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Abstract
Principal component analysis (PCA) is one of the most common techniques in
the analysis of biological data sets, but applying PCA raises two challenges.
First, one must determine the number of significant principal components (PCs).
Second, because each PC is a linear combination of genes, it rarely has a
biological interpretation. Existing methods to determine the number of PCs are
either subjective or computationally extensive. We review several methods and
describe a new R package, PCDimension, that implements additional methods,
the most important being an algorithm that extends and automates a graphical
Bayesian method. Using simulations, we compared the methods. Our newly
automated procedure performs best when considering both accuracy and speed.
We applied the method to a proteomics data set from acute myeloid leukemia
patients. Proteins in the apoptosis pathway could be explained using six PCs.
By clustering the proteins in PC space, we were able to replace the PCs by six
“biological components”, three of which could be immediately interpreted from the
current literature. We expect this approach combining PCA with clustering to be
widely applicable.

Keywords
dimension reduction, Bayes rule, Auer-Gervini, Broken-Stick, randomization based
procedure.
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Introduction
Since the earliest days of gene expression microarrays, two-way clustered heatmaps
have been a standard feature of papers studying genome-wide biological data sets.1,2

Such heatmaps remain ubiquitous, in spite of numerous difficulties in interpretation,
reproducibility, and in assigning statistical significance. Good clustering of the genes
in such data sets is critical for understanding the biology. Because many biologists
are more interested in signaling pathways than in individual genes, they want to
find a source of consistent, robust, and interpretable blocks of genes that drive
distinct functional characteristics of the pathways. These blocks of genes form clusters
that are relevant to comprehensive understanding of critical biological processes.
For example, apoptosis is an important biological process, which is characterized
by distinct morphological states and energy-dependent biochemical mechanisms.3

Understanding how proteins cluster in the apoptotic pathway will help elucidate its
underlying molecular mechanisms. Now, clustering can be thought of as a form of
dimension reduction, and a natural question is the “true dimension” of the data. Various
techniques have been developed to determine the dimensionality, the most common
being principal component analysis (PCA). For our purposes, an important problem in
PCA is to determine the number of statistically significant components.

Numerous methods have already been developed to estimate the number of
significant components. There are three main types of approaches: (1) ad hoc
subjective and graphical rules, (2) methods based on distributional assumptions, and
(3) computationally extensive procedures relying on Monte Carlo, permutation, cross-
validation, bootstrap, or jackknife.4 The screeplot method, which consists of plotting a
curve of the eigenvalues of the sample covariance matrix versus their rank and looking
for an “elbow” in the curve, is the most famous graphical approach.5 However, this
method relies on the user’s subjective experience to find any possible “elbow”. Even so,
other methods are not always superior to the simple screeplot. Legendre and Legendre
used the “broken stick” distribution to compare the extra information in a model to
one with fewer parameters.6 Ferre carried out an empirical study of many methods to
select the number of PCs, using data simulated from known parameters.7 He concluded
that there is no “ideal” solution to the problem of dimensionality in PCA. He also
concluded that Bartlett’s tests8 are an improvement because they are less subjective, but
may have a tendency to overestimate the true number of components. More recently,
Peres-Neto and colleagues conducted an extensive simulation study to evaluate a wider
variety of methods.9 They concluded that several methods, especially those based on
randomization and permutation proposed by ter Braak,10,11 outperform the others and
should be applied to study general data sets.
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In 2008, Auer and Gervini addressed the problem of selecting principal components
in the context of Bayesian model selection.12 While their method has strong theoretical
foundations and appears to work well in practice, it still depends on the subjective
evaluation of a graphical display of how the maximum posterior estimate of the number
of components depends on a parameter describing the choice of the prior distribution.
Moreover, its performance has only been compared to the screeplot and broken-stick
methods, and not to Bartlett’s test nor to the randomization procedures that performed
well in previous comparative studies.

In this article, we consider several algorithms to extend and automate the Auer-
Gervini method by providing objective rules to select the number of significant
principal components. Using an extensive set of simulations, we compare these
algorithms to the broken-stick model, Bartlett’s test, and ter Braak’s randomization
methods. The methods chosen for comparison were the “winners” from the two
previous comparative studies.7,9 Our extensions to the Auer-Gervini method are
implemented in the PCDimension R package. Because the most promising versions
of the randomization algorithms appear not to be readily available, we have also
implemented them in the PCDimension package. For convenience, the package
also implements the broken-stick method. For Bartlett’s test, we rely on an existing
implementation in the nFactors package.

This article is organized as follows. In Methods, we review the theoretical
framework of the four types of methods (Bartlett’s Test, the Broken-Stick method,
the randomization-based procedures, and the Auer-Gervini model). In the Simulation
Study subsection of Results, we perform simulation studies to test the performance
of the proposed algorithms. In the Decomposing the Apoptosis Pathway subsection,
we apply the methods to a study of apoptosis in acute myeloid leukemia (AML) using
reverse phase protein arrays (RPPA). Finally we conclude the paper and make several
remarks in Conclusions. A simple example to illustrate the implementation of the four
types of methods in the PCDimension package is also provided in the supplementary
material.

