities of β-Tubulin
(green) from one with high amounts yields a vector representation for "higher β-Tubulin content". In
the second row, the difference between a large and small nucleus encodes the semantic meaning of
"larger nucleus", which can be added to vectors of other cell images to grow the size of the nucleus.

manifold of the images. Figure 4 shows that the noise space encodes semantic relationships, enabling
algebra on interpretable properties of the images such as size of the nucleus or β-Tubulin content.
While there is no way to encode images into Pnoise with the methods presented so far, we believe more
advanced architectures that enable this will be highly valuable if they can maintain these remarkable
semantic properties.

5 Representation Learning for Morphological Profiling

We test the quality of representations extracted via the discriminator by evaluating their ability to
cluster treatments of similar function, here the mechanism-of-action. We obtain treatment profiles by
averaging the extracted single cell representations found as intermediate activations of the discrimina-
tor. Further, we follow the experimental protocol of [11] and report an average MOA classification
accuracy of a leave-one-compound-out cross validation using a one nearest neighbor classifier.

Table 1 compares the accuracy of our technique to classical CellProfiler features and transfer learning.
We found that the quality of representations extracted by our approach is not yet competitive with other
methods. Nevertheless, we believe that the adversarial approach has significant benefits regarding
its ability to translate into biological phenotypes as outlined above. Additionally, this framework is
able to adapt to the dataset at hand and extract inherent relations that are not captured by previous
techniques. We believe that further improvements are possible, as the quality of synthesized images
correlates with classification accuracy. Accordingly, the best performing method (LSGAN) also
yields the highest image quality, as judged qualitatively by expert biologists and shown in Figure 2.

DCGAN WGAN LSGAN VAE [15] CP [18] Deep Transfer [16] Deep Transfer [1]

51 % 56 % 68 % 49 % 90 % 91 % 96 %

Table 1: Comparison of the mechanism-of-action classification accuracy. CP refers to the results by
Singh et al. [18] using CellProfiler features. The Deep Transfer methods correspond to Deep Feature
Transfer as proposed by Pawlowski et al. [16] and refined by Ando et al. [1].
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6 Conclusion

This work investigates the use of GANs for the domain of cell microscopy imaging, in particular mor-
phological profiling. First, we demonstrate the abilities of our generative model with the exploration
of morphological phenotypes by synthesizing realistic images of cells and performing transforma-
tions on them such as interpolation and vector algebra. Second, we extend standard GANs with an
encoder and assess the quality of learned representations by evaluating their mechanism-of-action
classification performance following [11]. Even though adversarially learned representations are
currently inferior at this task, we argue that further enhancements to GANs and encoding schemes
will lead to biologically richer latent representations and better MOA classification accuracy.

This work covers only a small fraction of possible applications of GANs to the domain of microscopy
images. For example, we hope that future work investigates BiGANs[6] or other novel solutions to
infer latent features with GANs. We believe that improved inference, combined with the interpretable
nature of the GAN framework, may enable simulated experiments by performing algebra with vectors
corresponding to cell lines, diseases or other perturbations.
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