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Abstract

We explore a straightforward method for reconstructing visual stimuli from brain activity.
Using large databases of natural images we trained a deep convolutional generative adversar-
ial network capable of generating gray scale photos, similar to stimuli presented during two
functional magnetic resonance imaging experiments. Using a linear model we learned to pre-
dict the generative model’s latent random vector z from measured brain activity. The objective
was to create an image similar to the presented stimulus image through the previously trained
generator. Using this approach we were able to reconstruct natural images, but not to an equal
extent for all images with the same model. A behavioral test showed that subjects were ca-
pable of identifying a reconstruction of the original stimulus in 67.6% and 64.4% of the cases
in a pairwise test for the two natural image datasets respectively. Our approach does not re-
quire end-to-end training of a large generative model on limited neuroimaging data. As the
particular GAN model can be replaced with a more powerful variant, the current advances in
generative modeling promise further improvements in reconstruction performance.

1 Introduction

Since the advent of functional magnetic resonance imaging (fMRI), numerous new research di-
rections that leverage its exceptional spatial resolution, leading to classifiable brain activity pat-
terns, have been explored (Haynes, 2015). New approaches to decoding specific brain states have
demonstrated the benefits of pattern-based fMRI analysis. Pattern-based decoding from the vi-
sual system has shown that it is possible to decode edge orientation (Kamitani and Tong, 2005),
perceived categories of both static and dynamic stimuli (Haxby, 2001; Huth et al., 2016), up to
identifying a specific stimulus image (Kay et al., 2008) and generically identifying new categories
from image descriptors predicted from brain activity (Horikawa and Kamitani, 2017).

Here we focus on an advanced problem in brain decoding, which is actually reconstructing
a perceived (natural) visual stimulus. The reconstruction problem is demanding since the set of
possible stimuli is effectively infinite. This problem has been explored at different spatial scales
(e.g. invasively on the cellular level (Chang and Tsao, 2017)) and in different regions of the visual
system (e.g. in the LGN (Stanley et al., 1999), in the retina (Parthasarathy et al., 2017)). Here we
focus on image reconstruction from brain activity measured with fMRI. This area was pioneered
by Thirion et al. (2006), who reconstructed dot patterns with rotating Gabors from perception
and imagery. Miyawaki et al. (2008) used binary 10 × 10 images as stimuli and demonstrated
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the possibility of decoding pixels independently from each other, reconstructing arbitrary new
images with this basis set. Naselaris et al. (2009) introduced a combination of encoding brain
activity with structural and semantic features, as well as a Bayesian framework to identify the
most likely stimulus image from a very large image database given the brain activity. Combining
the most likely stimuli from a database leads to effective reconstructions, with (Nishimoto et al.,
2011) being the most impressive example to date. Bayesian approaches were further developed.
Examples are enhancing decoding using feature sets learned with independent component anal-
ysis (Güçlü and van Gerven, 2013) and accurate reconstruction of handwritten characters using
stimulus domain priors and a linear model for predicting brain activity (Schoenmakers et al.,
2013, 2015). The most recent entries in the reconstruction domain make use of promising new
developments in generative image models. Du et al. (2017) used Bayesian inference to derive
missing latent variables, and effectively reconstruct handwritten digits and 10 × 10 binary im-
ages. Finally, adversarial training has been used for reconstructing face photos from fMRI with
high detail by learning to encode to and decode from a learned latent space for faces (Güçlütürk
et al., 2017).

In this work we expand on the generative model idea, but explore the capabilities of a method
that applies a natural image generative model as a black box which is trained without using
(usually limited) neuroimaging data. We pretrain a deep convolutional generative adversarial
network (DCGAN) (Radford et al., 2015), capable of producing arbitrary images from the stim-
ulus domain (handwritten characters or natural gray scale images). Keeping this GAN fixed we
learn to predict the latent space of the generator z based on the fMRI BOLD signal in response to
a presented stimulus. The objective is achieving high similarity between the generated and the
original image in the image domain. The image domain losses that are used to train the predic-
tive model are derived with a complex loss function. We show that this approach is capable of
generating reasonable reconstructions from fMRI data for the given stimulus domains.

