
OCR-Stats: Robust estimation and statistical testing of mitochondrial 1 

respiration activities using Seahorse XF Analyzer 2 

Vicente A. Yépez M.a,b, Laura S. Kremerc,d, Arcangela Iusoc,d, Mirjana Gušićc,d, 3 
Robert Kopajtichc,d, Eliška Koňaříkovác,d, Agnieszka Nadelc,d, Leonhard Wachutkaa, 4 

Holger Prokischc,d and Julien Gagneura,b,* 5 
 6 
a. Department of Informatics, Technical University Munich, Boltzmannstr. 3, 85748 Garching, 7 
Germany. 8 
b. Quantitative Biosciences Munich, Gene Center, Department of Biochemistry, Ludwig-9 
Maximilians Universität München 10 
c. Institute of Human Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 11 
Neuherberg, Germany. 12 
d. Institute of Human Genetics, Klinikum rechts der Isar, Technical University Munich, 13 
Ismaninger Str. 22, 81675 München, Germany. 14 
 15 
*Correspondence to: J.G. (gagneur@in.tum.de) 16 

Abstract 17 

Accurate quantification of cellular and mitochondrial bioenergetic activity is of great 18 

interest in many medical and biological areas. Mitochondrial stress experiments 19 

performed with Seahorse Bioscience XF Analyzers allow estimating 6 bioenergetics 20 

measures by monitoring oxygen consumption rates (OCR) of living cells in multi-well 21 

plates. However, detailed statistical analyses of OCR measurements from XF 22 

Analyzers have been lacking so far. Here, we performed 126 mitochondrial stress 23 

experiments involving 203 fibroblast cell lines to understand how OCR behaves 24 

across different biosamples, wells, and plates; which allowed us to statistically model 25 

OCR behavior over time. We show that the noise of OCR is multiplicative and that 26 

outlier data points can concern individual measurements or all measurements of a 27 

well. Based on these insights, we developed a novel statistical method, OCR-Stats, 28 

that: i) models multiplicative noise, ii) automatically identifies outlier data points and 29 

outlier wells, and iii) takes into account replicates both within and between plates. 30 

This led to a significant reduction of the coefficient of variation across experiments of 31 

basal respiration by 36% (P = 0.004), and of maximal respiration by 32% (P = 0.023). 32 

Also, we propose an optimal experimental design with a minimum number of well 33 

replicates needed to obtain confident results. Finally, we use statistical testing taking 34 

into account the inter-plate variation to compare the bioenergetics measures of two 35 

samples. 36 

Keywords: Oxygen Consumption Rate (OCR); mitochondrial respiration; 37 

bioenergetics; statistical testing; outlier detection. 38 

1. Introduction 39 
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Mitochondria are double membrane enclosed, ubiquitous, maternally inherited, 40 

cytoplasmic organelles present in most eukaryotic organisms (Gorman et al., 2016). 41 

They are the powerhouses of the cell (Bhola et al., 2016; Sun et al., 2016), and are 42 

also involved in regulating reactive oxygen species (Wallace, 2007), apoptosis (Bhola 43 

et al., 2016), amino acid synthesis (Birsoy et al., 2015; Sullivan et al., 2015), cell 44 

proliferation (Sullivan et al., 2015), cell signaling (Zong et al., 2016), and in the 45 

regulation of innate and adaptive immunity (Weinberg et al., 2015). It follows that a 46 

decline in mitochondrial function, reflected by a diminished electron transport chain 47 

activity, is implicated in many human diseases ranging from rare genetic disorders 48 

(Titov, Cracan et al., 2016) to common disorders such as cancer (Wallace, 2012; 49 

Zong et al., 2016), diabetes (Dunham-Snary et al., 2014), neurodegeneration (Yao et 50 

al., 2009), and aging (Sun et al., 2016). One of the most informative assessments of 51 

mitochondrial function is the quantification of cellular respiration, as it directly reflects 52 

electron transport chain impairment (Titov, Cracan et al., 2016) and depends on 53 

many sequential reactions from glycolysis to oxidative phosphorylation (Koopman et 54 

al., 2016). Estimations of oxygen consumption rates (OCR) expressed in pmol/min, 55 

which are mainly driven by mitochondrial respiration through oxidative 56 

phosphorylation, and extracellular acidification rates (ECAR) expressed in mpH/min, 57 

which reflect glycolysis (Divakaruni et al., 2014; Ferrick et al., 2008; Koopman et al., 58 

2016), are more conclusive for the ability to synthesize ATP and mitochondrial 59 

function than measurements of intermediates (such as ATP or NADH) and potentials 60 

