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Abstract

Next generation sequencing of viral populations has advanced our understanding of viral popu-
lation dynamics, the development of drug resistance, and escape from host immune responses.
Many applications require complete gene sequences, which can be impossible to reconstruct from
short reads. HIV-1 env, the protein of interest for HIV vaccine studies, is exceptionally challenging
for long-read sequencing and analysis due to its length, high substitution rate, and extensive indel
variation. While long-read sequencing is attractive in this setting, the analysis of such data is
not well handled by existing methods. To address this, we introduce FLEA (Full-Length Envelope
Analyzer), which performs end-to-end analysis and visualization of long-read sequencing data.

FLEA consists of both a pipeline (optionally run on a high-performance cluster), and a client-
side web application that provides interactive results. The pipeline transforms FASTQ reads
into high-quality consensus sequences (HQCSs) and uses them to build a codon-aware multiple
sequence alignment. The resulting alignment is then used to infer phylogenies, selection pressure,
and evolutionary dynamics. The web application provides publication-quality plots and interactive
visualizations, including an annotated viral alignment browser, time series plots of evolutionary
dynamics, visualizations of gene-wide selective pressures (such as dN/dS) across time and across
protein structure, and a phylogenetic tree browser.

We demonstrate how FLEA may be used to process Pacific Biosciences HIV-1 env data and
describe recent examples of its use. Simulations show how FLEA dramatically reduces the error
rate of this sequencing platform, providing an accurate portrait of complex and variable HIV-1 env
populations.

A public instance of FLEA is hosted at http://flea.datamonkey.org. The Python source code
for the FLEA pipeline can be found at https://github.com/veg/flea-pipeline. The client-side
application is available at https://github.com/veg/flea-web-app. A live demo of the P018
results can be found at http://flea.murrell.group/view/P018.
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Introduction

Next generation sequencing (NGS) has become an invaluable tool for studying HIV-1 and other
rapidly evolving viruses by providing direct high resolution measurements of viral genetic diversity
within the host. NGS has been used to study immune escape [1–7], drug resistance [7–13],
transmission bottlenecks [10, 14–16], population structure and dynamics [2, 3, 17–23], tropism
dynamics [24], and multiplicity of infection [25]. It is also used in clinical virology [26, 27]. For
reviews of the promises and challenges of NGS applications in virology, see [28], [29], [30], and [31].

Full-length sequences can resolve features that are difficult to assemble from short sequences
[8, 32]. For instance, Pacific Biosciences SMRT sequences were able to resolve 1.5 kb msg isoforms
from Pneumocystis jirovecii, but reads from a 454 instrument could not be assembled correctly [32].
For tracking evolutionary patterns in viral populations, accurately resolving these features provides
a more accurate history of the population, which becomes especially relevant when epistatic
interactions and linkage between mutations effect phenotypic changes in the pathogen [33–35]. For
example, studies of HIV-1 env frequently use functional assays to measure the potency with which
a given antibody or donor serum neutralizes a specific env strain [36], which requires knowing the
full env sequence.

We have developed a pipeline for handling long read HIV-1 env sequencing data from within-
host viral populations: the Full-Length Envelope Analyzer (FLEA). FLEA addresses the specific
challenges posed by large volumes of such data, e.g., using the sequencing protocols we previously
described in Laird et al [37], which also contains an overview of a prototype of FLEA. Here we
describe the full pipeline and experimentally demonstrate its ability to resolve populations of
closely related variants. FLEA uses state-of-the-art tools and methods at every step and can be
accessed through a web browser or on a high-performance cluster. FLEA is readily extensible to
other genes and systems.

FLEA has recently been used by the authors in two high-profile studies. In [38], we describe
how FLEA was used to process PacBio HIV-1 env data from a clinical trial of monoclonal antibody
10-1074. For sequences sampled before and after therapy, FLEA reveals that prior to antibody
therapy low-frequency env variants were present with mutations that typically confer resistance
to 10-1074. Additionally, when resistance emerges, it emerges multiple times, exploiting many
different resistance pathways. FLEA was also used to characterize the longitudinal env population
that drove development of a broadly neutralizing antibodies against the apex of the env trimer,
sampled from donor PC64 from the Protocol C primary infection cohort [39].