Methods
Let X denote an n×m data matrix, where each row represents an object, and each
column represents a measured attribute. We are primarily interested in biological
applications where n << m. In PCA, each principal component is a linear combination
of the attributes. In this section, we briefly review four methods used to estimate the
number of statistically significant PCs.

Bartlett’s Test
Bartlett proposed a statistical method to conduct a hypothesis test on the significance
of the principal components based on the eigenvalues of Σ, the correlation matrix.8

This test is designated to check whether the remaining eigenvalues of the correlation
structure are equal after removing the well-determined (highly significant) components.
Let the eigenvalues of Σ be λ1, . . . , λn with λ1 ≥ · · · ≥ λn ≥ 0. The procedure, for
various values of k, starting at n− 2 in decreasing order, is to test the null hypothesis
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Hk
0 that the “(n− k) smallest eigenvalues of the correlation matrix are equal” against

the alternative hypothesis Hk
A that “at least two of the (n− k) eigenvalues are

different”. The test statistic is

χ2 = −
{
m− 1

6
(2n+ 5)− 2

3
k

}
log(Rn−k) , (1)

where

Rn−k = det(Σ)

/{
λ1 · · ·λk

[
λk+1 + · · ·+ λn

n− k

]n−k}
.

Under the null hypothesis, the test statistic follows a χ2 distribution with 1
2 (n− k)(n−

k − 1) degrees of freedom. The optimal number of principal components is the smallest
k where Hk

0 is accepted. Both Lawley13 and Anderson14 made some modifications to
the multiplicative factor

{
m− 1

6 (2n+ 5)− 2
3k
}

for (1); these are viewed as improved
variants of Bartlett’s test.

Broken-Stick Model
Under the assumption that the total variance of the multivariate data is divided at
random among all possible components, the expected distribution of the eigenvalues in
the covariance or correlation matrix follows a broken-stick distribution.15 This model
says that, if we have a stick of unit length, broken at random into n segments, then the
expected length of the kth longest piece is

bk =
1

n

n∑
i=k

1

i
. (2)

Since the expected values under the broken stick model are obtained in decreasing
order, it is necessary to rank the relative proportions of the variance that are accounted
for by the PCs in the same way. The estimated number of PCs is the maximum index
where the observed relative proportion of variance is greater than or equal to the
expected value from the broken-stick distribution.

Randomization-Based Procedure
This procedure involves a randomization approach to generate a large number of data
sets by scrambling the observed data in a manner of sampling without replacement.10,11

These randomized data sets are then used to compute empirical p-values for the
statistics of interest that characterize the internal structure of the eigenvalues in the
correlation matrix. The test procedure is: (1) randomize the values with all the attribute
columns of the data matrix; (2) perform PCA on the scrambled data matrix; and (3)
compute the test statistics. All three steps are repeated a total of (B − 1) times, where
B is a large enough integer to guarantee the accuracy of estimating the p-value; in
practice, B is usually set to equal 1000. In each randomization, two test statistics are
computed: (1) the eigenvalue λk for the k-th principal component; and (2) a pseudo

F-ratio computed as λk/
n∑

i=k+1

λi. Finally, the p-value for each k and each statistic of

interest is estimated to be the proportion of the test statistics in all data sets that are
greater than or equal to the one in the observed data matrix.
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Auer-Gervini Model
We briefly review the Auer-Gervini method.12 Suppose xi ∈ Rn (i = 1, . . . ,m) are
all columns of data matrix X , and {x1, . . . ,xm} is a random sample with mean
vector µ and covariance matrix Σ. Write Σ = ΓΛΓT where Γ = (γ1, . . . , γn) is
orthonormal and Λ = diag(λ1, . . . , λn) with λ1 ≥ · · · ≥ λn. Let Md be the model
with d significant components or eigenvalues, that is, λ1 ≥ · · · ≥ λd, λd > λd+1, and
λd+1 = · · · = λn, for d ≤ n− 1. UnderMd, a random sample is

x = µ+
d∑
k=1

zk(λk − λd+1)
1
2γk + λ

1
2

d+1ε. (3)

where z1, . . . , zd are uncorrelated random variables with mean 0 and variance 1, and ε
is a random error vector with mean 0 and covariance matrix In. Therefore the problem
of selecting the number of PCs is transformed into the problem of choosing the correct
modelMd.