2 Methods

2.1 Functional MRI data sets

We made use of three publicly available fMRI data sets originally acquired for experiments re-
lated to identifying stimulus images and categories or reconstruction of perception. In the fol-
lowing we briefly list their properties. Extensive descriptions of recording details and methods
can be found in the original publications.

2.1.1 Handwritten characters

We used this dataset (referred to as BRAINS dataset) to test our method in a simpler, restricted
domain. Three subjects were presented with gray scale images of 360 examples of six handwritten
characters (B, R, A, I, N and S; as published with Van der Maaten (2009); Schomaker and Vuurpijl
(2000)) with fixation in a 3T fMRI experiment (TR=1.74 s, voxel size=2 mm3). The images were
shown for 1 s at 9 × 9◦ of visual angle, flashed at approximately 3 Hz. The characters were
repeated twice, and responses were averaged. The original studies reconstructed handwritten
characters using a linear decoding approach (Schoenmakers et al., 2013) and Gaussian mixture
models (Schoenmakers et al., 2015). We made use of the preprocessed data from V1 and V2
available in the BRAINS dataset and used the original train / test set split (290 and 70 characters
respectively). The dataset can be downloaded from www.artcogsys.com.

2.1.2 Masked natural images

Three subjects saw natural gray scale images with a circular mask, taken from different sources
(the commercial Corel Stock Photo Libraries from Corel Corporation, and the Berkeley Segmen-
tation Dataset) at 20 × 20◦ of the visual field with fixation. The dataset and experiments were
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described in (Kay et al., 2008) and (Naselaris et al., 2009). The training set consisted of 1750 im-
ages, presented twice and averaged. The test set consisted of 120 images, presented 13 times.
Images were presented for 1 s and flashed at approximately 3 Hz. Data was acquired in a 4T
scanner (TR=1 s, voxel size=2 × 2 × 2.5 mm3). The dataset is available on www.crcns.org
under the identifier vim-11, which is also how we refer to it in this manuscript. We obtained
a version of the dataset with updated preprocessing for all three subjects from the author via
personal communication. In our study we used the first 50 images from the original validation
dataset as a test set, and the remainder of the data for training. The advantage of the dataset for
this study is the amount of data and the variety of high-quality photo stimuli.

2.1.3 Natural object photos

This dataset was originally recorded for (Horikawa and Kamitani, 2017), and is referred to as
Generic Object Decoding dataset. Five subjects were presented with square colour images
from 150 categories from the ImageNet database (Deng et al., 2009). We converted the stimulus
images to gray scale and applied a similar mild contrast enhancement as in (Kay et al., 2008) in-
stead of using the full color stimuli for reconstruction2. We also used the original train / test set
split. The training set consisted of 8 images from each category and was presented once, totaling
1200 presentations. The test set recording consisted of presenting single images of 50 categories
(not contained in the training set) 35 times each, and averaging this activity. The data can be
obtained from www.brainliner.jp3. Next to having recordings of five subjects one advantage
of this dataset is the long stimulation time of 9 s (at 2 Hz flashing) per image, resulting in a high
signal-to-noise ratio (SNR). All images were presented at 12 × 12◦ of visual angle, with fixation,
in a 3T scanner (TR=3 s, voxel size= 3 mm3).

The data of the individual subjects of all datasets were mapped to a common representational
space based on hyperalignment (Haxby et al., 2011) using PyMVPA4 (Hanke et al., 2009). Hy-
peraligned data was averaged across subjects such as to obtain data for a single hyperaligned
subject with improved SNR5. After hyperalignment, the dimensionality of the feature (voxel ac-
tivity) space was reduced by applying principal component analysis (PCA, including demean-
ing) so that 99% (BRAINS, Generic Object Decoding) or 90% (vim-1, due to its much larger
voxel dimension) were preserved. Hyperalignment, PCA and statistical parameters (e.g. mean
values) were computed on the training sets and applied on the training and the separate test set.
For these additional preprocessing steps we used the single trial data for vim-1 and Generic
Object Decoding, as the different averaging strategies changed SNR between train and test.
For BRAINS we used the provided data averages over two trials as there was no such difference
between the train and test recordings.