There exist dozens of standalone pipelines developed for analyzing HIV-1 and related sequence
data, including longitudinal samples [4, 9, 13, 40]. However, it was necessary to develop a new
tool due to HIV-1 env’s extensive natural indel variation and the high rate of indels in long
PacBio reads, which are especially problematic when any spurious indel in the 2.6kb env amplicon
corrupts the reading frame, rendering the sequence uninterpretable. With HIV-1 env, the common
strategy of mapping reads to a reference fails because the diversity in variable regions of env,
predominantly driven by extensive indel processes, means that these regions in sampled reads lack
homology to those in any heterologous reference sequence. Instead, FLEA relies on a fine-grained
cluster-and-consensus strategy to remove spurious indels from reads. The task is related to Liang
et al. (2016), but, rather than distinguishing a small number of variants at 81-91% identity, we
must distinguish potentially hundreds of variants that differ by only a handful of bases.

In addition to a standalone application, FLEA is also available as an online resource that
provides interactive visualizations for all its analyses. To allow researchers to further examine and
dissect their results, FLEA also provides access to raw data, such as aligned consensus sequences
and phylogenetic trees.
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Figure 1. Overview of the entire pipeline, broken into conceptual sub-pipelines. The Quality and Consensus sub-
pipelines process each time point separately. Duplicate steps in other time points are grayed out. CCS stands
for “circular consensus sequences”; QCS for “quality-controlled sequences”, and HQCS for “high-quality
consensus sequences”.

Design and Implementation

Pipeline
The input to FLEA is a set of FASTQ files from the PacBio RS-II or Sequel. Each set corresponds to
one time point, containing circular consensus sequence (CCS) reads, which can be obtained using
the ”Reads of Insert“ protocol on PacBio’s SMRTportal or SMRTanalysis tools. Upon completion,
the FLEA pipeline produces results as JSON (Javascript Object Notation) files, a standard format for
machine (and human-) readable structured data. The logic of FLEA is implemented in Nextflow [41],
a workflow framework for deploying parallel pipelines to clusters and clouds.

FLEA consists of multiple sub-pipelines, as shown in Fig. 1. Details of the quality and consensus
pipelines are depicted in Fig. 2. Together, these two pipelines take error-prone CCS reads and
convert them into unique high-quality consensus sequences. The alignment pipeline generates a
multiple sequence alignment, which is used by multiple methods in the analysis pipeline.

Quality assurance sub-pipeline
The first steps remove low quality reads and filter out common sequencing artifacts. Parameters
given in these steps were chosen for full-length HIV-1 envelope sequences from the RS-II or Sequel
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Figure 2. Combined view of the quality and consensus sub-pipelines. These steps are repeated independently on each
time point. Numbers are reported from the analysis of sequences from the first time point (V03) of donor
P018, which is 3 months post infection. Percentages give the fraction of sequences retained after filtering.
Tasks indicate whether they use third-party tools USEARCH or MAFFT.
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Figure 3. Hidden Markov model used for trimming poly-A and poly-T heads and tails. A head and tail states have a
small (p = 0.01) probability to emit non-A bases, and similarly for T. The body state emits all four bases
with equal probability. The start, and stop states emit nothing.

platforms. Other reads with different properties (error rates, error models, lengths, homopolymer
distributions, etc.) likely require different parameters. All steps are run independently per time
point.

1. Filter by error rate. The input FASTQ files contain Phred scores for each base, encoding the
probabilities of incorrect base calls. USEARCH [42] is used to remove reads with an expected
error rate greater than 1%, computed as the mean of the per-base error probabilities.

2. Trim heads/tails. A fraction of reads from the Laird et al. sequencing protocol contain
poly-A or poly-T heads or tails (cause unknown), which can be hundreds of bases long and
sometimes contain a small number of other bases.

These heads and tails are trimmed with a hidden Markov model (Fig. 3) implemented in
Pomegranate [43]. The emission probabilities of the model were fixed, and the transitions
trained using Baum-Welch. The Viterbi path for each sequence is computed, and bases
emitted by head and tail nodes are removed.

3. Filter long runs. Reads with homonucleotide runs longer than 16 bases are discarded.
This length was chosen to be twice the length of the longest such run in the LANL HIV
database [44].

4. Filter contaminants and trim reads. Sample contamination can introduce non-native se-
quences that interfere with subsequent analyses, so these contaminants must identified and
discarded. USEARCH is used to compare reads to a contaminant database and a reference
database using usearch_global. Alignments returned from querying the database are then
used to trim reads to the gene boundaries. Trimming terminal insertions is vital for the
accuracy of downstream tasks, such as length filtering and clustering.