(Brand et al., 2011; Dmitriev et al., 2012). 61 

OCR was classically measured using a Clark-type electrode, which required a 62 

substantial amount of purified mitochondria, was time consuming, and did not allow 63 

automated injection of compounds (Wu et al., 2007). Also, experimentation with 64 

isolated mitochondria is ineffective because cellular regulation of mitochondrial 65 

function is removed during isolation (Hill et al., 2012). In the last few years, a new 66 

technology using fluorescent oxygen sensors (Gerencser et al., 2009) in a microplate 67 

assay format has been developed by the company Seahorse Bioscience (now part of 68 

Agilent Technologies) (Ribeiro et al., 2015). It allows simultaneous, real-time 69 

measurements of both OCR and ECAR in multiple cell lines and conditions, reducing 70 

the amount of required sample material and increasing the throughput (Divakaruni et 71 

al., 2014; Ribeiro et al., 2015).  72 

Typically, OCR and ECAR are measured using the Seahorse XF Analyzer in 96 (or 73 

24) well-plates at multiple time steps under three consecutive treatments (Fig. 1B), in 74 

a procedure known as mitochondrial stress test (Agilent Technologies, 2017). Under 75 

basal conditions, complexes I-IV exploit energy derived from electron transport to 76 
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pump protons across the inner mitochondrial membrane. The thereby generated 77 

proton gradient is subsequently harnessed by complex V to generate ATP. Blockage 78 

of the proton translocation through complex V by oligomycin represses ATP 79 

production and prevents the electron transport throughout complexes I-IV due to the 80 

unexploited gradient. Administration of FCCP, an ionophor, subsequently dissipates 81 

the gradient uncoupling electron transport from complex V activity and increasing 82 

oxygen consumption to a maximum level. Finally, mitochondrial respiration is 83 

completely halted using the complex I inhibitor Rotenone. This approach is label-free 84 

and non-destructive, so the cells can be retained and used for further assays (Ferrick 85 

et al., 2008). OCR differences between different stages of these procedures provide 86 

estimation of six different bioenergetics measures: basal respiration, proton leak, 87 

non-mitochondrial respiration, ATP production, spare respiratory capacity, and 88 

maximal respiration (Brand et al., 2011; Divakaruni et al., 2014) (Figure 1). Increase 89 

in proton leak and decrease in maximum respiratory capacity are indicators of 90 

mitochondrial dysfunction (Brand et al., 2011). ATP production, basal respiration, and 91 

spare capacity alter in response to ATP demand, which is not necessarily 92 

mitochondrion-related as it may be the consequence of deregulation of any cellular 93 

process altering general cellular energy demand. 94 

Current literature describing the Seahorse technology addressed experimental 95 

aspects regarding sample preparation (Dranka et al., 2011; Zhang et al., 2012), the 96 

amount of cells to seed (Zhang et al., 2012; Zhou et al., 2012), and compound 97 

concentration in different organisms (Dranka et al., 2011; Koopman et al., 2016; 98 

Shah-Simpson et al., 2016). However, studies regarding statistical best practices for 99 

determining OCR levels and testing them against another are lacking. The sole 100 

definition of bioenergetic measure varies between authors, as well as the number of 101 

time points in each interval (one time point in (Dranka, Hill, & Darley-Usmar, 2010), 102 

two time points in (Chacko et al., 2014) and four or more time points in (Dunham-103 

Snary et al., 2014)); and whether differences (Invernizzi et al., 2012; Koopman et al., 104 

2016; Sullivan et al., 2015), ratios (Yao et al., 2009; Zhang et al., 2011), or both 105 

(Shah-Simpson et al., 2016; Zhou et al., 2012) should be computed. Consequently, 106 

comparison of results across studies is difficult. Moreover, statistical power analyses 107 

for experimental design are often not provided. Differences in OCR between distinct 108 

biosamples (e.g. patient vs. control, or gene knockout vs. WT) can be as low as 12 – 109 

30% (Almontashiri et al., 2014; Mitsopoulos et al., 2015; Stroud et al., 2016). 110 

Therefore, to design experiments with appropriate power to significantly detect such 111 

differences, it is important to know the source and amplitude of the variation within 112 

each sample, and reduce it as much as possible. 113 
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Here, we developed statistical good practices to support experimentalists in 114 

designing, analyzing, and reporting results of Seahorse mitochondrial stress 115 

experiments. To this end, we analyzed a large dataset of 126 mitochondrial stress 116 

experiments in 96-well plate format involving 203 different fibroblast cell lines (Table 117 

S1). The large amount of between-plate and within-plate replicates allowed us to 118 

statistically characterize the nature and amount of biases and random variations in 119 

these data. Based on these insights, we developed a statistical procedure, called 120 