2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) learn to synthesize elements of a target distribution
pdata (e.g. images of natural scenes) by letting two neural networks compete. Their results tend
to have photo-realistic qualities. The Generator network (G) takes an n-dimensional random
sample from a predefined distribution – conventionally called latent space z – and attempts to
create an example G(z) from the target distribution, with z as initial values. In the case of images
and deep convolutional GANs (DCGANs), introduced in (Radford et al., 2015), this is realized

1https://crcns.org/data-sets/vc/vim-1 (last access May 2017)
2We focus on reconstructing gray scale images as our natural images DCGAN learned to generate more structural

detail when the color dimension was omitted. However with a more powerful GAN variant the method could also be
applied for reconstructing color stimuli.

3http://brainliner.jp/data/brainliner/Generic Object Decoding (last access August 2017)
4www.pymvpa.com, v2.6.3
5Our method was initially developed on the individual subject basis. This only seemed to lead to more variability in

the reconstruction quality between subjects, and we decided to finalize the study on hyperaligned data instead as this
made collecting behavioral data and developing the loss function more efficient.

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/226688doi: bioRxiv preprint 

https://doi.org/10.1101/226688


Figure 1: Generative adversarial networks. A generator network (G) learns to model a given distri-
bution pdata via feedback from a discriminator network (D). D learns to discriminate between images
coming from the real distribution and images from the generator.

across a series of deconvolutional layers. The Discriminator network (D) takes a generated or
real example as input and has to make the binary decision whether the input is real or generated,
which would result in the output 1 or 0, respectively. In the discriminator, DCGANs use a series
of convolutional layers with a binary output. See Figure 1 for an illustration. This competition
process is expressed as a zero-sum game in the following loss term:

min
D

max
G

log(D(x)) + log(1−D(G(z))) (1)

where x is a real image and G(z) a generated image. During training, various – but certainly not
all – GAN variants learn to impose structure on the latent space. Learning this structure and the
learning procedure itself is a form of unsupervised learning. The algorithm we use was intro-
duced and popularized for image synthesis by (Goodfellow et al., 2014). Creswell et al. (2017) is
a recommended comprehensive review and discussion of various recent GAN approaches.

For this work we used a DCGAN architecture that implements architectural improvements
suggested in (Radford et al., 2015) and (Salimans et al., 2016). We based the model on a pub-
licly available framework and implementation (musyoku, 2017). The generator network consists
of one linear and four deconvolutional layers, each followed by batch normalization and ReLU
activation functions. The linear layer takes z and maps it to the first deconvolutional layer that
expects 512 feature channels via 512 × 64 × 64 output values in order to match the target image
dimension. The generator then maps to 256, 128, 64 and 1 feature channels across the deconvo-
lutional layers. Kernel sizes are 4 × 4 and stride is 2 in every deconvolutional layer. The pixel
output of the generator is scaled between [−1, 1] by applying tanh to the output values as a final
step. Numerical instabilities required additional clipping of the generated pixel values at [−1, 1].
A feature matching loss, using the first discriminator layer, was also added to the generator loss
term. For the vim-1 DCGAN we manually apply the circular mask used for creating the stimuli
at the end of training in order to let the training process focus on the visible area. The discrim-
inator network consists of 4 convolutional layers, followed by batch normalization and ELU
activations (Clevert et al., 2015). Before the image enters the discriminator handicap Gaussian
noise with a standard deviation of 0.15 is added to the input images. Except in the initial layer
(which had 3x3 kernels) all layers use kernel sizes of 4x4 and a stride of 2. The layers map from 1
to 32, then 64, 128 up to 256 feature channels, and are followed by a linear layer mapping all final
activations to a single value reflecting the discriminator decision.

The latent variable z ∈ [−1, 1]50 is randomly drawn from a uniform distribution and restricted
to a unit hypersphere by normalizing it, in order to embed it in a continuous bounded space
without borders. This step facilitates the prediction of z in an otherwise unbounded solution
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to the regression problem. For optimizing the weights of the DCGAN we used the Adam opti-
mizer (Kingma and Ba, 2014) with default parameters (α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8).
The learning rate was 10−4 for all networks. We applied gradient clipping with a threshold of 10.