A prior probability is assigned toMd of the form

p(d) = C exp
(
−m

2
θd
)
, d = 0, . . . , n− 1, (4)

where C is a normalizing constant that satisfies
n−1∑
d=0

p(d) = 1 for θ > 0. Then, under

certain approximations, one can use Bayes rule to derive a formula for the maximum
posterior estimate of d as a function of the prior parameter θ:

d̂(θ) = δ(x1, . . . ,xm)

= argmax0≤d≤n−1p(Md|x1, . . . ,xm)

≈ argmax0≤d≤n−1p̂(Md|x1, . . . ,xm)

= argmax0≤d≤n−1

p̂(x1, . . . ,xm|Md)p(d)

p̂(x1, . . . ,xm|Mn−1)p(n− 1)

= argmax0≤d≤n−1


(
Ĝd

Âd

)n−d
eθ(n−1−d)


(5)

where Ĝd and Âd are the geometric and the arithmetic means of λ̂d+1, . . . , λ̂n,
respectively. The formula describes d̂(θ) as a nonincreasing step function with respect
to θ, with d̂(0) = n− 1. The step function is then plotted and the “highest dimension
for which the step length is significantly large” is selected to be the optimal number of
components.

In other words, an exponential prior is placed on the number of significant
components. The prior depends on a hyperparameter θ ≥ 0, that governs how fast
the distribution decays. As θ goes to ∞, the prior drops off rapidly and the posterior
estimate of the number of PCs will go to 0. Auer and Gervini proposed graphing the
posterior estimate as a step function of θ, which can visually help select the highest
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“nontrivial step length”. A large step length means that the estimated number of PCs
is optimal under a wide range of prior model probabilities. However, the notion of
“nontrivial step length” remains subjective, which is similar to the situation where one
needs to select a recognizable “elbow” in the screeplot. Automating the definition of
nontrivial step length is further complicated by the fact that the final step for d = 0
is theoretically infinite. We will operationalize the final subjective step by putting an
upper bound on the largest “reasonable” estimate of θ, and will develop criteria to
automatically choose the significantly large step length.

Automating the Auer-Gervini Method
As originally described, the Auer-Gervini model is a visual Bayesian approach, and the
critical final step is to decide what constitutes a significantly large length of a step. This
problem can be thought of as one of classification, in which the set of step lengths must
be partitioned into two groups (short and long). We propose to test multiple algorithms
to solve the problem as follows.

TwiceMean. Use twice the mean of the set of step lengths as a cutoff to separate the
long and short steps. Intuitively, the idea is to view the distribution of the step
lengths as exponential when the data arises from random noise. Since the mean
equals the standard deviation for an exponential distribution, twice the mean is
the same as the mean plus one standard deviation, and provides a plausible cutoff
to select “long” step lengths. This simple idea is inspired in part by Chaterjee,16

who considered recovery of low-rank matrices by thresholding singular values.
He proposed that one could have a single universal choice of the threshold
parameter which is slightly greater than 2 and gives near-optimal mean square
error for Singular Value Hard Thresholding (SVHT).

Kmeans. Since the goal is to partition the step lengths into two groups, a natural
solution is to cluster them using the traditional K-means algorithm with K = 2.
We seed the algorithm with starting centers using the minimum and maximum
step lengths. As we will discuss in more detail below, the final step (when d = 0)
is theoretically infinite. We will bound this last step, but it will ensure that at least
one step is “long”.

Kmeans3. Our initial experience (data not shown) using K-means with large n found
it to be overly conservative when assigning steps to the “long” group. Given
its dependence on Euclidean distances, that is exactly how one should expect it
to perform when the true mixture distribution is skewed right. To address this
problem, we modified the algorithm as follows. If the number of objects is large
(n ≥ 55), we use the K-means algorithm, withK = 3 and seeds of the minimum,
median, and maximum values, to separate the step lengths into three groups:
Low, Intermediate, and High. We then treat both Intermediate and High groups
as long.

Spectral. Use spectral clustering to divide the step lengths into two groups. Spectral
clustering is one of the most popular modern clustering algorithms. It sometimes
outperforms the traditional clustering algorithms such as K-means.17,18
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CPT. Instead of simply clustering the step lengths into two groups, we can instead
sort them into increasing order and view the problem as one of change point
detection. One existing solution to this problem is provided by the At Most One
Change (AMOC) method implemented by the cpt.mean function from the
changepoint R package.19 The detection of the first change point is posed as
a hypothesis test and a generalized likelihood ratio based approach is extended
to changes in variance within normally distributed observations. The reader can
consult Hinkley20 and Gupta and Tang21 for more details.

CpmFun. The cpm R package defines several other “Change Point Models”.22

These are implemented by the detectChangePointBatch function, which
processes the step lengths in one batch and returns information regarding
whether the sequence contains a change point. The default is to use the
“Exponential” method, which computes a generalized likelihood ratio statistic
for the exponential distribution.

Ttest. We also implemented a novel change point detection algorithm based on the t-
test. We begin by sorting the steps lengths in increasing order. Then we compute
the gaps between successive step lengths. At each (sorted) step, we use the t-
distribution to determine the likelihood that the next gap is larger than expected
from the previously observed gaps. The first time that the next gap is significantly
larger than expected, we assert that this next step length is the smallest one that
constitutes a “long” step length.