OCR-Stats, to extract robust and accurate oxygen consumption rates for each well, 121 

which translates into robust summarized values of the multiple replicates inside one 122 

plate and across plates. OCR-Stats includes normalization of raw data and outlier 123 

identification and controls for well and plates biases, which led to significant 124 

increased in accuracy over state-of-the-art methods. Between-well and between-125 

plate biases, as well as random variations, were found to be essentially multiplicative. 126 

This motivated for a definition of bioenergetics measures based on ratios. We 127 

formally defined 5 such measures: ETC-dependent OC proportion, ATPase-128 

dependent OC proportion, ETC-dependent proportion of ATPase-independent OC, 129 

and Maximal OC fold change (Fig. 1A). We provide estimators for each one that were 130 

empirically normally distributed, which permitted using linear regression models for 131 

assessing statistical significance of bioenergetics measures comparisons. 132 

Furthermore, our study provides experimental design guidance by i) showing that 133 

between-plate variation largely dominates within-plate variation, implying that it is 134 

important to seed the same biosamples in multiple plates, and ii) providing estimates 135 

of variances within and between plates for each bioenergetic measure allowing for 136 

statistical power computations. A free and pose source implementation of OCR-stats 137 

in the statistical language R is provided at github.com/gagneurlab/OCR-Stats. 138 

2. Results 139 

2.1 Experimental design and raw data 140 

We derived OCR, ECAR, and cell number for 203 dermal fibroblast cultures derived 141 

from patients suffering from rare mitochondrial diseases, and control cells from 142 

healthy donors (normal human dermal fibroblasts - NHDF, Methods, Table S1). 143 

These were assayed in 126 plates, all using the same protocol (Methods). We grew 144 

27 cell lines multiple times and placed them in more than one plate. We will refer to 145 

these growth replicates as different biosamples. The NHDF cell line was seeded in all 146 

plates for assessment of potential systematic plate biases. All four corners of each 147 

plate were left as blank, i.e. filled with media but no cells to control for changes in 148 

temperature (Dranka et al., 2011). The typical layout of a plate is depicted in Fig. 1C, 149 
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showing how each biosample is present in many well replicates. We seeded between 150 

3 and 7 biosamples per plate (median = 4). This variation reflects typical set-ups of 151 

experiments in a lab performed over multiple years. 152 

We used the standard mitochondrial stress test assay (Fig. 1A, (Agilent 153 

Technologies, 2017)) leading to four time intervals with three time points each and 154 

denoted by Int1 (resting cells), Int2 (after oligomycin), Int3 (after FCCP) and Int4 (after 155 

Rotenone). Wells for which the median OCR level did not follow the expected order, 156 

namely, median(OCR(Int3)) > median(OCR(Int1)) > median(OCR(Int2)) > 157 

median(OCR(Int4)), were discarded (977 wells, 10.47%). We also excluded from the 158 

analysis contaminated wells and wells in which the cells got detached (461 wells, 159 

4.94%, Methods).  160 

 161 

2.2 Random and systematic variations between replicates within plates 162 

Typical replicate time series are shown in Fig. 2A, with data from 12 wells for a single 163 

biosample in a single plate. It shows the kinds of variations that we observed. 164 

 165 

First, outlier data points occurred frequently. We distinguished two different types of 166 

outliers: entire series for a well (e.g., well G5 in Fig. 2A) and individual data points 167 

(e.g., well B6 at time point 6 in Fig. 2A). In the latter case, eliminating the entire 168 

series for well B6 would be too restrictive, and would result in losing valuable data 169 

from the other 11 valid time points. Therefore, methods to find outliers considering 170 

these two possibilities must be devised. 171 

 172 

Second, we noticed that the higher the OCR value, the higher the variance between 173 

replicates, suggesting that the error is multiplicative. Unequal variance, or 174 

heteroscedasticity, can strongly affect the validity of statistical tests and the 175 

robustness of estimations. We therefore suggest modeling OCR on a logarithmic 176 

scale, where the dependency between variance and mean disappears (Figs. 2B, 2C). 177 

Respiratory chain enzyme activities such as NADH-ubiquinone reductase have 178 

already been shown to obey log-normal distributions (Hautakangas et al., 2016). 179 

 180 

Third, we observed systematic biases in OCR between wells (e.g., OCR values of 181 

well C6 are among the highest while OCR values of well B5 are among the lowest at 182 

all time points, Fig. 2A). Variations in cell number, initial conditions, treatment 183 

concentrations, and fluorophore sleeve calibration can lead to systematic differences 184 

between wells, which we refer to as well biases. To investigate whether well biases 185 

could be mostly corrected using cell number as suggested in (Dranka et al., 2010), 186 
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we counted the number of cells after the experiments using Cyquant (Methods). As 187 

expected, median OCR for each interval grows linearly with cell number measured at 188 

the end of the experiment (Spearman rho between 0.32 and 0.47, P < 2.2e-16, Fig. 189 