As DCGAN training data we used a downsampled 64 × 64 variant of ImageNet (made avail-
able with (Chrabaszcz et al., 2017)) together with the Microsoft COCO dataset6. The image size
of MS COCO was decreased to 64 × 64 and center-cropped, and images for which this was not
possible due to aspect ratio were removed from the training set. Before entering training all
images were converted to gray scale and contrast-enhanced with imadjust (as in MATLAB),
similar to the transformation used in (Kay et al., 2008). The image value range entering training
was [−1, 1]. For the vim-1 GAN, again the circular mask was applied. This resulted in approxi-
mately 1.500.000 gray scale natural images used for training in total. Note that DCGAN training
would usually also work with a lower amount of training data.

The DCGAN on handwritten characters was trained on (in total) 15.000 examples of B, R,
A, I, N and S characters from (Van der Maaten, 2009) and (Schomaker and Vuurpijl, 2000). As
the experiment on the BRAINS dataset should focus on a restricted stimulus domain its DCGAN
does not require more expressive power.

Figure 2: Training a DCGAN for naturalistic vim1-like gray scale images. Left: Examples from the
gray scale natural image domain DCGAN training set (gray scale MS COCO or ImageNet; masked).
Right: Examples of images randomly generated by a trained natural image DCGAN.

We trained the same DCGAN architecture separately for each dataset, for approximately 300
iterations through all training images. Figure 2 shows examples from the vim-1 training set,
and randomly generated examples from a DCGAN trained on this data. The network seems to
have learned the contrast properties of the vim-1 stimulus set, and seems to have acquired the
ability to create complex image content. As we selected these random example images man-
ually they reflect our preference for semantically meaningful content. Yet, as with most GAN
architectures, much of what is created is rather abstract and can not be interpreted. The hand-
written character GAN in contrast learned to create primarily meaningful new examples of the
reduced handwritten character set. We noticed that it rarely generated B examples though. So
the DCGAN architecture we are using likely suffers from a form of the so far unsolved problem
of mode collapse.

We checked whether the expressive power of our DCGAN is sufficient for reconstructing
stimuli from the experiments by overfitting the model predicting z from BOLD data on the train-
ing data. For this we used a multi-layer perceptron (MLP) instead of the linear regression ap-
proach outlined in the following section 2.3. In Figure 3 we show training set reconstructions
on vim-1 from such an overfitted model. These examples can also be seen as an upper limit
of the accuracy that can be expected with the DCGAN architecture used here. It is obvious that
especially broad high-contrast boundaries can be reconstructed, but the natural images DCGAN
also seems to capture patterns, luminance, luminance gradients and some of the semantic content
(e.g. landscapes) that are in the stimulus set. We thus can state that the natural image DCGAN
reflects the reconstruction target sufficiently. We assume but can not verify that semantic content
can be reproduced if structural properties of the image restrict the semantic space. For instance,
landscape photos frequently feature a horizontal bar across the whole image.

6www.mscoco.org, described in (Lin et al., 2014) (last access March 2017)
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Figure 3: The natural images GAN captures the vim-1 training stimuli. We overfitted the model
on random training set images to demonstrate that the latent space the GAN has learned is powerful
enough to capture and regenerate the variety of the vim-1 stimulus images satisfactorily. The top row
shows the original stimulus image, the bottom row the overfitted reconstruction.

2.3 Latent space estimation from BOLD data

We fixed the trained DCGANs and attempted to predict the latent space z that reproduces the
correct image directly with the BOLD data as the independent variable for every image. The loss
for this model was gathered in image space with a complex multi-component loss function that
compares the real and the reconstructed images with pixel and perceptual features learned by a
convolutional neural network. The linear regression model was implemented as an approximat-
ing neural network with one weight layer. The procedure is illustrated in Figure 4. For weight
optimization we used the Adam optimizer (Kingma and Ba, 2014), again with default parame-
ters. We applied a mild L2-regularization on the weights (λL2 = 0.01). The same normalization
that we used as a boundary on z when training the GAN was applied to the predicted z after
applying the linear regression weights.