Ttest2. Where the K-means algorithm was found to be conservative, the Ttest
algorithm just described was sometimes found to be anticonservative. This can
happen when the first few step lengths are all about the same size, which
yields a small standard deviation. In this case, a relative short next step will
be falsely discovered based on the Ttest criterion. To avoid this problem, it may
be appropriate to include the next (test) step length and gap when estimating
the mean and standard deviation of the gap distributon. We modified the Ttest
algorithm in this way to make it more conservative.

Bounding the Last Step
All of the proposed methods for separating short from long steps require us to bound
the permissible length of the final step when d̂ = 0, which would otherwise be infinite.
This step is important, since it allows the algorithm to conclude in some cases that the
only long step is the final one, and the true number of principal components should
equal zero. We use the largest of the following three quantities:

1. θ0 = Three percent further than the final change point (to d = 0) in the step
function.

2. θ0 = −2 log(0.01)/m, where m is the number of attributes. This procedure
selects the value of θ for which 99% of the prior probability is assigned to d = 0.

3. θ0 = (18.8402 + 1.9523 ∗ n+ 0.0005 ∗ n2)/m if m ≥ n and θ0 = (18.8402 +
1.9523 ∗ n+ 0.0005 ∗ n2) ∗m/n2 otherwise, where n is the number of objects.
This formula was derived empirically from a Monte Carlo study on data sets with
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random noise. We estimate θ0 as the maximum of the empirical largest change
point in the step function for various values of m and n in two scenarios: m ≥ n
andm < n. It can be seen as the value where the maximum point for d = 0 could
be achieved when various d’s are sharing the prior information on θ under the
uninformative noise structure.

Note that all simulations and computations in this article were performed using
version 3.2.2 of the R statistical software environment with version 1.1.3 of the
PCDimension package, which we have developed, and version 2.3.3 of the nFactors
package. The details on how to select the number of PCs for a simple example by using
the PCDimension package are provided in the supplementary material.

Results

Simulation Study
We follow a Monte Carlo procedure to study the robustness of the four types of
methods described above for estimating the number of PCs. For real data sets we
will never know the “correct” answer. So, we simulate a collection of data sets with
different correlation structures to compare the numerical Auer Gervini-model we
have implemented with the other three types: Broken-Stick, Bartlett’s test, and the
randomization-based procedure. Details about the correlation structures and data sets
are provided in the next section.

Simulated Datatypes. We use a protocol similar to those discussed in recent
papers.9,12,23–26 In the simulations, the number of measured attributes is taken to be
either m = 100 or m = 400. The range of 100 to 400 is chosen to represent small to
moderately large data sets. We also consider data sets with either n = 24 or n = 96
objects. We view 24 objects as a small data set, and 96 objects as a moderately
large one.27 The number of significant diagonal blocks is either the number shown in
Figure 1 or twice that number (with finer correlation structures of double group blocks).
By varying both the number of objects and the number of correlated blocks, we can
explore the effects of the number of nontrivial components and the number of objects
per component. To also explore the effects of different combinations of additional
factors, including eigenvalue distributions, signed or unsigned signals, uncorrelated
variation, and unskewed normal or skewed distributions, we use the 19 different
covariance structures and correlation matrices illustrated in Figure 1. Matrices 1–
3 are covariance matrices Σ with different marginal distributions: normal, marginal
gamma, and marginal t distribution, where Σ = ΓΛΓT , and Λ = diag(λ1, . . . , λn)
with λi = 1/i for 1 ≤ i ≤ 5 and λi = 1/10 for i ≥ 6. Matrices 4–19 are correlation
matrices corr(X) with corresponding covariance matrices σ2 ∗ corr(X) where σ2 = 1.
Matrix 4 contains only noise; it is a purely uncorrelated structure. Matrices 5–6
represent correlation structures with various homogeneous cross-correlation strengths
(unsigned signals) 0.3 and 0.8. Matrices 7–13 are correlation matrices where between-
group (0.3, 0.1, or 0) and within-group (0.8, or 0.3) correlations of objects are fixed.9,24

Matrices 14–19 are correlation structures where negative cross-correlations (−0.8 or
−0.3, signed signals) are considered within groups and mixture of signed and unsigned
signals are also included.
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Figure 1. The 19 correlation matrices considered in the simulation study for 24 objects.
Values of correlations are provides by the colorbar. Numbers in parentheses correspond to
the known dimension.