S1A). However, the relation is not perfect reflecting important additional sources of 190 

variations, and also possible noise in measuring cell number. Strikingly, dividing OCR 191 

by cell count led to a higher coefficient of variation (standard deviation divided by the 192 

mean) between replicate wells than without that correction (Fig. S1B). This analysis 193 

showed that normalization for cell number should not be done simply by a blunt 194 

division by raw cell counts and motivated us to derive another method to capture well 195 

biases. 196 

2.3 A statistical model of OCR 197 

Building on these insights, we next introduced a statistical model of OCR within plate. 198 

For a given biosample in one plate, we modeled the logarithm of OCR ��,� of well w 199 

at time point t as a sum of well bias, interval effects and noise, i.e.,:  200 

��,� � ����� � �� � ��,� .   	1� 

The term ����� is the effect of the interval i(t) of time point t. The term �� is the relative 201 

bias of well w compared to a reference well, which is set arbitrarily and corresponds 202 

to the first well in alphabetical order. The term ��,� is the error.  203 

We defined the OCR levels 	��� as the expected log OCR per interval, averaged over 204 

all wells: 205 

�
� � �� 	�� �
∑ ���

�
,     	2� 

where n is the number of wells.  206 

Note that the well bias is modeled independently for each plate, i.e., the bias of a 207 

certain well in one plate is different from the bias of the well at the same location in 208 

another plate. 209 

We present now our OCR-Stats algorithm, for a given plate: 210 

1. Fit the log linear model (1) using the least-squares method, which consists in 211 

minimizing ∑ ∑ 	��,� � ����� � ����
�� , thus obtaining the coefficients αi, βw; and 212 

�
�  using (2).  213 

2. For each time point t in interval i and well w, define the OCR residual: 214 

��,� � ��,� � �
����, which is used to identify outliers (Methods). 215 

3. Identify and remove well level outliers, fit again, iteratively, until no more are 216 

found.  217 

4. Identify and remove single point outliers, fit again, iteratively, until no more 218 

are found.  219 
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5. Scale back to natural scale in order to compute the bioenergetics measures 220 

(e.g.: Basal respiration �  ��� � ���, Maximal respiration �  ��� � ���, etc.), or 221 

take the difference in the logarithmic scale to obtain the metrics from Table 1.  222 

2.4 Variations within plates 223 

We were then interested in determining the amplitude of the variance inside each 224 

plate in order to compute the number of wells needed to obtain robust estimates �̂. 225 

Using only the controls NHDF, we computed the standard deviation ��,	
�  of the 226 

logarithm of OCR across all wells for each plate j and interval i. Then, we computed 227 

the median across plates, thus obtaining one value ��
� per interval (�


� � 0.10, ��
� �228 

0.13, ��
� � 0.12, ��

� � 0.16�. As we worked in the logarithmic scale, the error in the 229 

natural scale becomes multiplicative and relative. The standard error of the estimates 230 

�̂ can be expressed as �
��
^ � ��

�/���, where nw is the number of wells. The highest 231 

value of ��
� was 0.16, so in order to get a relative error of 5%, cells should be seeded 232 

in 10 wells. This result comes from a variation after removing outliers, so considering 233 

that around 16.5% of wells were found to be outliers, then ideally we should use 10/234 

	1 � 0.165� � 12 wells per biosample. 235 

2.5 Variations between plates 236 

After analyzing the variation among wells inside plates, we set up to study the 237 

variation across multiple plates. Using data from the controls NHDF, we found that 238 

the variability between plates for all four intervals is much larger than between wells 239 

(Table S2, Fig. S4). We next asked whether there exists a systematic plate bias that 240 

could be corrected for. We indeed observed a similar increase in OCR on the interval 241 

1 for both biosamples on plate #20140430 with respect to #20140428 (Fig. 3A). To 242 

test whether this tendency held across every repeated biosample, we compared all 243 

replicate pairings with their respective NHDF controls and found a positive correlation 244 

(Fig. 3B). These differences can come from changes in temperature or the use of 245 

different sensor cartridges (Koopman et al., 2016). Because the plate biases are 246 

systematic, we can correct for them using a log linear model (Methods). Nonetheless, 247 

the biases do not explain all the between plate variation as the remaining variance is 248 

large (relative variance of the residuals: I1: 49.8%, I2: 51.6%, I3: 65.6% and I4: 249 

55.9%). It is therefore important to perform multiple plate analyses to be able to 250 

conclude for a reproducible systematic difference between biosamples. 251 

 252 

2.6 Statistical comparison between biosamples 253 
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In order to compare the bioenergetics measures of two biosamples, we first need to 254 

decide if it is better evaluating differences or ratios of the OCR levels in the natural 255 

scale. Even after correcting for well biases, there is a remaining cell number effect 256 

(Fig. 3C); therefore, we recommend working with ratios of OCR levels (or differences 257 

in the logarithmic scale). We propose the following definitions: 258 

OCR ratios Abbr. Metrics Tested 

differences 

d 

Equivalent 

ETC-dependent 

OC proportion 

E/I – 

proportion 

� !
 � � !�

� !