The contaminant database contains HXB2 and NL4-3 env, each ubiquitous in labs working
with env sequences and a common source of sample contamination. Reads that match with
� 98% identity are discarded. Since a 1% error rate cutoff was earlier used, this parameter
conservatively ensures that these contaminants are almost certainly identified.

The reference database contains thirty-eight sequences representing the major HIV-1 Group
M subtypes from the LANL sequence database [44]. Reads with  70% identity to every
sequence in the reference database are discarded. This cutoff is chosen to retain reads
remotely similar to HIV-1 Group M while excluding contaminants such as human or
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bacterial genome reads. If a sample is from SIV, or from a non group-M HIV+ donor, then
more appropriate reference sequences should be added to the database.

5. Filter by length. By default, sequences shorter than 90% or longer than 110% of the length of
the reference sequence are discarded. However, sequences with large deletions are frequently
observed in HIV. These likely represent replication incompetent envelopes, and their reduced
length can cause them to be dramatically oversampled due to PCR length bias. Users who
want to include these species in their analyses should modify these parameters.

Reads that pass this quality assurance phase have low expected error rates and no homonu-
cleotide runs, are within 70% identity of at least one reference sequence, are (after trimming) no
more than 10% different in length than a reference sequence, and do not match the contaminant
database. We refer to these sequences as quality-controlled sequences (QCS).

Consensus sub-pipeline for variant identification

Even for highly diverse populations, unique reads in a sequencing run outnumber the true unique
variants, predominantly due to sequencing errors. The problem is far more significant in long
reads than in short reads, precluding the use of amplicon denoising strategies used to reduce
error rates in short read sequencing [45]. To accommodate this effect, the next phase of the FLEA
pipeline clusters and combines QCS reads, attempting to infer the true variants in each time point.
It also attempts to detect and correct frameshift errors.

1. Cluster. USEARCH is used with the cluster_fast command to generate clusters with 99%
nucleotide identity. This parameter approximates the 1% error cutoff used in the error rate
filtering step, so that pairwise distances of sequences in the same cluster are consistent
with the sequencing error. cluster_fast runs in a single pass, so it is sensitive to input
order. Sequences are sorted from lowest to highest quality according to expected error rate;
experiment suggests that this order yields better results (see supporting information).

2. Select and subsample clusters. Clusters with fewer than three members are discarded,
because they are too small to de-noise by majority consensus. Clusters with more than 50
members are subsampled to the top 50 with the lowest expected error rate to speed up the
multiple sequence alignment step.

3. Align and consensus. MAFFT [46] is used to align each cluster. The consensus sequence of
each alignment is computed.

4. Frame correction In-frame consensus sequences from all time points are collected into a
USEARCH database for frame correction. usearch_global is then used to align each out-of-
frame sequence to its top hit. The nucleotide alignment is used to correct incomplete codons:
short insertions (1 or 2 base pairs) are discarded, and single deletions are replaced with the
aligned base. Sequences with longer insertions or deletions are discarded. All changes are
logged, so that the user can identify the sequences that have been corrected.

5. Uniqueness Non-unique consensus sequences are dereplicated using usearch –fastx_uniques.

6. Copy numbers The number of sequences per cluster provides an estimate of the relative
abundance of that HQCS in the population. Those numbers are further augmented by
adding sequences orphaned by cluster filtering and HQCS dereplication. usearch_global is
used to assign each QCS to its nearest HQCS. The number of sequences accrued by each
HQCS is interpreted as its copy number.
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All of these tasks are run separately for each time point, yielding sets of unique in-frame consensus
sequences. We refer to these sequences as high-quality consensus sequences (HQCS).

Alignment sub-pipeline

The HQCSs from all time points are combined into a single file, translated to protein sequences,
and aligned using MAFFT. A Python script then transfers the gaps from each aligned protein
sequence to the corresponding nucleotide sequences to produce a codon-level nucleotide multiple
sequence alignment of all unique variants from all time points.

Analysis sub-pipeline

The analyses used in FLEA take as input the two outputs of the alignment phase: a codon multiple
sequence alignment of all unique HQCS sequences from all time points, and their associated copy
numbers. These data are used for the following analyses.