Empirical Simulation Results. For each of the 19 scenarios, we simulate 1000 data
sets. Then the numbers of components are estimated based on all (thirteen variants
of the) four types of methods. That is, for each variant within each type of model,
we compute the estimated dimension. We also investigate a “majority rule” procedure
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Figure 2. Log transformed mean values, across the correlation matrices, of the absolute
difference between the known dimension and the sample estimates from 15 different
methods in eight simulation scenarios (Scenario 1: 24×100, 1X correlated blocks; Scenario
2: 24×400, 1X; Scenario 3: 96×100, 1X; Scenario 4: 96×400, 1X; Scenario 5: 24×100,
2X; Scenario 6: 24×400, 2X; Scenario 7: 96×100, 2X; Scenario 8: 96×400, 2X).

for the Auer-Gervini model; that is, the dimension that more than three criteria out
of eight select is the one that is estimated by the majority rule. Then we calculate
the absolute difference beween the known dimension and the estimated ones for each
simulated sample and correlation structure. The mean of the absolute differences over
both 1000 simulated data sets and 19 correlation matrices are plotted in Figure 2.
The corresponding numeric values are also provided in Supplementary Table 1 in
the Appendix. The values in this table can help assess the quality of each method.
The closer to zero the values are, the better the corresponding variant within the type
of method. However, the values do not describe whether a method over- or under-
estimates the number of non-trivial PCs.

In Figure 2 and Supplementary Table 1, one can see that, as anticipated, the results
from most algorithms are better with fewer correlated blocks (Scenarios 1–4), probably
because there are more objects representing each block. Also, accuracy in almost all
methods is better with fewer objects (Scenarios 1–2 and 5–6). The situation is more
complicated when the number of attributes changes. In general, the worst performance
occurs when the data matrix is nearly square (Scenarios 3 and 7).
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Overall, the most accurate methods are (1) the rnd-Lambda algorithm in the
randomization-based method, and (2) the Auer-Gervini model with criterion “CPT”,
regardless of the matrix size or the number of blocks. They produce the most accurate
results when averaged across all scenarios. However, the rnd-Lambda algorithm, whose
average absolute difference is always less than one component with the original (1X)
blocks and less than two with 2X blocks, only produced the best overall performance
in 1 out of 8 scenarios. The results for the Auer-Gervini model with “CPT” criterion
are similarly accurate, but they become worse when the number of objects (96) is close
to the number of attributes (100).

By contrast, the Broken-Stick method and the “TwiceMean” criterion in the Auer-
Gervini model each have the best performance for 3 out of 8 scenarios. The accuracy of
the Broken-Stick method is worse when there are fewer objects, and the “TwiceMean”
algorithm in the Auer-Gervini model is worse when there are more objects. These two
approaches can be used as complementary ones for each other when considering the
number of objects.

The variants of Bartlett’s test, as implemented in R, have the worst performance of
all the stopping rules we have considered (Figure 2). Furthermore, the rnd-F algorithm
is not as good as expected, since a previous study found it to be one of the most
successful rules tested.9 Even though the “CPT” criterion is the best overall, and the
“TwiceMean” criterion produces the best results for 3 out of 8 scenarios, some of the
criteria that we use to automate the Auer-Gervini model are not good candidates for
computing the dimension. For example, the “Ttest” and “CPM” criteria often result in
large deviations of the estimated dimension as shown in Supplementary Figure 3. The
“CPM” criterion does a good job in calculating the number of non-trivial components
for correlation matrices 1–3, but it tends to overestimate the dimension for weakly
correlated or uncorrelated matrices (matrices 4, 8, 10, 11, 12 and 13).

Running Time. In addition to the absolute differences between the true dimension and
the estimates, we computed the average running time of the four types of methods
over all correlation matrices per data set (Table 1). All timings were carried out on a
computer with an “Intel R© CoreTM i7-4770S CPU @ 3.10 GHz” processor running
Windows R© 8.1. Note that the time shown in the table is the total time of all the
variants or criteria within each type of model. It is obvious that the computation time
becomes longer as the number of objects or attributes increases, and there is almost no
change in time usage when the number of blocks is doubled. From the table, we can
see that Bartlett’s test and the Broken-Stick method use the least time in computing
the number of components. However, the accuracy using the Broken-Stick approach
is better than in Bartlett’s test as shown in Figure 2. In terms of accuracy, the “CPT”
criterion in the Auer-Gervini model is comparable to the rnd-Lambda algorithm in
the randomization-based method. However, the randomization-based method (using
default number of 1000 permutations) spends several orders of magnitude more time
than the Auer-Gervini model. To sum up, the implementation time for three type
of methods, Bartlett’s test, the Broken-Stick method and the Auer-Gervini model, is
negligible compared to that of the randomization-based method. At the same time, the
“CPT” criterion in the Auer-Gervini method keeps the same level of accuracy as the
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randomization-based procedure, while Broken-Stick method is doing moderately well
to some extent.