� 

1 � exp 	��� � ��� 

	��,� � ���,��

� 	��,����

� ���,����� 

Basal 

Respiration 

ATPase-

dependent OC 

proportion 

A/I – 

proportion 

� !
 � � !�

� !


� 

1 � exp 	��� � ��� 

	��,� � ���,��

� 	��,����

� ���,���� � 

ATP 

Production 

ETC-dependent 

proportion of 

ATPase-

independent OC 

E/Ai - 

proportion 

� !� � � !�

� !�

� 

1 � exp 	��� � ���� 

%���,� � ���,�&

� 	���,����

� ���,���� � 

Proton Leak 

Maximal OC fold 

change 

M/I – fold 

change 

� !�

� !


� 

exp 	�� � ��� 

	��,� � ��,��

� 	��,����

� ��,���� � 

Spare 

Capacity 

Maximal over 

ETC-

independent OC 

fold change 

M/Ei – fold 

change 

� !�

� !�

� 

exp 	�� � ���� 

	��,�

� ���,��

� 	��,����

� ���,����� 

Maximal 

Respiration 
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Table 1: OCR ratios, metrics and equivalents 

Then, for any given OCR ratio b (eg. M/Ei - fold change), we test differences of log 259 

OCR ratios of patient versus a control cell line (Table 1) using the following linear 260 

model: 261 

'�,�,� � (�,� � )�,�,� , 	3� 

where db,f,p corresponds to the difference of ratio b of a cell line f and the respective 262 

control on plate p. We solve it using linear regression, thus obtaining one value (�,�  263 

per each ratio b and cell line f. We then compare these (�,�values (which follow a t-264 

Student distribution) against the null hypothesis (�,� � 0 to obtain p-values and 265 

confidence intervals (Figs. 4A, 4B, Methods). 266 

2.7 Benchmark of OCR-Stats algorithm 267 

In order to benchmark the OCR-Stats algorithm, we computed the coefficient of 268 

variation (standard deviation divided by mean) of the six bioenergetics measures in 269 

the natural scale of all repeated biosamples across plates. The lower the coefficient 270 

of variation among replicates, the better the method. We cannot test using the final 271 

estimates �
 
� after correcting for plate effect, because we would fall into circularity as 272 

correcting using ��,� forces replicates to have a closer value. Therefore, just for 273 

benchmarking purposes, we corrected for plate effect using only the data from the 274 

controls NHDF c of each plate, namely:  275 

��,�
� � ��

� � ��
� � ��

� � ��,� .  	4� 

We solved (4) using linear regression and used the effects ��
� as offsets in (1), and 276 

recomputed �
�  values accordingly. We scaled back to natural scale to calculate the 277 

bioenergetics measures and the coefficient of variation of all repeated biosamples 278 

(except the control to avoid circularity) using: i) the default Extreme Differences (ED) 279 

method (Methods) provided by the vendor, ii) the log linear (LL) corresponding to 280 

steps 1 and 2 of the OCR-Stats algorithm, iii) complete OCR-Stats (LL + outlier 281 

removal), and iv) OCR-Stats after correcting for plate effect (OCR-PE) using (4). 282 

Each step contributed to lowering the coefficient of variation, obtaining a final 283 

significant reduction of 36% and 32% in basal and maximal respiration, respectively, 284 

from OCR-PE with respect to ED (P < 0.03, one-sided Wilcoxon test) (Fig. 5). 285 

2.8 Benchmark of OCR-Stats statistical testing method 286 

We applied OCR-Stats, Extreme Differences with Wilcoxon test within each plate 287 

(within-plate ED), and Extreme Differences with Wilcoxon test across plates (across-288 

plate ED) to obtain the M/Ei ratio and maximal respiration (MR) of all the 26 cell lines 289 

that were seeded in more than one plate (Methods). For every approach we 290 
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computed p-values for significant fold-changes against the controls. Six of these cell 291 

lines come from patients with rare variants in genes associated with an established 292 

cellular respiratory defect, allowing for assessing the sensitivity of each approach 293 

(Table S3, (Haack et al., 2013; Hildick-Smith et al., 2013; Kremer et al., 2017; 294 

Pronicka et al., 2016; Van Haute et al., 2016)). Also, two cell lines (#73901 and 295 