1. Time point metrics. HyPhy [47] scripts are used to compute evolutionary metrics (total,
dN, and dS divergence and diversity) and phenotypic metrics (protein length, potential
N-linked glycosylation sites, isoelectric point) for each annotated region (e.g., V1, MPER) in
the amplicon for each time point.

2. MRCA. The most recent common ancestor is inferred by taking the copy-number-weighted
codon consensus of the codon-aligned HQCSs from the earliest time point. By including
gaps, the MRCA sequence is already aligned with the rest of the multiple sequence alignment.
This strategy is acceptable for primary infection studies from single founders with very low
early diversity.

3. Reference coordinates. MAFFT is used to assign HXB2 [48] coordinates to the gapped MRCA
sequence, which are then transferred to the full multiple sequence alignment.

4. Infer phylogeny. A maximum-likelihood phylogenetic tree is inferred with FastTree2 [49,50]
under the general time reversible model.

5. Ancestral sequence reconstruction. HyPhy is used to infer ancestral sequences at the internal
nodes of the phylogeny, using joint maximum likelihood reconstruction and the HKY85
substitution model [51].

6. Multidimensional scaling. TN93 [52] is used to compute a distance matrix for all HCQC
sequences using the Tamura Nei 93 distance [53]. Metric multidimensional scaling [54]
(implemented in scikit-learn [55]) is used to find a two-dimensional embedding of the
sequences that approximates their pairwise distances.

7. FUBAR. Site-specific selection rates are inferred using FUBAR [56], implemented in HyPhy.

8. Position-specific changes. Entropy and Jensen-Shannon divergence are computed for each
position in each time point.

The results of these analyses are provided to the user in an interactive web application,
described next.
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Web application

The FLEA web app is built using modern web design principles. It consists of two parts: a
Javascript client-side app, written using the Ember.js [57] framework, and a server-side REST
(REpresentational State Transfer) service for serving JSON-formatted data. There are two main
benefits to using this decoupled pattern for scientific web applications. First, the client-side code
only needs to be downloaded once, at the start of the session. The data are requested from the
server and cached as needed. Once everything is loaded, the visualizations run entirely in the
browser with no delays for page loads. Second, the REST service may be reused by other apps
and third-party tools.

The web app presents the results of the FLEA analysis as a series of interactive visualizations.
The report is organized into the following sections.

Multidimensional scaling. A two dimensional embedding of the HQCSs is visualized as a
bubble plot, showing changes in population structure over time, as shown in Fig. 4. This
visualization has been especially useful for investigating populations with superinfection, or with
multiple founders, where aggressive recombination between vastly different env variants precludes
the use of phylogenies.

Figure 4. Screenshot of the multidimensional scaling plot. The embedding in two dimensions preserves pairwise
evolutionary distances between HQCSs. Node area is proportional to copy number, and color corresponds to
time point. The increasing genetic diversity of the population is visible as time goes on.
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Figure 5. Screenshot of the evolutionary trajectory report. Four evolutionary metrics (dS divergence, dN divergence,
total divergence, and total diversity) and two phenotype metrics (length and possible N-linked glycosylation
sites) are shown for gp160.

Evolutionary trajectory. The evolutionary trajectory viewer plots evolutionary and phenotypic
metrics for each time point and multiple regions in the amplicon, giving a high-level overview of
population dynamics over time. Fig. 5 shows the plot for the entire gp160 region of HIV-1 Env,
which is generated with the D3.js plotting library [58].

Sequences. The multiple sequence alignment of all the HQCSs sequences is the foundation for
all subsequent analyses. It is displayed in the amino acid sequences viewer, which contains a
custom alignment browser and an interactive motif dynamics plot, as shown in Fig. 6.

Protein structure. The protein structure viewer maps evolutionary metrics to an interactive
three-dimensional structure of the protein, customized from PDB ID 5FUU, a recently resolved
cryo-EM structure [59], and rendered using pv [60]. Missing residues are rendered as spheres
which are positioned by Bézier curve interpolation. dN/dS ratios, Jensen Shannon divergence,
and entropy may all be mapped to the protein structure, as shown in Fig. 7. The same metrics are
also plotted in one dimension for each time point, as shown in Fig. 8. The protein visualization
interacts with the sequence viewer by showing alignment positions and highlighting the residues
in the selected sequence motif.