Table 1. Average running time of the four types of methods across correlation matrices
(unit: seconds).
Rules Original Blocks (1X) Twice Blocks (2X)

24 objects 96 objects 24 objects 96 objects
m=100 m=400 m=100 m=400 m=100 m=400 m=100 m=400

Bartlett Test 0.015 0.01 0.019 0.027 0.014 0.009 0.024 0.027

Broken-Stick 0.007 0.008 0.012 0.031 0.007 0.008 0.014 0.031

Rand.-based 6.858 8.82 14.562 35.579 6.906 8.794 16.622 35.502

Auer-Gervini 0.115 0.071 0.351 0.454 0.119 0.072 0.422 0.456

High-accuracy methods: rnd-Lambda, and Auer-Gervini with CPT. More detailed
results on the performance of the rnd-Lambda algorithm are presented in Figure 3
and Supplementary Tables 2 and 3 in the Appendix for the case of the original block
structure shown in Figure 1. Similar results for the “CPT” criterion in the Auer-Gervini
model are presented in Figure 4 and Supplementary Tables 4 and 5. For each covariance
or correlation matrix, we computed the percentage of deviations between the estimates
and the known dimension. The results are similar regardless of the number of attributes
(100 or 400) or objects (24 or 96). Both methods tend to underestimate the dimension
for covariance matrices of unskewed or skewed distributions (matrices 1–3). They are
quite accurate for correlation matrices of normal distribution (matrices 4–19). When
they make errors with the normal distribution, the rnd-Lambda algorithm is more likely
to slightly overestimate the dimension while the Auer-Gervini CPT methods is more
likely to underestimate.

High-accuracy methods: TwiceMean, and Broken-Stick. We present details on the
performance of the “TwiceMean” criterion in the Auer-Gervini model and the Broken-
Stick method in Figure 5 and Supplementary Tables 6 and 7. For data sets with 24
objects, the Auer-Gervini method with criterion “TwiceMean” is very accurate for
uniform matrices (matrices 5–6), correlated matrices (matrices 7–13), and unsigned
data with or without signed signals (matrices 14–19). When the sample covariance
matrix is either skewed or unskewed (matrices 1–3), the dimension is usually
underestimated. Also the results do not vary too much with different numbers of
attibutes. For 96 objects, there is not much difference between the results of the Broken-
Stick method in Table 7 and that of the criterion “TwiceMean” in Table 6. And the
results of the Broken-Stick method for 100 attributes are slightly better than those for
400 attributes.

Robustness to random noise. We investigated the influence of random noise on
the ability of different methods to correctly detect the underlying structure. We
conducted additional simulation studies by adding different levels of (IID normal)
noise corresponding to three different values of the variance: σ2

e = 0.01, σ2
e = 0.1

and σ2
e = 1. Summaries of the absolute difference between the known dimension and

the esimates made using various methods under different levels of noise are presented
in Supplementary Tables 8, 9, and 10. Although the error rate tends to increase with
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Figure 3. Percentage of deviations between the estimate from randomization-based
procedure (rnd-Lambda) and known dimension.
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Figure 4. Percentage of deviations between the estimate from the “CPT” criterion in the
Auer-Gervini model and known dimension.

increasing noise, we found that the relative performance of the methods is consistent
regardless of the size of the noise. That is, most algorithms still perform better with
fewer objects, and accuracy in almost always worse when the number of blocks
doubles. Most importantly, the best method for each scenario doesn’t change in most
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Figure 5. Percentage of deviations between the estimate from either “TwiceMean” criterion
in the Auer-Gervin model or the Broken-Stick model and known dimension.

cases as the noise moves from 0 to 1. The “TwiceMean” criterion in the Auer-Gervini
model is better when the number of objects is small relative to the number of objects,
while the Broken-Stick method is better when the number of objects is close to the
number of attributes. Finally, regardless of the noise level, the rnd-Lambda algorithm
and the Auer-Gervini model with “CPT” criterion outperform the others on average
across all scenarios.

Decomposing the Apoptosis Pathway in AML
Since the introduction of gene expression microarrays in the 1990s, most statistical
analyses of omics data have treated pathways as second-class objects, in the following
sense: primary analyses are performed at the gene level. That is, the data is first
analyzed gene-by-gene to find differences between known groups of patients such as
responders and non-responders. Then a significance cutoff is chosen and a second
statistical test conditional on the gene-by-gene results (like gene set enrichment
analysis28) is performed in order to infer which pathways differ between the two
groups. One reason analysts give precedence to individual genes is that univariate
analyses are easier than the multivariate ones needed for pathways. However, many
biologists are more interested in pathways than in individual genes, because they give
a higher-level functional picture of biological behavior.

Informally, biologists talk about pathways as though they are one-dimensional
entities. At a cell level they are “on” or “off”; at a tissue level, they have a simple
“degree of activation”. But we hypothesize that most pathways, including the apoptosis
signaling pathway, are intrinsically multidimensional. To test this hypothesis, we
used a subset of reverse phase protein array (RPPA) data on samples collected from
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511 patients with acute myeloid leukemia.29,30 The subset consists of 33 proteins
that are involved in the apoptosis signaling pathway. Apoptosis is known to be
an essential component of several processes including normal cell turnover, proper
development and functioning of the immune system, and chemical-induced cell death.3

It is generally characterized by distinct morphological states and energy-dependent
biochemical mechanisms. Even though many important apoptotic proteins have been
identified, the molecular mechanisms of these proteins still remain to be elucidated.