Figure 4: Predicting z from BOLD data with a complex loss function in image space between the
reconstructed image and the image actually shown in the experiment. We make use of the DCGAN
generator, which is pretrained for the necessary stimulus domain and not updated further during
reconstruction model training.

For training the model, we passed the predicted latent vector z for every batch (of size 3)
through the previously trained generator network G. The image produced by the generator G(z)
(reconstructed) was compared to the image x actually shown in the experiment with a complex
image loss function that is a weighted sum of the following components (formulated as an aver-
age over mini batches):

Mean squared error on pixels The (64, 64) images were reduced in size by 10% to avoid some of
the blurring effects of pixel-wise loss functions. Then mean squared error (MSE) was calculated
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between them to obtain the pixel loss lpx:

lpx =
1

n

n∑
k=1

∣∣∣∣x(k) −G
(
z(k)

)∣∣∣∣2 (2)

where k ranges over images in the image batch of length n 7.

Feature losses Weights learned by convolutional neural networks on natural image data present
a set of low- and intermediate level feature detectors useful for various applications. In methods
such as autoencoders a feature-based loss seems to lead to higher perceptual similarity, whereas
using pixel-wise loss functions such as MSE leads to blurry results (Johnson et al., 2016). We
trained a variant of the AlexNet neural network to obtain suitable feature detectors (Krizhevsky
et al., 2012).

For computing the loss between G(z) and x on the basis of features from the trained AlexNet
hierarchy we used two loss components. The first is feature presence loss lf,b, which determines
whether features are activated above a threshold at all. The feature activation matrices for one
AlexNet layerL, denoted φL(x) and φL(G(z)) were transformed to binary representations φL,b(x)
and φL,b(G(z)) by applying a threshold of 1.0. These binarized activation matrices were then
flattened to their one-dimensional representation and compared via cross entropy loss8. A similar
loss formulation is used in machine learning literature for multi-class classification. This yields

lf,b = − 1

n

n∑
k=1

∑
L

φL,b

(
x(k)

)
log
(
φL,b

(
G
(
z(k)

)))
−
(

1− φL,b

(
x(k)

))
log(1− φL,b

(
G
(
z(k)

))
.

(3)
Feature activations were gathered before any nonlinearities or local response optimization. The
second element of the feature losses and third component of the complete reconstruction loss
function is feature magnitude loss lf,m, which equates mean squared error computed between
φL(x) and φL(G(z)) on feature map elements that met the binarization threshold in φL,b(x):

lf,m =
1

n

n∑
k=1

∑
L

∣∣∣∣φ̄L (x(k)
)
− φ̄L

(
G(z(k))

)∣∣∣∣2 (4)

where φ̄L(u) = φL(u)� φL,b(u); � denoting element-wise multiplication.
We used layers conv1 and conv2 for feature matching as these represent universal low-level

features and simple patterns in the AlexNet architecture. The highest layers of AlexNet may
otherwise represent sparse semantic properties, however higher convolutional layers did not
seem to improve results. Furthermore matching the final layers may also drive the reconstruction
towards the limited set of categories learned by AlexNet.

From conv1we also collected lf,b and lf,m on negative feature activations, using the threshold
1.0 on their absolute representation, as they are collected via meaningful convolutions in pixel
space. Negative feature activations for higher layers are likely meaningless as they are not used
during training.

The complete loss function is then given by

loss = λpxlpx + λf,plf,p + λf,mlf,m (5)

where we chose λpx = 10.0, λf,p = 50.0 and λf,m = 1.0 for all three datasets. The values were
determined via optimizing on the training set of BRAINS. Optimization specifically for each data
set may improve the results further, however a cross-validated hyperparameter search would
require more data than we had available.

7A proposed alternative for plain MSE loss would be using SSIM losses (Ridgeway et al., 2015). However, we instead
decided to enhance this loss with a series of feature (perceptual) losses.