Trees. The tree viewer renders a tree browser with phylotree.js [61], as shown in Fig. 9. Leaf
nodes are scaled to the copy number of their sequence. The tree zoom level, layout, and coloring is
interactively modifiable. Motifs selected in the sequence viewer are mapped to the tree. Ancestral
nodes are colored by motif, allowing inferred changes to be tracked through the entire phylogeny.
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Figure 6. Screenshot of amino acid sequences viewer. Sequences are grouped by identity, with aggregate copy number
and population percentage shown to the right. An overview of the amplicon, optionally annotated with
region names, provides fast access to different locations of the alignment. Selecting columns of the alignment
interactively updates the amino acid dynamics plot, showing the dynamics of the selected motif over time.
In this case, the trajectory shows changes in the N332 glycan supersite. Sites inferred by FUBAR to be
undergoing positive selection are selectable.

Results

The entire pipeline was run on HIV-1 env reads from donor P018, which are available from the
NCBI Sequence Read Archive under BioProject PRJNA320111, and were sequenced as part of [37]
on the RS-II instrument, using the older generation P5/C3 PacBio sequencing chemistry. The full
dataset contains 58,468 CCS reads. The reads are split across six time points, which are coded as
V03, V06, V12, V22, V33, and V37, where Vx corresponds to a visit x months post infection. The
number of reads per time point ranges from 7,530 in V33 to 11,806 in V06.

Results on simulated data

The true sequences and copy numbers are not known for the P018 data. In order to assess the
accuracy of our inferred sequence population, we used the HQCSs from a previous FLEA run to
simulate a gold standard dataset on which to assess the FLEA pipeline.

The simulation procedure starts with the HQCSs and copy numbers from the FLEA results on
P018, then augments them with additional mutated sequences to create a gold standard set of
templates. Mutated sequences were added because our clustering strategy may artificially merge
similar templates. For each template, noisy reads with a SMRT-style error profile were sampled.
Full details of the simulation process appear in the supporting information. These simulated reads
were sent through the FLEA pipeline, both with and without frame correction.

The resulting QCS and HQCS sequences were compared to the ground truth using Earth
Mover’s Distance (EMD), using normalized copy numbers for the population weights and edit
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Figure 7. Screenshots of the interactive three-dimensional Env structure, colored according to JS divergence (left) and
dN/dS values (right). Positions imputed to be undergoing more positive selection (dN/dS > 1) are darker
red, and positions undergoing more purifying selection (dN/dS < 1) are darker blue. The right structure
also shows motif positions highlighted in the sequence viewer.

n mean errors consensus type EMD EMDFP EMDFN

300 9.63 QCS 12.3769 8.3418 2.8956
HQCS 7.1570 0.4050 5.4271
HQCS (corrected) 6.4752 0.3020 4.5533

1000 9.63 QCS 10.5433 8.3686 1.2551
HQCS 2.8279 0.0610 1.1453
HQCS (corrected) 2.7557 0.0666 1.0405

3000 9.6 QCS 9.5053 8.2837 0.3908
HQCS 1.6432 0.0146 0.4322
HQCS (corrected) 1.5168 0.0045 0.2925

10000 9.56 QCS 9.0734 8.3080 0.0782
HQCS 1.0549 0.0336 0.1735
HQCS (corrected) 1.0146 0.0073 0.1463

Table 1. EMD metrics for various numbers of reads, averaged across all time points. “mean errors” gives the average
number of errors in the reads, estimated from the simulated Phred scores.
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Figure 8. Screenshot of dN/dS values mapped to protein positions and separated by time point.

distance for the distance matrix. The fully constrained EMD has units that can be directly
interpreted as the average change per nucleotide necessary to transform one sequence population
into another. We also calculate two variants of EMD for further insight into how well the inferred
population B estimates the sequences in the ground truth population A. EMDFP removes the
constraint on A, allowing any amount of flow from A to B. It is a measure of false positives
because it grows when B contains extra sequences distant from any in A. Similarly, EMDFN
removes the constraint on B. It grows when B fails to recapitulate sequences in A, and therefore is
a measure of false negatives.