We applied 14 different methods to determine the number d of significant
components in this RPPA data set; the results are displayed in Table 2. The number
of components that they find is highly variable, ranging from d = 1 to 31. Even the
four best methods from our simulations give different values (Broken-Stick: d = 1;
CPM: d = 1; TwiceMean: d = 6, and rnd-Lambda: d = 8). However, our simulation
studies suggest that the TwiceMean Auer-Gervini method works particularly well
when the number of objects (in this case, 33 proteins) is relatively small. In the top
panel of Figure 6, we have plotted the maximum posterior estimate of the number of
components as a function of the prior parameter θ; this plot gives better support for
d = 6 than for d = 8.

In order to understand the biology driving these mathematical principal components,
we then projected the proteins into the 6-dimensional PC space and used their
directions to cluster them using a von-Mises Fisher mixture model.31 Using the
Bayesian Information Criterion for model selection, we found an optimal clustering
into 6 groups of proteins, which are displayed in different colors in a 2-dimensional
projection in the bottom panel of Figure 6. The six protein clusters are:

1. AIFM1, BCL2, and DIABLO, which we interpret as a block corresponding to
the mitochondrial release of apoptosis-inducing factor32;

2. BID, CASP3, CASP8, and XIAP, which are part of a caspase-3 feedback loop33;
3. CASP3.cl175, CASP7.cl198, CASP9.cl315, and MDM2, a cleaved caspase

block34;
4. ARC, BAD.pS112, and YAP1p;
5. BAD.pS136, BAD.pS155, and BAX; and
6. the core group of 16 apoptosis-related proteins: BAD, BAK1, BCL2L1,

BCL2L11, BIRC2, BIRC5, BMI1, CASP9, CASP9.cl330, MCL1, MDM4,
PARP1, PARP1.cl214, TP53, TP53.pS15 and YAP1.

The fact that three of these six clusters can be immediately identified from the
literature as coherent biological subcomponents of the apoptosis pathway provides
strong support for our approach.

Table 2. Number of principal components (PCs) from different algorithms on RPPA data
Rules Auer-Gervini

twicemean spectral kmeans kmeans3 ttest ttest2 cpt cpmfun
PCs 6 6 1 1 4 1 1 10

Rules Bartlett Broken-Stick Rand.-based
bartlett anderson lawley broken-stick rnd-Lambda rnd-F

PCs 30 30 30 1 8 31
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Figure 6. Analysis of AML RPPA data. (Top) Auer-Gervini step function relating the prior
hyperparameter θ to the maximum posterior estimate of the number d̂ of significant
principal components. (Bottom) Projection of proteins on the space of the first two
components; colors denote different clusters.

Conclusion

PCA is one of the most popular and important techniques in the multivariate analysis
of general data sets. However, because principal components are linear combinations
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of correlated variables, these components usually lack interpretability when analyzing
biological data sets, especially transcriptomic or proteomic data sets from cancer
patients. Our study of the apoptosis pathway using proteomic data from AML
patients shows that we can use mixture model clustering in principal component
space to replace the uninterpretable mathematical components with natural collections
of related genes that enhance the biological interpetability of the decomposition.
We expect that applying these methods to the genes or proteins in other signaling
pathways will divide these pathways into one-dimensional “building blocks” that are
interpretable, robust, and can yield new biological insights. It would be of particular
interest to apply these ideas to overlapping pathways to better understand the way
similar components are reused in different contexts.

Our ability to find biologically interpretable components, however, depends in a
fundamental way on being able to determine the dimension of the principal component
space. To accomplish this task, we introduced the PCDimension R package, which
implements three types of models—the Broken-Stick method, the randomization-based
procedure of ter Braak,10,11 and our enhancments to the model developed by Auer
and Gervini12—to compute the number of significant principal components. Through
extensive simulations, we have shown that the enhanced Auer-Gervini methods are
competitive with the methods that performed best in previous comparative studies.

It has been claimed that simulation of multivariate data sets can always be criticized
as unrepresentative, since they can never explore more than a tiny fraction of the wide
range of possible covariance and correlation structures4 As with previous simulation
studies, our work may suffer from the same limitation. However, Ferre has also pointed
out that simulations are the only way to test and compare these methods.7 It is still
valuable to compare methods empirically when the dimension of the data set is known,
and factors of interest can be manipulated under simulation. We have endeavored to
explore a wide variety of different correlation structures in order to identify settings
where each method is likely to fail.