#91410) that showed no significant respiratory defects in earlier studies (Powell et 296 

al., 2015) (Kremer et al., 2016) served as negative controls. 297 

 298 

The within-plate ED method reported significantly higher or lower MR for 299 

56/69=81.2% biosamples (Figs. 4A, 4B, Table S3). Moreover, every cell line was 300 

found to be significant on at least one plate, despite large variation in M/Ei fold 301 

change between plates (Fig. 4A). Also, for 11 cell lines, one plate at least also gave 302 

non-significant differences. These results show the importance of assessing 303 

differences using multiple plates and advocate for a more robust approach than 304 

within-plate ED.  305 

 306 

One approach to take multiple plates into accounts is to perform a Wilcoxon test 307 

based on per plate average ED values (across-plate ED, Methods). However, this 308 

approach requires samples to be seeded in at least five plates in order to obtain 309 

significant results. Here, only one cell line, #78661, was found significant this way.  310 

 311 

In contrast, significance with the OCR-Stats statistical algorithm can be reached by 312 

seeding a biosample in one plate only; provided there were other between-plate 313 

replicates to compute the inter-plate variance. On this data, OCR-Stats was much 314 

more conservative than within-plate ED and found only 7/26=27% cell lines to have 315 

aggregated significantly lower M/Ei than the control. There was no evidence against 316 

the normality and homoscedasticity assumption of OCR-stats as the quantile-quantile 317 

plots of the residuals aligned well along the diagonal (Figs. 4C, S4). All the 6 positive 318 

control cell lines were reported to have significantly lower M/Ei than control by OCR-319 

Stats (Figs. 4A, 4B, Table S3). Moreover, OCR-Stats did not report significant M/Ei 320 

differences for the two negative controls. Altogether, these results show that OCR-321 

Stats successfully identifies and removes variation within and between plates, 322 

providing more stable results which translates into less false positives. 323 

Discussion and conclusion 324 

Mitochondrial studies using extracellular fluxes (specifically the XF Analyzer from 325 

Seahorse) are gaining popularity; therefore, it is of paramount importance to have a 326 
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proper statistical method to estimate the OCR levels from the raw data. In this paper, 327 

we have developed such a model, which includes approaches to control for well and 328 

plate biases, and automatic outlier identification. By doing so, we were able to 329 

significantly reduce the coefficient of variation of replicates across plates. After 330 

analyzing the intra-plate variation, we found that the minimum number of wells per 331 

biosample should be 12.  332 

We found that dividing cellular OCR by cell number was introducing more noise than 333 

was seen for uncorrected data. Here, we seeded always the same number of cells. 334 

Hence, the variations we observed in cell number at the end of the experiments are 335 

largely overestimated by noise in measurements. In other experimental settings, in 336 

which different numbers of cells are seeded, we suggest to include an offset term to 337 

the model (1) equal to the logarithm of the seeded cell number to control for this 338 

variation by design. Also, the Seahorse XF Analyzer can be used on isolated 339 

mitochondria and on isolated enzymes, where a normalization approach is to divide 340 

OCR by mitochondrial proteins or enzyme concentration (Seahorse Bioscience, 341 

2014). However, as described here for cellular assays, robust normalization 342 

procedures require careful analysis. 343 

To use XF Seahorse Analyzers for large-scale experiments, one needs to be able to 344 

compare biosamples measured on different plates. Our investigation showed that 345 

there is roughly multiplicative bias between plates that can be controlled to some 346 

extent by including control biosamples across plates, as we did here with NHDF. We 347 

proposed an extension of our intra-plate robust linear regression approach to multiple 348 

plates that can handle model this plate bias. However, we also noticed that the 349 

assumption of a multiplicative plate bias is not sufficient as there are other sources of 350 

variation. Therefore, for comparing two biosamples statistically, they need to be 351 

placed on the same plate, and repeated multiple times. We demonstrated that it is 352 

better to compare OCR ratios rather than differences as this eliminates sources of 353 

variation like cell number. We proposed another linear model that takes into account 354 

the inter-plate variation, which we showed to agree with previous results of patients 355 

diagnosed with mitochondrial disorders.  356 

We also encourage users to understand the biological meaning of each OCR ratio 357 

(Table 1). For example, cell line #73387 was found to have a lower, but non 358 

significantly (P < 0.10), M/Ei ratio (the most common metric used throughout the 359 

literature, Table S3), but when analyzing its E/I proportion, we found that it was 360 

drastically lower than the control (P < 1.2x10-7). This result is consistent with its 361 
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genetic diagnosis (Table S1, (Oláhová et al., 2015)). For visualizing OCR ratios, raw 362 