8It is not advisable to use MSE between feature activations as the feature activation matrices across a convolutional
neural network hierarchy for any given image tend to be sparse. Due to this when using MSE our model frequently fell
into a local minimum of feature activations with the value 0, which equates blurry images without prominent edges or
features. Cross-entropy loss imposes a higher penalty on missing or obsolete features.
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Feature matching networks Feature matching requires a universal set of image descriptors that
frequently occur in our chosen natural images pdata. To obtain these descriptors we trained a
variant of AlexNet (Krizhevsky et al., 2012), with one input channel and 5 × 5 kernels in the
first (conv1) layer on the 64 × 64 grayscale ImageNet data described before. The model was
trained towards classifying the standard set of ImageNet categories. We used this network for
vim-1 and Generic Object Decoding, ignoring potential redundancy of features extracted
from the mask in the former. For the BRAINS data set we again trained an AlexNet architecture.
In this case we trained on all 40.000 examples of 36 handwritten digit and character classes from
(Van der Maaten, 2009) and (Schomaker and Vuurpijl, 2000) in order to obtain a universal set of
image descriptors for the handwriting domain.

Reconstruction variability One inherent disadvantage of training models with random compo-
nents, such as randomly initialized weights or stochastic gradient descent (e.g. neural networks)
is the variability of the results, due to different local minima the model will converge to. Further-
more, in the case of GANs small shifts in the predicted latent space can result in well-perceivable
changes in the generated image. We observed this behaviour, which resulted in the model finding
different ways to reconstruct certain images, reconstructing different features of images, or not
finding a recognizable reconstruction at all for an image that could be reconstructed in previous
models. This variability is demonstrated in Figure 8. We attempted to counteract these effects
when obtaining final reconstructions with a simple ensemble model: We averaged the predicted
z over 15 independent training runs, normalizing z to the unit hypersphere again after this.

The feature matching networks, the natural images GAN and the predictive model for z have
all been implemented in the Chainer framework for neural networks (Tokui et al., 2015)9.

3 Results

Using the outlined methods and parameters we obtained a set of validation set reconstructions
for each data set, out of which we show examples of reconstructed images and failure cases in the
following. We proceeded with a quantitative behavioural evaluation of overall recognizability on
these sets.

3.1 Reconstruction examples

3.1.1 Sample reconstructions on BRAINS

reconstructed preserved features failure cases

Figure 5: Reconstruction examples for handwritten characters. Top row: Presented stimuli. Bottom
row: Reconstructions from BOLD activity.

Figure 5 demonstrates that the method can lead to accurate reconstructions when the DCGAN
is restricted to few handwritten characters classes. Despite a small training set of 290 BOLD im-
ages of V1 and V2, the correct handwritten character is reconstructed in 57% of the cases (de-
termined via human rating; chance level: 17%). Successful reconstructions demonstrate that

9www.chainer.org; Chainer v1.24
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the model is also capable of reconstructing structural features such as position and curvature of
lines. When character classes could not be reconstructed frequently such structural similarities
remained. As mentioned before, the underlying handwritten character DCGAN had difficulties
generating examples of B, and the reconstruction model also failed to reconstruct a B stimulus in
9 out of 12 cases.

3.1.2 Sample reconstructions on vim-1

identifiable preserved features failure cases

Figure 6: Reconstruction of natural grayscale images (vim-1). Top row: Presented images. Bot-
tom row: Reconstructions from BOLD activity. Images in the identifiable category are reconstruction
examples correctly assigned in no less than 4 of the 5 behavioural comparisons.

Figure 6 contains reconstruction examples for natural grayscale stimuli from the vim-1 dataset.
At 1820 training examples it was the largest training data set we used. In reconstructions that
were sufficiently accurate to be identifiable in the behavioural tests, contrast differences appear
to be the most likely image feature preserved. Salient pattern information also remained intact.
In some reconstructions luminance information is lost, while structural features remain. A hori-
zontal contour line across the image appears to lead the model into generating a landscape image,
however not in every case (e.g. see the second and fourth image of the identifiable category).

3.1.3 Sample reconstructions on Generic Object Decoding

identifiable preserved features failure cases

Figure 7: Reconstruction of natural grayscale images (Generic Object Decoding). Top row: Pre-
sented images. Bottom row: Reconstructions from BOLD activity. Images in the identifiable category
are reconstruction examples correctly assigned in no less than 4 of the 5 behavioural comparisons.