To see the effect of sequencing runs of different depths, the experiment was repeated for 300,
1,000, 3,000, and 10,000 reads per time point. The results, which appear in Table 1, show the benefit
of FLEA’s approach of reducing sequence errors via clustering and consensus. The QCS sequences,
although they have few false negatives (EMDFN = 0.0782) for n = 10, 000, are dominated by
false positives (EMDFP = 8.3). However, adding the consensus sub-pipeline virtually eliminates
false positives (EMDFP = 0.0336), at the cost of only a 2.4x increase in false negatives, for a 8.6x
improvement in EMD to 1.0549. The frame correction step further improve both EMDFP and
EMDFN because it turns false positives into true positives.

The full-length env sequencing protocol yields approximately 10,000 reads per run; the P018
data averaged 9,744 reads per time point. Therefore, these results with n = 10, 000 suggest that
FLEA is capable of taking a full sequencing run of CCS reads from a diverse viral population with
an average of 9.56 errors per sequence and inferring HQCSs with an average of 1.01 errors per
sequence, which corresponds to an average error rate of 0.038%. Moreover, these error rates are
mostly caused by low-abundance sequences in both the true population and the inferred FLEA
sequences. Figure 10 shows that FLEA perfectly recovers all sequences from all time points that
account for at least 1.6% of the population.
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Figure 9. Screenshot of the phylogenetic tree viewer. Leaf node size corresponds to sequence copy number. Node color
corresponds to time point. Since ancestral sequences have been inferred, ancestral nodes are colored according
to the selected motif, which in this case is the N332 glycan supersite.

Results on real data: donor P018
FLEA was run directly on the P018 sequences, and the results are summarized here. The full results
of this run are available to view at http://flea.murrell.group/view/P018.

Fig. 2 shows the number of sequences from the V03 time point that make it to each stage of the
quality and consensus pipelines . At three months post infection, the majority amino-acid sequence
variant is shared by 52.1% of the population, and the next most common variants accounts for just
8.66%. This relative lack of diversity is consistent with early infection dynamics. By 37 months
post infection there is much more diversity: the most common variant accounts for only 3.96% of
the population.

Donor P018 shows signs of potential N332 glycan specificity, as shown by the motif trajectories
in Fig. 6. The glycan supersite, centered around N332 in V3, is a common target for broadly-
neutralizing antibodies [62] because they are often conserved, so mutations in these regions are
associated with escape [63]. A year into sampling (V12), mutations 328R and 330H dominate, and
the majority of sequences also contain 339N from 22 months (V22) onwards.

Discussion

The FLEA pipeline analyzes longitudinal full-length env sequences and provides visualizations
of the results. Using simulations, we show that FLEA is capable of inferring accurate HIV-1 env
consensus sequences and population frequencies. Despite each CCS read containing an average
of ten errors, our approach distinguishes variants that differ by as little as one base from an
amplicon with high indel variation. It uses those high-quality consensus sequences to generate a
codon-aware multiple sequence alignment of all time points, estimate ancestral sequences, infer
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0.58%
V37

1.61%

V33

0.78%
V22

0.71%
V12

1.48%

V06

1.5%

V03

False positive

False negative

Inferred

True

Figure 10. Comparison of true sequence abundances versus copy numbers inferred by FLEA for each time point of the
simulated P018 data. Each node represents one sequence, with the area denoting its relative abundance in
the population. The true population (top) is colored green. For each true sequence, the matching HQCS
sequences appears below it in blue. Red nodes denote false negatives and positives. The most common false
negative for each time point is annotated with its abundance.

the phylogenetic tree, and perform many other population-level analyses with high accuracy.
These results are presented in a visualization suite that is highly general and applicable to many
related sequencing problem.

While our USEARCH-based clustering and consensus strategy for de-noising long PacBio am-
plicons performs well when error rates are < 1%, there is a clear need for more sophisticated
long-read de-noising algorithms that exploit the additional depth of lower quality reads that we
currently discard. This will be especially beneficial for longer PacBio amplicons, because the
CCS read quality distribution degrades with length. For example, while we can currently obtain
around 15,000 CCS reads < 1% from a P6/C4 RS-II run of our 2.6kb env amplicon; this read count
drops to ⇠ 1, 000 for full-length 9kb HIV genomes.

Both the pipeline and client-side visualizations are under development, with many improve-
ments planned, including a novel clustering algorithm that reduces false positives and a novel
consensus algorithm that uses quality scores and performs frame correction. We plan to integrate
epitope prediction into the FLEA pipeline and add appropriate visualizations for the case when
users have IC50 values available for their sequences. Finally, FLEA will be expanded to support
other amplicons.
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