OCR vs. time plots are useful in both logarithmic and natural scales. 363 

In principle, OCR-Stats should be able to estimate ECAR levels. Nevertheless, 364 

similar analyses as performed here should be done beforehand in order to guarantee 365 

that the method is indeed applicable. Preliminary investigations suggest that the 366 

nature of noise (outliers, multiplicative) is similar than for OCR. 367 

Finally, it is important to understand further sources of variations between plates, cell 368 

cultures, treatments and other factors in order to correct for them. Here, we found 369 

that gender does not significantly influence OCR levels (Fig. S5), but age (for which 370 

we have no register), may play a role. 371 

Methods 372 

Biological material 373 

All biosamples come from primary fibroblast cell lines of humans suffering from rare 374 

mitochondrial diseases, established in the framework of mitoNet and GENOMIT. The 375 

controls used are primary patient fibroblast cell lines, normal human dermal 376 

fibroblasts (NHDF) from neonatal tissue, commercially available from Lonza, Basel, 377 

Switzerland. 378 

Measure of extracellular fluxes using Seahorse XF96 379 

We seeded 20,000 fibroblasts cells in each well of a XF 96-well cell culture 380 

microplate in 80 ml of culture media, and incubated overnight at 37°C in 5% CO2. 381 

The four corners were left only with medium for background correction. Culture 382 

medium is replaced with 180 ml of bicarbonate-free DMEM and cells are incubated at 383 

37°C for 30 min before measurement. Oxygen consumption rates (OCR) were 384 

measured using a XF96 Extracellular Flux Analyzer (Agilent Technologies, 2017). 385 

OCR was determined at four levels: with no additions, and after adding: oligomycin (1 386 

μM); carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, 0.4 μM); and 387 

rotenone (2 μM) (additives purchased from Sigma at highest quality). After each 388 

assay, manual inspection was performed on all wells using a conventionally light 389 

microscope. 390 

Cell number quantification 391 

Cell number was quantified using the CyQuant Cell Proliferation Kit (Thermo Fisher 392 

Scientific, Waltham, MA, USA) according to the manufacturer’s protocol. In brief, 393 

cells were washed with 200 µL PBS per well and frozen in the microplate at -80°C to 394 

ensure subsequent cell lysis. Cells were thawed and resuspended vigorously in 200 395 

µL 1x cell-lysis buffer supplemented with 1x CyQUANT GR dye per well. 396 
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Resuspended cells were incubated in the dark for 5 min at RT whereupon 397 

fluorescence was measured (excitation: 480 nm, emission: 520 nm). 398 

Extreme Differences (default) Method to compute bioenergetics measures  399 

On every plate independently, for each well, on interval 1 take the OCR 400 

corresponding to the last measurement, on intervals 2 and 4 take the minimum and 401 

on interval 3 the maximum OCR value (Divakaruni et al., 2014). Then, do the 402 

corresponding differences to estimate the bioenergetics measures. Report the results 403 

per patient as the mean across wells plus standard deviation or standard error, 404 

separately for each plate. 405 

Outlier Removal 406 

For each sample s and well w, compute the mean across time points of its squared 407 

residuals: +� , mean�	��,�
��, thus obtaining a distribution 0. Identify as outliers the 408 

wells whose +� 1 median	0� � 5 · mad	0�, where mad, median absolute deviation, is 409 

a robust estimation of the standard deviation (Fig. S2A). We found that deviations by 410 

5 mad from the median were selective enough in practice. Compute the vector of 411 

estimates �̂ using the remaining wells and iterate this procedure until no more wells 412 

are identified as outliers. It required 8 iterations until convergence and around 16.5% 413 

of all the wells were found to be outliers (Fig. S2B). 414 

Single point outliers are identified in a similar way. After discarding the wells that 415 

were found to be outliers in the previous step, categorize as outliers single data 416 

points whose ��,�
� 1 median�%��,�

�& � 5 · mad�	��,�
�� (Fig. S2C). Iterate until no 417 

more outliers are found. It required 19 iterations until convergence and approximately 418 

6.1% of single points were found to be outliers (Fig. S2D). 419 

Plate effect model 420 

In an attempt to correct for plate effect, we propose a log linear model where the 421 

levels �� depend on interval i, samples s and plate p: 422 

�5�,�,� � ��,� � ��,� � ��,�,� , 

thus obtaining one coefficient ��,� for each plate-interval combination. These effects 423 

are added to the previous estimates: �
�,�,�

� � �
�,� � ��,�, obtaining the final estimates 424 

�
 
�. As for (1), the model is solved using linear regression. 425 

Multi-plate averaging method 426 

In case of inter-plate comparisons, the multi-plate averaging methods takes the 427 

average and standard error of the bioenergetics measures obtained using the ED 428 

method of all repeated biosamples across plates (Agilent Technologies, 2016). 429 