The Generic Object Decoding dataset has just 1200 training examples, but high SNR
due to long stimulation time. The stimuli are not masked, so overall more content needs to be
reconstructed per image. Reconstruction examples can be seen in Figure 7. Overall the recon-
structions again preserve salient contrasts, but turned out more blurry than the vim-1 recon-
structions. There are also more failure cases10 .

10The influence of omitting the colour information contained in the original stimuli is unclear. Random generations
from a DCGAN trained with RGB information missed the structural detail obtained in the grayscale variant (data not
shown). When using this RGB DCGAN for reconstructing it was often possible to reconstruct the correct hue for an image
and its components. In terms of structure in most cases it was only capable of reconstructing salient blobs however.
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3.1.4 Reconstruction variability

Figure 8: Reconstruction variability. Reconstructions vary when using different feature weights (λ),
and to a lesser extent when running the model with the same settings multiple times. This is caused
by the sensitivity of the z space and by different minima the model may find in the DCGAN.

When using different model parameters and loss weights, and to a lesser extent across dif-
ferent runs with the same parameters the model was often reconstructing the same images in
different ways (for identifiable reconstructions). We described the potential cause of this prob-
lem further in Section 2.3 and demonstrate these effects in Figure 8.

3.2 Behavioural evaluation

A number of successful reconstructions of natural images have reversed luminance information
or only slight or transformed structural similarity. Due to this, potential similarity measures such
as the structural similarity index can not be applied as the comparison task is too complex in the
natural images case. In order to obtain a quantitative measure of reconstruction similarity on
each data set we instead made use of human perceptual systems.

We conducted a behavioural perceptual study on Amazon Mechanical Turk11. The advan-
tages of this platform over common university subject pools for collecting human labeling and
uncomplex behavioural scientific data have been discussed and demonstrated (Mason and Suri,
2012). Workers were presented with one original image from the validation sets and had to chose
between the real and one randomly chosen different reconstruction taken from the same valida-
tion set. Each of these choices was one Human Intelligence Task (HIT) compensated with 0.01$.
As a preventive measure against fake completions and bots, workers had to hold the Masters
status and have an approval rate of 95% or higher on the platform to qualify for our tasks. We re-
peated the procedure five times for each of the validation set images in each data set, paired with
a different randomly chosen reconstruction from the set in every HIT. Every HIT was presented
once, i.e. we did not use the platform’s internal repetition mechanism for verification. Across all
three validation sets we presented 850 of these comparisons in total (250 for each natural image
set), which were processed by 38 individual workers.

Figure 9 shows worker performance for the validation images of the three data sets. The
number of correct decisions denotes the total number of correct decisions across all HITs (com-
parisons). As there were five such HITs per reconstruction it is slightly skewed both by failure
and well-identifiable reconstructions, but is a better representation of potential undecidedness.
The number of correct decisions by image on the other hand applies a majority vote over the
5 decisions per image, representing the number of validation set images that could be correctly
identified.

All results were significantly different from random choices with p � 0.01 based on a bino-
mial test (see (Salzberg, 1997)). Although the BRAINS dataset model reconstructed the correct
character class in a mere 56% of the validation set images, structural resemblance between the
original characters and their reconstructions were still strong enough for 75% and 74.3% correct

11www.mturk.com
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Figure 9: Correctly identified reconstructions in pairwise behavioural test. Mechanical Turk workers
were presented with an original image and had to chose its reconstruction out of two.

identifications based on overall and per-image decisions respectively. From the set of vim-1
images workers correctly assigned 75.5% of the reconstructions, applying the majority vote per
image. As for the overall number of correct decisions only 67.6% were correct, indicating that
many reconstructions were still too crude to not be confused with a different random one. The
Generic Object Decoding natural images stimulus set performed slightly worse at 64.4%
correct overall, and 75.5% if grouped by image.