In our simulations, the variants of Bartlett method clearly had the worst performance.
This finding may be somewhat surprising: Peres-Neto and colleagues9 found these
methods to be only a little worse than the best performers in their simulations and
concluded that they were actually the best for distinguishing d = 0 from d ≥ 1. There
are two factors that distinguish their simulations from ours. First, we considered
a wider variety of correlation structures. The matrices considered by Peres-Neto
are represented by our matrices 4–13. Second, the matrices we consider are larger.
Motivated by problems from ecology, they looked at matrices that were 9×(30 or
50) or 18×(60 or 100). Motivated by the larger gene or protein expression data
sets currently being produced in biology, we looked at matrices that were (24 or
96)×(100 or 400). We think that both factors contribute to the different results.
Supplementary Figure 3 in the Appendix shows that the errors arise primarily from
matrices 1–4 and 10–12. This subset is comprised precisely of those matrices that
include a substantial amount of unstructured noise. We suspect that the underlying
difficulty arises because the stepwise hypothesis tests give rise to a classical problem
of multiple comparisons. Thus the likelihood of incorrectly rejecting a null hypothesis
(and inflating the dimension) increases. This may also explain why Ferre7 cautioned
that Bartlett’s test can overestimate the number of components.
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The rnd-F method introduced by ter Brack also performed significantly worse in our
simulations than in those of Perres-Neto. The plots in Supplementary Figure 3 reveal
two things. First, for virtually every correlation matrix we considered, rnd-F is more
variable and less accurate than rnd-Lambda. Second, the most serious large errors arise
from matrices 10–13. These matrices contain a mix of both highly structured data and
completely unstructured noise. Similar matrices were considered in the previous study,
so we conclude that the rnd-F method simply works poorly with larger matrices.

We investigated the graphical Bayesian method of Auer-Gervini12 in some detail.
Specifially, we introduced and tested eight algorithms to enhance the method by
automatically selecting the number of components. Two of these—the novel T-test-
based changepoint algorithm and the exponential model from the CPM package—were
abysmal. In virtually every simulation, the T-test seriously overestimates the number
of components. The exponential CPM model overestimates the number at least half
the time. The remaining six methods have at least acceptable performance most of the
time.

The clear overall winners from our simulation study are the rnd-Lambda method
among the randomization-based procedures and the Auer-Gervini model with criterion
“CPT”. They produce the best results on average across all 19 correlation matrices
and data sets of different sizes. It is interesting to note, however, that they rarely give
the absolute best results for any fixed size of data matrix. Their ultimate strength is
their consistency: their estimates are always competitive with the best methods, and
the average error in the estimated dimension is always less than two.

There is little to choose between the two winning methods in terms of accuracy.
However, there is a clear difference in computation time. The “CPT” criterion in the
Auer-Gervini model is at least two orders of magnitude faster than the rnd-Lambda
algorithm, with no loss in accuracy. Not surprisingly, computation time increases for
all methods as the number of objects or attributes increases. Changing the number of
correlated blocks has little effect on computation time. The fastest methods overall are
the variants of Bartlett’s test and the Broken-Stick method, but this increase in speed is
obtained at a much bigger cost in accuracy.

Two other methods perform well in complementary settings. Both the Broken-Stick
model and the Auer-Gervini method using the TwiceMean criterion are the most
accurate on average for three of the eight scenarios we considered. All three cases
where TwiceMean wins have 24 objects; all three cases where Broken-Stick wins have
96 objects. The Twice Mean criterion appears to severely overestimate the number of
components when the size of the data matrix increases. By contrast, the Broken-Stick
model appears to benefit from having extra data available. MacArthur15 and De Vita35

showed that the Broken-Stick model worked well when fitting the relative abundance
data of species in ecological populations. It is possible that the distribution of the
expected lengths in Equation (2) will be better approximated with larger data matrices.
This may explains why its performance improves.

Our simulation studies uncovered at least two (possibly related) contexts where it is
particularly difficult to estimate the number of components correctly. Every reasonable
method (that is, not Bartlett’s, rnd-F, nor Auer-Gervini with the simple T-test or
the exponential CPM criteria) severely underestimates the dimension for correlation
matrices 1–3. In addition, most methods overestimate the dimension when there are
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96 objects and 100 attributes, especially when we doubled the number of correlated
blocks. In both cases, there is very little redundancy in the signals we are trying to
detect. (The biological contexts where we expect to apply these methods are expected
to contain considerable redundancy in the form of highly correlated genes or proteins.)
To handle more general data sets, however, new methods will need to be developed
in order to improve performance in these examples without sacrificing it in other
examples. Further work will also be needed to clarify what kinds of structural changes
occur as the number of objects increases from 24 to 96 and beyond.

We do not expect our study to be the final word on how to determine the number
of significant principal components; like Ferre7, we must conclude that there is no
ideal solution to the problem. If forced to choose one method for all data sets, we
would pick the Auer-Gervini model using the CPT criterion, since it is both reasonably
accurate and reasonably fast. This would especially be the case if we were trying to
analyze many data sets at once; for example, when performing an analysis like the
one in our AML data set for a long list of different biological pathways or gene sets.
When focused on only one data set, we would compute the estimates from other Auer-
Gervini enhancements (TwiceMean, Kmeans3, and Ttest2), as well as the Broken-Stick
and rnd-Lambda methods, and review them in light of both the traditional screeplot
and the Auer-Gervini plot of the maximum posterior dimension as a function of the
hyperparameter. We believe that this combination of analytical and graphical methods,
as provided in the PCDimension package, will guide researchers to the most reliable
results.
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