Statistical Testing 430 

To evaluate the OCR ratios between a fibroblast f and a control, we use the 431 
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corresponding tested difference d (Table 1). For a fibroblast f located on a plate p, we 432 

define (�,	,�,�: � 7�
� � �
	8
�,�

� 7�
� � �
	8
 !"#,�

, where i and j are any two different 433 

intervals. From there, we can obtain a t-statistic: �$% � &'$�

�(�&�
, where d0 = 0 as that is the 434 

value against we want to compare μ against, and se is the standard error. The t-435 

statistic follows a t-distribution with n – 2 degrees of freedom, from which we can 436 

obtain p-values. Moreover, we can obtain confidence intervals: 9( � :�	(��)'�
* , ( �437 

:�	(��)'�
* ;, where 	1 � �� is the confidence level and �)'�

*  the 	1 � �/2� quantile of 438 

the tn-2 distribution. Note that the normality assumption holds for the residuals )�,�,� 439 

(Figs. 4C, S4). 440 
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Figure legends 461 

Figure 1. Principle of the mitochondrial stress test assay (A) Cartoon illustration 462 

of OCR levels (y-axis) versus time (x-axis). Injection of the three compounds 463 

oligomycin, FCCP and rotenone delimit four time intervals within which OCR is 464 

roughly constant. (B) Targets of each compound in the electron transport chain. (C) 465 

Typical layout of a mitochondrial stress test 96-well plate.  466 
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Figure 2. OCR behavior over time. (A) Typical time series replicates inside a plate. 467 

Behavior of OCR expressed in pmol/min (y-axis) of Fibro_VY_017 over time (x-axis). 468 

Colors indicate the row, and shape the column of 12 well replicates. Variation 469 

increases for larger OCR values, OCR has a systematic well effect and there exist 470 

two types of outliers: well-level and single-point. (B) Scatterplot of standard deviation 471 

(y-axis) vs. mean (x-axis) of all 3 time replicates of each interval, well and plate of 472 

OCR of NHDF only, shows a positive correlation (n = 409). (C) Same as (B) but for 473 

the logarithm of OCR, where the correlation disappears. 474 

Figure 3. Plate bias. (A) Log of OCR in interval 3 (y-axis) for the cell lines #65126 475 

and NHDF (x-axis) which were seeded in 2 different plates (color-coded). The similar 476 

increase in OCR from plate #20140128 to #20140430 in both biosamples suggests 477 

that there is a systematic plate bias. (B) Scatterplots of the differences of the 478 

logarithm of OCR levels θ of all possible 2 by 2 combinations of repeated biosamples 479 

across experiments (y-axis) against their respective controls (NHDF) (x-axis) show 480 

that there exists a positive correlation (I1: ρ= 0.64, P < 2.3x10-8, I2: ρ= 0.65, P < 481 

1.2x10-8, I3: ρ= 0.52, P < 1.2x10-5, I4: ρ= 0.64, P < 1.4x10-8), suggesting a systematic 482 

plate bias (n = 63). (C) Scatterplot of the difference of log OCR levels of patients vs. 483 

control NHDF (both axes) of every interval with respect to another. All intervals 484 

correlate with each other even after removing plate bias (by subtracting control 485 

values). 486 

Figure 4. Statistical testing of M/Ei fold change patient vs. control on multiple 487 

plates. (A) Ratio of M/Ei fold change (y-axis) of all cell lines repeated across plates 488 

(x-axis) and their respective control, sorted by p-value obtained using the OCR-Stats 489 

method. Left of the red dashed line are cell lines with significantly lower M/Ei fold 490 

change using OCR-Stats. Dots in orange represent cell lines with significantly lower 491 

or higher M/Ei fold change using the ED method. Highlighted positive (+) and 492 

negative (-) controls. (B) Similar as (A), but depicting the p-value in logarithmic scale 493 

(y-axis) using OCR-Stats. Red dashed line at P = 0.05. Dots in red represent 494 

biosamples with significantly lower M/Ei fold change using the OCR-Stats method. 495 

(C) Quantile-quantile theoretical (x-axis) vs. observed (y-axis) plot of the residuals of 496 

the linear model (3) applied to M/Ei fold change.  497 

Figure 5. Benchmark using coefficient of variation. Coefficient of variation (CV = 498 

standard deviation / mean, y-axis) of replicates across experiments (n=26) using 499 

different methods (x-axis) to estimate the 6 bioenergetics measures. In all, except for 500 

Spare Capacity, OCR-Stats with plate effect showed significantly lower variation with 501 
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respect to the Extreme Differences method. P-values obtained from one-sided paired 502 

Wilcoxon test. 503 
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