4 Discussion

We presented a new approach for reconstructing static visual stimuli with natural image charac-
teristics from brain activity. We conducted a behavioural study indicating that the reconstructions
this method achieves is sufficient for linking an original image to its reconstruction, even when
reconstructing from the virtually infinite domain of natural images. Using a DCGAN genera-
tor as a pretrained natural image prior assures that the reconstruction results employ natural
image statistics, preventing noisy images. An advantage of our method is that it does not re-
quire end-to-end training of a high number of complex neural network layers on usually limited
neuroimaging data, using a pretrained DCGAN as a black box instead.

In the constrained domain of handwritten characters the correct character class could not be
reconstructed in all cases, but the accuracy was still well above chance level. The method could
furthermore reconstruct sufficient structural detail so that the right reconstruction could often
still be identified in the behavioural test, even when the reconstructed character was incorrect. In
this simpler, restricted domain the model showed good performance with a very limited amount
of training data. However the DCGAN had difficulties generating one of the six characters.
Nevertheless results indicate that the method can be applied for reconstructing stimuli from such
a limited domain with high accuracy when making sure that all potential stimulus manifestations
occur in the reconstruction model.

In Figure 3 we demonstrated on training set examples that the DCGAN captured much of the
variety of the vim-1 natural grayscale image set. While we can state that our results present a
step forward over previous models, the reconstruction quality and generalization performance
on the validation set certainly leave much to be desired. It is possible that generalization perfor-
mance could increase by merely adding much more training data. Although both our natural im-
age data sets contained less than 2000 training images (an insufficient amount for many machine
learning methods), due to the difficulties of neuroimaging experiments vim-1 and Generic
Object Decoding are already considered large experimental data sets within the community.
Yet for reconstruction studies such as ours, massive amounts of high-SNR visual system data
from single subjects may be necessary. Another related antagonist of the generalization capabil-
ities of our approach is the noisy nature of neuroimaging data which does not agree with the
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sensitivity of the latent space. Subtle changes in z induced by noise in the brain data are capable
of strongly changing the features of the reconstructed image. It is unclear whether this problem
would remain in an experiment with much larger amounts of data with high quality.

Also, we achieved our results with a linear regression model. This linear relation promises
interpretability of the relations between the latent space and brain representations, when the
reconstruction model is powerful enough and sufficient care is applied. The latent space z of
DCGANs has been shown to represent meaningful object properties, to the point of supporting
vector arithmetic (Radford et al., 2015). The fact that we could achieve our results with a basic
linear model also means that any more advanced regression model iteratively trained with a
complex image loss function could further improve over our results.

Our loss function involves pixel luminance as well as edge and basic pattern information.
We did not penalize the model on higher-order semantic information, e.g. by using the actual
classifications or fully-connected layers from our feature matching network. The set of training
classes of a convolutional neural network is always restricted to a specific subset. Our reconstruc-
tions would thus remain restricted to a predefined set of classes and could not be called arbitrary.
Yet finding a valid method of adding a semantic penalty to the results could be another way of
strongly improving over our results.

Our natural image GAN is set up to approximate the distribution of all natural grayscale im-
ages. This is still a constraint on the set of images that can be reconstructed. It will not be possible
to reconstruct non-natural image types, such as handwritten characters or comic scenes; unless
the generative model can been trained to generate images with non-natural statistics as well. A
GAN trained on a specific image database such as ImageNet or MS COCO will reflect their po-
tentially unbalanced selection of categories (e.g. dog breeds), which presents another bias. In the
current development state GANs also easily fall into local minima where generated images show
low variety. The generator can often fool the discriminator by learning a limited set of image
types (modes of the image distribution) perfectly. This problem is known as mode collapse, and
considered one of the most important issues to solve by the deep generative modeling commu-
nity. One frequently explored remedy is providing binary categorical information along with z
in a semi-supervised fashion. However, as mentioned before, such a discrete set of categories
would present a severe limitation contradictory to our aim of reconstructing arbitrary images.

In conclusion we believe that our method and results present a promising foundation for fu-
ture extensions. As generative modeling is one topic explored extensively in the machine learn-
ing community at the moment, drawbacks such as mode collapse may be solved in the near
future. We believe reconstruction of arbitrary visual stimuli, imagination and even dreams is still
a largely under-explored territory of neuroimaging research and will continue to strongly benefit
from new advances in the machine learning community.
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